added recent C++ code
This commit is contained in:
@@ -55,7 +55,7 @@ ADD_DEFINITIONS(
|
||||
-Wall
|
||||
-Werror=return-type
|
||||
-Wextra
|
||||
#-O2
|
||||
-O2
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
@@ -23,6 +23,10 @@ std::string getClass(const std::vector<ClassifiedFeature>& nns) {
|
||||
return "";
|
||||
}
|
||||
|
||||
struct ClassStats {
|
||||
int counts[6] = {};
|
||||
};
|
||||
|
||||
struct Stats{
|
||||
int match;
|
||||
int error;
|
||||
@@ -31,23 +35,178 @@ struct Stats{
|
||||
float getSum() {return match+error+unknown;}
|
||||
};
|
||||
|
||||
|
||||
|
||||
std::vector<ClassifiedPattern> removePatterns(const std::vector<ClassifiedPattern>& patAll, const std::string& fileName) {
|
||||
std::vector<ClassifiedPattern> res;
|
||||
for (const ClassifiedPattern& pat : patAll) {
|
||||
if (pat.belongsToFile(fileName)) {
|
||||
continue;
|
||||
} else {
|
||||
res.push_back(pat);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template <int numFeatures> struct PCA {
|
||||
|
||||
aKNN<ClassifiedFeature, numFeatures> knn;
|
||||
TrainPCA::Matrices m;
|
||||
|
||||
};
|
||||
|
||||
class Plot {
|
||||
|
||||
K::Gnuplot gp;
|
||||
K::GnuplotSplot splot;
|
||||
K::GnuplotSplotElementLines lines[5];
|
||||
|
||||
|
||||
public:
|
||||
|
||||
Plot() {
|
||||
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
|
||||
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
|
||||
}
|
||||
|
||||
void add(int idx, std::vector<float>& vec) {
|
||||
K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]);
|
||||
lines[idx].add(p3);
|
||||
}
|
||||
|
||||
void clear() {
|
||||
for (int i = 0; i < 5; ++i) {lines[i].clear();}
|
||||
}
|
||||
|
||||
void show() {
|
||||
gp.setDebugOutput(false);
|
||||
gp.draw(splot);
|
||||
gp.flush();
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
int main(void) {
|
||||
|
||||
omp_set_dynamic(false);
|
||||
omp_set_num_threads(3);
|
||||
|
||||
const int numFeatures = 3;
|
||||
const int numFeatures = 10;
|
||||
|
||||
TrainPCA::Settings setTrain;
|
||||
TrainPCA::Settings setClass; setClass.regionStart_ms += 25;
|
||||
|
||||
Data::getAllDataFiles();
|
||||
Plot p;
|
||||
|
||||
// convert all provided datasets into patterns
|
||||
std::vector<ClassifiedPattern> srcTrain = TrainPCA::getAllData(setTrain);
|
||||
std::vector<ClassifiedPattern> srcClass = TrainPCA::getAllData(setClass);
|
||||
std::cout << "windows: " << srcTrain.size() << std::endl;
|
||||
|
||||
// error calculation
|
||||
std::unordered_map<std::string, Stats> stats;
|
||||
std::unordered_map<std::string, ClassStats> classStats;
|
||||
//int xx = 0;
|
||||
std::unordered_map<std::string, PCA<numFeatures>*> pcas;
|
||||
|
||||
// try to classify each pattern
|
||||
for (const ClassifiedPattern& patClassify : srcClass) {
|
||||
|
||||
// construct knn search for this leave-one-out ONLY ONCE
|
||||
if (pcas.find(patClassify.fileName) == pcas.end()) {
|
||||
|
||||
std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl;
|
||||
|
||||
// remove all training patterns belonging to the same source file as the to be classifed pattern
|
||||
std::vector<ClassifiedPattern> srcTrainLOO = removePatterns(srcTrain, patClassify.fileName);
|
||||
|
||||
// sanity check (have we removed all patterns?)
