296 lines
7.9 KiB
C++
296 lines
7.9 KiB
C++
|
|
//#include "usingneuralnet.h"
|
|
#include "usingpca.h"
|
|
#include <omp.h>
|
|
#include "pca/TrainPCA.h"
|
|
#include <KLib/misc/gnuplot/Gnuplot.h>
|
|
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
|
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
|
|
|
#include "pca/KNN.h"
|
|
#include "pca/aKNN.h"
|
|
|
|
#include <vector>
|
|
|
|
std::vector<std::string> COLORS = {"#000000", "#0000ff", "#00ff00", "#ff0000", "#00ffff"};
|
|
|
|
std::string getClass(const std::vector<ClassifiedFeature>& nns) {
|
|
std::unordered_map<std::string, int> map;
|
|
for(const ClassifiedFeature& nn : nns) { map[nn.className] += 1; }
|
|
for (auto& it : map) {
|
|
if (it.second > nns.size() * 0.75) {return it.first;}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
struct ClassStats {
|
|
int counts[6] = {};
|
|
};
|
|
|
|
struct Stats{
|
|
int match;
|
|
int error;
|
|
int unknown;
|
|
Stats() : match(0), error(0), unknown(0) {;}
|
|
float getSum() {return match+error+unknown;}
|
|
};
|
|
|
|
|
|
|
|
std::vector<ClassifiedPattern> removePatterns(const std::vector<ClassifiedPattern>& patAll, const std::string& fileName) {
|
|
std::vector<ClassifiedPattern> res;
|
|
for (const ClassifiedPattern& pat : patAll) {
|
|
if (pat.belongsToFile(fileName)) {
|
|
continue;
|
|
} else {
|
|
res.push_back(pat);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <int numFeatures> struct PCA {
|
|
|
|
aKNN<ClassifiedFeature, numFeatures> knn;
|
|
TrainPCA::Matrices m;
|
|
|
|
};
|
|
|
|
class Plot {
|
|
|
|
K::Gnuplot gp;
|
|
K::GnuplotSplot splot;
|
|
K::GnuplotSplotElementLines lines[5];
|
|
|
|
|
|
public:
|
|
|
|
Plot() {
|
|
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
|
|
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
|
|
}
|
|
|
|
void add(int idx, std::vector<float>& vec) {
|
|
K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]);
|
|
lines[idx].add(p3);
|
|
}
|
|
|
|
void clear() {
|
|
for (int i = 0; i < 5; ++i) {lines[i].clear();}
|
|
}
|
|
|
|
void show() {
|
|
gp.setDebugOutput(false);
|
|
gp.draw(splot);
|
|
gp.flush();
|
|
}
|
|
|
|
};
|
|
|
|
int main(void) {
|
|
|
|
omp_set_dynamic(false);
|
|
omp_set_num_threads(3);
|
|
|
|
const int numFeatures = 10;
|
|
|
|
TrainPCA::Settings setTrain;
|
|
TrainPCA::Settings setClass; setClass.regionStart_ms += 25;
|
|
|
|
Data::getAllDataFiles();
|
|
Plot p;
|
|
|
|
// convert all provided datasets into patterns
|
|
std::vector<ClassifiedPattern> srcTrain = TrainPCA::getAllData(setTrain);
|
|
std::vector<ClassifiedPattern> srcClass = TrainPCA::getAllData(setClass);
|
|
std::cout << "windows: " << srcTrain.size() << std::endl;
|
|
|
|
// error calculation
|
|
std::unordered_map<std::string, Stats> stats;
|
|
std::unordered_map<std::string, ClassStats> classStats;
|
|
//int xx = 0;
|
|
std::unordered_map<std::string, PCA<numFeatures>*> pcas;
|
|
|
|
// try to classify each pattern
|
|
for (const ClassifiedPattern& patClassify : srcClass) {
|
|
|
|
// construct knn search for this leave-one-out ONLY ONCE
|
|
if (pcas.find(patClassify.fileName) == pcas.end()) {
|
|
|
|
std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl;
|
|
|
|
// remove all training patterns belonging to the same source file as the to be classifed pattern
|
|
std::vector<ClassifiedPattern> srcTrainLOO = removePatterns(srcTrain, patClassify.fileName);
|
|
|
|
// sanity check (have we removed all patterns?)
