//#include "usingneuralnet.h" #include "usingpca.h" #include #include "pca/TrainPCA.h" #include #include #include #include "pca/KNN.h" #include "pca/aKNN.h" #include std::vector COLORS = {"#000000", "#0000ff", "#00ff00", "#ff0000", "#00ffff"}; std::string getClass(const std::vector& nns) { std::unordered_map map; for(const ClassifiedFeature& nn : nns) { map[nn.className] += 1; } for (auto& it : map) { if (it.second > nns.size() * 0.75) {return it.first;} } return ""; } struct ClassStats { int counts[6] = {}; }; struct Stats{ int match; int error; int unknown; Stats() : match(0), error(0), unknown(0) {;} float getSum() {return match+error+unknown;} }; std::vector removePatterns(const std::vector& patAll, const std::string& fileName) { std::vector res; for (const ClassifiedPattern& pat : patAll) { if (pat.belongsToFile(fileName)) { continue; } else { res.push_back(pat); } } return res; } template struct PCA { aKNN knn; TrainPCA::Matrices m; }; class Plot { K::Gnuplot gp; K::GnuplotSplot splot; K::GnuplotSplotElementLines lines[5]; public: Plot() { for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);} for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);} } void add(int idx, std::vector& vec) { K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]); lines[idx].add(p3); } void clear() { for (int i = 0; i < 5; ++i) {lines[i].clear();} } void show() { gp.setDebugOutput(false); gp.draw(splot); gp.flush(); } }; int main(void) { omp_set_dynamic(false); omp_set_num_threads(3); const int numFeatures = 10; TrainPCA::Settings setTrain; TrainPCA::Settings setClass; setClass.regionStart_ms += 25; Data::getAllDataFiles(); Plot p; // convert all provided datasets into patterns std::vector srcTrain = TrainPCA::getAllData(setTrain); std::vector srcClass = TrainPCA::getAllData(setClass); std::cout << "windows: " << srcTrain.size() << std::endl; // error calculation std::unordered_map stats; std::unordered_map classStats; //int xx = 0; std::unordered_map*> pcas; // try to classify each pattern for (const ClassifiedPattern& patClassify : srcClass) { // construct knn search for this leave-one-out ONLY ONCE if (pcas.find(patClassify.fileName) == pcas.end()) { std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl; // remove all training patterns belonging to the same source file as the to be classifed pattern std::vector srcTrainLOO = removePatterns(srcTrain, patClassify.fileName); // sanity check (have we removed all patterns?) int diff = srcTrain.size() - srcTrainLOO.size(); if (diff < 200) {throw 1;} p.clear(); PCA* pca = new PCA(); pcas[patClassify.fileName] = pca; // train PCA using all pattern without those belonging to the same source file as the to-be-classified one pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures); // calculate features and add them to the KNN for (const ClassifiedPattern& pat : srcTrainLOO) { K::DynColVector vec = pca->m.A1 * K::PCAHelper::toVector(pat.pattern); std::vector arr; for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));} pca->knn.add(ClassifiedFeature(pat.className, arr)); const int idx = Settings::classToInt(pat.className); p.add(idx, arr); } pca->knn.build(); //p.show(); //sleep(100); } { PCA* pca = pcas[patClassify.fileName]; // calculate features for the to-be-classified pattern //const int idx = Settings::classToInt(pat.className); K::DynColVector vec = pca->m.A1 * K::PCAHelper::toVector(patClassify.pattern); // get KNN's answer std::vector arr; for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));} std::vector neighbors = pca->knn.get(arr.data(), 5); std::string gotClass = getClass(neighbors); if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;} else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;} else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;} int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass); ++classStats[patClassify.className].counts[gotIdx]; } } for (auto& it : stats) { Stats& stats = it.second; std::cout << "'" < patTrain = TrainPCA::getTrainData(); TrainPCA::Matrices m = TrainPCA::getMatrices(patTrain, numFeatures); std::vector patTest = TrainPCA::getTestData(); // construct knn aKNN knn; for (const ClassifiedPattern& pat : patTrain) { K::DynColVector vec = m.A1 * K::PCAHelper::toVector(pat.pattern); std::vector arr; for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));} knn.add(ClassifiedFeature(pat.className, arr)); } knn.build(); K::Gnuplot gp; K::GnuplotSplot splot; K::GnuplotSplotElementLines lines[5]; Stats stats; int xx = 0; for (const ClassifiedPattern& pat : patTest) { const int idx = Settings::classToInt(pat.className); K::DynColVector vec = m.A1 * K::PCAHelper::toVector(pat.pattern); // get KNN's answer std::vector arr; for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));} std::vector neighbors = knn.get(arr.data(), 10); std::string gotClass = getClass(neighbors); if (pat.className == gotClass) {stats.match++;} else if (gotClass == "") {stats.unknown++;} else {stats.error++;} if (++xx % 16 == 0) { std::cout << pat.className << " -> " << gotClass << std::endl; std::cout << stats.getSum() << ":" << stats.match << ":" << stats.error << ":" << stats.unknown << std::endl; std::cout << stats.match/stats.getSum() << ":" << stats.error/stats.getSum() << ":" << stats.unknown/stats.getSum() << std::endl; } // plot K::GnuplotPoint3 p3(vec(0), vec(1), vec(2)); lines[idx].add(p3); } for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);} for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);} gp.setDebugOutput(false); gp.draw(splot); gp.flush(); sleep(10000); */ // std::vector> vecs = {vec1, vec2}; // std::cout << K::PCAHelper::getR(vecs) << std::endl; // std::cout << K::PCAHelper::getM(vecs) << std::endl; // K::PCAHelper::R r; // r.add(vec1); r.add(vec2); std::cout << r.get() << std::endl; // Eigen::Vector3f v1; v1 << 1,2,3; // Eigen::Vector3f v2; v2 << 3,4,5; // std::vector vecs2 = {v1, v2}; // std::cout << K::PCAHelper::getR(vecs2) << std::endl; // std::cout << K::PCAHelper::getM(vecs2) << std::endl; // UsingNeuralNet::run(); //UsingPCA::run(); // UsingNeuralNet::debugPlot( // Practice { // PracticeType::KNEEBEND, // SensorReader::read("/mnt/firma/kunden/HandyGames/daten/kneebend/kneebend_gl_0_subject_0_right.txt"), // {2650, 4750, 6750, 8800, 10800, 12800} // //{3500, 5000, 8300, 9900, 11550} // } // ); //sleep(1000); }