|
||||
int diff = srcTrain.size() - srcTrainLOO.size();
|
||||
if (diff < 200) {throw 1;}
|
||||
|
||||
p.clear();
|
||||
PCA<numFeatures>* pca = new PCA<numFeatures>();
|
||||
pcas[patClassify.fileName] = pca;
|
||||
|
||||
// train PCA using all pattern without those belonging to the same source file as the to-be-classified one
|
||||
pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures);
|
||||
|
||||
// calculate features and add them to the KNN
|
||||
for (const ClassifiedPattern& pat : srcTrainLOO) {
|
||||
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
|
||||
std::vector<float> arr;
|
||||
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
||||
pca->knn.add(ClassifiedFeature(pat.className, arr));
|
||||
|
||||
const int idx = Settings::classToInt(pat.className);
|
||||
p.add(idx, arr);
|
||||
|
||||
}
|
||||
pca->knn.build();
|
||||
//p.show();
|
||||
//sleep(100);
|
||||
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
PCA<numFeatures>* pca = pcas[patClassify.fileName];
|
||||
|
||||
// calculate features for the to-be-classified pattern
|
||||
//const int idx = Settings::classToInt(pat.className);
|
||||
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(patClassify.pattern);
|
||||
|
||||
// get KNN's answer
|
||||
std::vector<float> arr;
|
||||
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
||||
std::vector<ClassifiedFeature> neighbors = pca->knn.get(arr.data(), 5);
|
||||
std::string gotClass = getClass(neighbors);
|
||||
|
||||
if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;}
|
||||
else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;}
|
||||
else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;}
|
||||
|
||||
int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass);
|
||||
++classStats[patClassify.className].counts[gotIdx];
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
for (auto& it : stats) {
|
||||
Stats& stats = it.second;
|
||||
std::cout << "'" <<it.first << "',";
|
||||
std::cout << stats.match/stats.getSum() << ",";
|
||||
std::cout << stats.error/stats.getSum() << ",";
|
||||
std::cout << stats.unknown/stats.getSum();
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
for (auto& it : classStats) {
|
||||
ClassStats& stats = it.second;
|
||||
std::cout << "'" << it.first << "',";
|
||||
for (int i = 0; i < 6; ++i) {
|
||||
std::cout << stats.counts[i] << ",";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
std::vector<ClassifiedPattern> patTrain = TrainPCA::getTrainData();
|
||||
TrainPCA::Matrices m = TrainPCA::getMatrices(patTrain, numFeatures);
|
||||
|
||||
std::vector<ClassifiedPattern> patTest = TrainPCA::getTestData();
|
||||
|
||||
// construct knn
|
||||
aKNN<ClassifiedFeature, 3> knn;
|
||||
aKNN<ClassifiedFeature, numFeatures> knn;
|
||||
for (const ClassifiedPattern& pat : patTrain) {
|
||||
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
|
||||
const std::vector<float> arr = {vec(0), vec(1), vec(2)};
|
||||
std::vector<float> arr;
|
||||
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
||||
knn.add(ClassifiedFeature(pat.className, arr));
|
||||
}
|
||||
knn.build();
|
||||
@@ -65,7 +224,8 @@ int main(void) {
|
||||
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
|
||||
|
||||
// get KNN's answer
|
||||
std::vector<float> arr = {vec(0), vec(1), vec(2)};
|
||||
std::vector<float> arr;
|
||||
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
|
||||
std::vector<ClassifiedFeature> neighbors = knn.get(arr.data(), 10);
|
||||
std::string gotClass = getClass(neighbors);
|
||||
|
||||
@@ -93,7 +253,7 @@ int main(void) {
|
||||
|
||||
sleep(10000);
|
||||
|
||||
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -7,9 +7,11 @@
|
||||
#include "../sensors/SensorReader.h"
|
||||
|
||||
struct ClassifiedPattern {
|
||||
std::string className;
|
||||
std::string className; // the class (practice) this pattenr belongs to
|
||||
std::string fileName; // the file that produced this pattern
|
||||
std::vector<float> pattern;
|
||||
ClassifiedPattern(const std::string& className, const std::vector<float>& pattern) : className(className), pattern(pattern) {;}
|
||||
ClassifiedPattern(const std::string& className, const std::string& fileName, const std::vector<float>& pattern) : className(className), fileName(fileName), pattern(pattern) {;}
|
||||
