Files
HandyGames/workspace/main.cpp
2016-01-09 18:34:03 +01:00

296 lines
7.9 KiB
C++

//#include "usingneuralnet.h"
#include "usingpca.h"
#include <omp.h>
#include "pca/TrainPCA.h"
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include "pca/KNN.h"
#include "pca/aKNN.h"
#include <vector>
std::vector<std::string> COLORS = {"#000000", "#0000ff", "#00ff00", "#ff0000", "#00ffff"};
std::string getClass(const std::vector<ClassifiedFeature>& nns) {
std::unordered_map<std::string, int> map;
for(const ClassifiedFeature& nn : nns) { map[nn.className] += 1; }
for (auto& it : map) {
if (it.second > nns.size() * 0.75) {return it.first;}
}
return "";
}
struct ClassStats {
int counts[6] = {};
};
struct Stats{
int match;
int error;
int unknown;
Stats() : match(0), error(0), unknown(0) {;}
float getSum() {return match+error+unknown;}
};
std::vector<ClassifiedPattern> removePatterns(const std::vector<ClassifiedPattern>& patAll, const std::string& fileName) {
std::vector<ClassifiedPattern> res;
for (const ClassifiedPattern& pat : patAll) {
if (pat.belongsToFile(fileName)) {
continue;
} else {
res.push_back(pat);
}
}
return res;
}
template <int numFeatures> struct PCA {
aKNN<ClassifiedFeature, numFeatures> knn;
TrainPCA::Matrices m;
};
class Plot {
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementLines lines[5];
public:
Plot() {
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
}
void add(int idx, std::vector<float>& vec) {
K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]);
lines[idx].add(p3);
}
void clear() {
for (int i = 0; i < 5; ++i) {lines[i].clear();}
}
void show() {
gp.setDebugOutput(false);
gp.draw(splot);
gp.flush();
}
};
int main(void) {
omp_set_dynamic(false);
omp_set_num_threads(3);
const int numFeatures = 10;
TrainPCA::Settings setTrain;
TrainPCA::Settings setClass; setClass.regionStart_ms += 25;
Data::getAllDataFiles();
Plot p;
// convert all provided datasets into patterns
std::vector<ClassifiedPattern> srcTrain = TrainPCA::getAllData(setTrain);
std::vector<ClassifiedPattern> srcClass = TrainPCA::getAllData(setClass);
std::cout << "windows: " << srcTrain.size() << std::endl;
// error calculation
std::unordered_map<std::string, Stats> stats;
std::unordered_map<std::string, ClassStats> classStats;
//int xx = 0;
std::unordered_map<std::string, PCA<numFeatures>*> pcas;
// try to classify each pattern
for (const ClassifiedPattern& patClassify : srcClass) {
// construct knn search for this leave-one-out ONLY ONCE
if (pcas.find(patClassify.fileName) == pcas.end()) {
std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl;
// remove all training patterns belonging to the same source file as the to be classifed pattern
std::vector<ClassifiedPattern> srcTrainLOO = removePatterns(srcTrain, patClassify.fileName);
// sanity check (have we removed all patterns?)
int diff = srcTrain.size() - srcTrainLOO.size();
if (diff < 200) {throw 1;}
p.clear();
PCA<numFeatures>* pca = new PCA<numFeatures>();
pcas[patClassify.fileName] = pca;
// train PCA using all pattern without those belonging to the same source file as the to-be-classified one
pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures);
// calculate features and add them to the KNN
for (const ClassifiedPattern& pat : srcTrainLOO) {
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
pca->knn.add(ClassifiedFeature(pat.className, arr));
const int idx = Settings::classToInt(pat.className);
p.add(idx, arr);
}
pca->knn.build();
//p.show();
//sleep(100);
}
{
PCA<numFeatures>* pca = pcas[patClassify.fileName];
// calculate features for the to-be-classified pattern
//const int idx = Settings::classToInt(pat.className);
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(patClassify.pattern);
// get KNN's answer
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = pca->knn.get(arr.data(), 5);
std::string gotClass = getClass(neighbors);
if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;}
else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;}
else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;}
int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass);
++classStats[patClassify.className].counts[gotIdx];
}
}
for (auto& it : stats) {
Stats& stats = it.second;
std::cout << "'" <<it.first << "',";
std::cout << stats.match/stats.getSum() << ",";
std::cout << stats.error/stats.getSum() << ",";
std::cout << stats.unknown/stats.getSum();
std::cout << std::endl;
}
for (auto& it : classStats) {
ClassStats& stats = it.second;
std::cout << "'" << it.first << "',";
for (int i = 0; i < 6; ++i) {
std::cout << stats.counts[i] << ",";
}
std::cout << std::endl;
}
/*
std::vector<ClassifiedPattern> patTrain = TrainPCA::getTrainData();
TrainPCA::Matrices m = TrainPCA::getMatrices(patTrain, numFeatures);
std::vector<ClassifiedPattern> patTest = TrainPCA::getTestData();
// construct knn
aKNN<ClassifiedFeature, numFeatures> knn;
for (const ClassifiedPattern& pat : patTrain) {
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
knn.add(ClassifiedFeature(pat.className, arr));
}
knn.build();
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementLines lines[5];
Stats stats;
int xx = 0;
for (const ClassifiedPattern& pat : patTest) {
const int idx = Settings::classToInt(pat.className);
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
// get KNN's answer
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = knn.get(arr.data(), 10);
std::string gotClass = getClass(neighbors);
if (pat.className == gotClass) {stats.match++;}
else if (gotClass == "") {stats.unknown++;}
else {stats.error++;}
if (++xx % 16 == 0) {
std::cout << pat.className << " -> " << gotClass << std::endl;
std::cout << stats.getSum() << ":" << stats.match << ":" << stats.error << ":" << stats.unknown << std::endl;
std::cout << stats.match/stats.getSum() << ":" << stats.error/stats.getSum() << ":" << stats.unknown/stats.getSum() << std::endl;
}
// plot
K::GnuplotPoint3 p3(vec(0), vec(1), vec(2));
lines[idx].add(p3);
}
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
gp.setDebugOutput(false);
gp.draw(splot);
gp.flush();
sleep(10000);
*/
// std::vector<std::vector<float>> vecs = {vec1, vec2};
// std::cout << K::PCAHelper<float>::getR(vecs) << std::endl;
// std::cout << K::PCAHelper<float>::getM(vecs) << std::endl;
// K::PCAHelper<float>::R r;
// r.add(vec1); r.add(vec2); std::cout << r.get() << std::endl;
// Eigen::Vector3f v1; v1 << 1,2,3;
// Eigen::Vector3f v2; v2 << 3,4,5;
// std::vector<Eigen::Vector3f> vecs2 = {v1, v2};
// std::cout << K::PCAHelper<float>::getR(vecs2) << std::endl;
// std::cout << K::PCAHelper<float>::getM(vecs2) << std::endl;
// UsingNeuralNet::run();
//UsingPCA::run();
// UsingNeuralNet::debugPlot(
// Practice {
// PracticeType::KNEEBEND,
// SensorReader::read("/mnt/firma/kunden/HandyGames/daten/kneebend/kneebend_gl_0_subject_0_right.txt"),
// {2650, 4750, 6750, 8800, 10800, 12800}
// //{3500, 5000, 8300, 9900, 11550}
// }
// );
//sleep(1000);
}