|
|
int diff = srcTrain.size() - srcTrainLOO.size();
|
|
if (diff < 200) {throw 1;}
|
|
|
|
p.clear();
|
|
PCA<numFeatures>* pca = new PCA<numFeatures>();
|
|
pcas[patClassify.fileName] = pca;
|
|
|
|
// train PCA using all pattern without those belonging to the same source file as the to-be-classified one
|
|
pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures);
|
|
|
|
// calculate features and add them to the KNN
|
|
for (const ClassifiedPattern& pat : srcTrainLOO) {
|
|
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
|
|
std::vector<float> arr;
|
|
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
|
pca->knn.add(ClassifiedFeature(pat.className, arr));
|
|
|
|
const int idx = Settings::classToInt(pat.className);
|
|
p.add(idx, arr);
|
|
|
|
}
|
|
pca->knn.build();
|
|
//p.show();
|
|
//sleep(100);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
PCA<numFeatures>* pca = pcas[patClassify.fileName];
|
|
|
|
// calculate features for the to-be-classified pattern
|
|
//const int idx = Settings::classToInt(pat.className);
|
|
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(patClassify.pattern);
|
|
|
|
// get KNN's answer
|
|
std::vector<float> arr;
|
|
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
|
std::vector<ClassifiedFeature> neighbors = pca->knn.get(arr.data(), 5);
|
|
std::string gotClass = getClass(neighbors);
|
|
|
|
if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;}
|
|
else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;}
|
|
else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;}
|
|
|
|
int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass);
|
|
++classStats[patClassify.className].counts[gotIdx];
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
for (auto& it : stats) {
|
|
Stats& stats = it.second;
|
|
std::cout << "'" <<it.first << "',";
|
|
std::cout << stats.match/stats.getSum() << ",";
|
|
std::cout << stats.error/stats.getSum() << ",";
|
|
std::cout << stats.unknown/stats.getSum();
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
for (auto& it : classStats) {
|
|
ClassStats& stats = it.second;
|
|
std::cout << "'" << it.first << "',";
|
|
for (int i = 0; i < 6; ++i) {
|
|
std::cout << stats.counts[i] << ",";
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
|
|
/*
|
|
std::vector<ClassifiedPattern> patTrain = TrainPCA::getTrainData();
|
|
TrainPCA::Matrices m = TrainPCA::getMatrices(patTrain, numFeatures);
|
|
|
|
std::vector<ClassifiedPattern> patTest = TrainPCA::getTestData();
|
|
|
|
// construct knn
|
|
aKNN<ClassifiedFeature, numFeatures> knn;
|
|
for (const ClassifiedPattern& pat : patTrain) {
|
|
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
|
|
std::vector<float> arr;
|
|
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
|
knn.add(ClassifiedFeature(pat.className, arr));
|
|
}
|
|
knn.build();
|
|
|
|
K::Gnuplot gp;
|
|
K::GnuplotSplot splot;
|
|
K::GnuplotSplotElementLines lines[5];
|
|
|
|
|
|
Stats stats;
|
|
int xx = 0;
|
|
for (const ClassifiedPattern& pat : patTest) {
|
|
|
|
const int idx = Settings::classToInt(pat.className);
|
|
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
|
|
|
|
// get KNN's answer
|
|
std::vector<float> arr;
|
|
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
|
std::vector<ClassifiedFeature> neighbors = knn.get(arr.data(), 10);
|
|
std::string gotClass = getClass(neighbors);
|
|
|
|
if (pat.className == gotClass) {stats.match++;}
|
|
else if (gotClass == "") {stats.unknown++;}
|
|
else {stats.error++;}
|
|
|
|
if (++xx % 16 == 0) {
|
|
std::cout << pat.className << " -> " << gotClass << std::endl;
|
|
std::cout << stats.getSum() << ":" << stats.match << ":" << stats.error << ":" << stats.unknown << std::endl;
|
|
std::cout << stats.match/stats.getSum() << ":" << stats.error/stats.getSum() << ":" << stats.unknown/stats.getSum() << std::endl;
|
|
}
|
|
|
|
// plot
|
|
K::GnuplotPoint3 p3(vec(0), vec(1), vec(2));
|
|
lines[idx].add(p3);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
|
|
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
|
|
gp.setDebugOutput(false);
|
|
gp.draw(splot);
|
|
gp.flush();
|
|
|
|
sleep(10000);
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
// std::vector<std::vector<float>> vecs = {vec1, vec2};
|
|
// std::cout << K::PCAHelper<float>::getR(vecs) << std::endl;
|
|
// std::cout << K::PCAHelper<float>::getM(vecs) << std::endl;
|
|
|
|
// K::PCAHelper<float>::R r;
|
|
// r.add(vec1); r.add(vec2); std::cout << r.get() << std::endl;
|
|
|
|
|
|
// Eigen::Vector3f v1; v1 << 1,2,3;
|
|
// Eigen::Vector3f v2; v2 << 3,4,5;
|
|
// std::vector<Eigen::Vector3f> vecs2 = {v1, v2};
|
|
// std::cout << K::PCAHelper<float>::getR(vecs2) << std::endl;
|
|
// std::cout << K::PCAHelper<float>::getM(vecs2) << std::endl;
|
|
|
|
// UsingNeuralNet::run();
|
|
|
|
//UsingPCA::run();
|
|
|
|
|
|
|
|
// UsingNeuralNet::debugPlot(
|
|
// Practice {
|
|
// PracticeType::KNEEBEND,
|
|
// SensorReader::read("/mnt/firma/kunden/HandyGames/daten/kneebend/kneebend_gl_0_subject_0_right.txt"),
|
|
// {2650, 4750, 6750, 8800, 10800, 12800}
|
|
// //{3500, 5000, 8300, 9900, 11550}
|
|
// }
|
|
|
|
// );
|
|
|
|
|
|
//sleep(1000);
|
|
|
|
}
|