bool belongsToFile(const std::string& fileName) const {return fileName == this->fileName;}
|
||||
};
|
||||
|
||||
struct ClassifiedFeature {
|
||||
@@ -38,6 +40,11 @@ class Data {
|
||||
|
||||
public:
|
||||
|
||||
/** get ALL data files for each practice */
|
||||
static std::vector<ClassifiedDataFile> getAllDataFiles() {
|
||||
return getDataFiles(99999);
|
||||
}
|
||||
|
||||
/** get X data-files for each class */
|
||||
static std::vector<ClassifiedDataFile> getDataFiles(const int filesPerClass) {
|
||||
|
||||
@@ -74,14 +81,28 @@ public:
|
||||
for (const auto& val : rec.accel.values) {intAccel.add(val.ts, val.val);}
|
||||
intAccel.makeRelative();
|
||||
|
||||
K::Interpolator<uint64_t, SensorGyro> intGyro;
|
||||
for (const auto& val : rec.gyro.values) {intGyro.add(val.ts, val.val);}
|
||||
intGyro.makeRelative();
|
||||
|
||||
K::Interpolator<uint64_t, SensorMagneticField> intMagnet;
|
||||
for (const auto& val : rec.magField.values) {intMagnet.add(val.ts, val.val);}
|
||||
intMagnet.makeRelative();
|
||||
|
||||
// determine the region's size
|
||||
const int regionEnd_ms = intAccel.values.back().key * regionPercent;
|
||||
|
||||
|
||||
|
||||
// construct all sample windows
|
||||
std::vector<std::vector<float>> samples;
|
||||
for (int center = regionStart_ms; center < regionEnd_ms; center += stepSize_ms) {
|
||||
std::vector<float> window = getSampleWindow(intAccel, center, windowSize_ms, stepSize_ms);
|
||||
std::vector<float> window;
|
||||
|
||||
// which sensors to use
|
||||
std::vector<float> wAccel = getSampleWindow(intAccel, center, windowSize_ms, stepSize_ms); window.insert(window.end(), wAccel.begin(), wAccel.end());
|
||||
//std::vector<float> wGyro = getSampleWindow(intGyro, center, windowSize_ms, stepSize_ms); window.insert(window.end(), wGyro.begin(), wGyro.end());
|
||||
//std::vector<float> wMagnet = getSampleWindow(intMagnet, center, windowSize_ms, stepSize_ms); window.insert(window.end(), wMagnet.begin(), wMagnet.end());
|
||||
|
||||
|
||||
samples.push_back(window);
|
||||
}
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ class Settings {
|
||||
|
||||
public:
|
||||
|
||||
std::string path = "/mnt/firma/kunden/HandyGames/daten";
|
||||
std::string path = "/mnt/firma/kunden/HandyGames/datenOK";
|
||||
std::vector<std::string> classNames = {"forwardbend", "jumpingjack", "kneebend", "pushups", "situps"};
|
||||
|
||||
static int classToInt(const std::string className) {
|
||||
|
||||
@@ -19,9 +19,43 @@ public:
|
||||
K::DynMatrix<float> A3;
|
||||
};
|
||||
|
||||
struct Settings {
|
||||
int windowSize_ms = 1000;
|
||||
int regionStart_ms = 1400;
|
||||
float regionPercent = 0.85;
|
||||
int stepSize_ms = 50;
|
||||
};
|
||||
|
||||
/** parse all available data files using the given settings */
|
||||
static std::vector<ClassifiedPattern> getAllData(const Settings& s) {
|
||||
|
||||
// get all training-data files (all for each class)
|
||||
std::vector<ClassifiedDataFile> files = Data::getDataFiles(999999);
|
||||
std::cout << "training files: " << files.size() << std::endl;
|
||||
|
||||
// construct patterns for each file
|
||||
std::vector<ClassifiedPattern> patterns;
|
||||
for (ClassifiedDataFile cdf : files) {
|
||||
|
||||
// read all samples from the given input file
|
||||
std::cout << cdf.fileName << std::endl;
|
||||
std::vector<std::vector<float>> samples = Data::getSamples(cdf.fileName, s.windowSize_ms, s.regionStart_ms, s.regionPercent, s.stepSize_ms);
|
||||
|
||||
// convert them into a classified pattern
|
||||
for (const std::vector<float> vec : samples) {
|
||||
patterns.push_back(ClassifiedPattern(cdf.className, cdf.fileName, vec));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return patterns;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
static std::vector<ClassifiedPattern> getTestData() {
|
||||
|
||||
const int windowSize_ms = 1000;
|
||||
const int windowSize_ms = 2000;
|
||||
const int regionStart_ms = 1500 + 25; // worst case: half-window-size offset
|
||||
const float regionPercent = 0.85;
|
||||
const int stepSize_ms = 50;
|
||||
@@ -37,7 +71,7 @@ public:
|
||||
std::vector<std::vector<float>> samples = Data::getSamples(cdf.fileName, windowSize_ms, regionStart_ms, regionPercent, stepSize_ms);
|
||||
|
||||
for (const std::vector<float> vec : samples) {
|
||||
patterns.push_back(ClassifiedPattern(cdf.className, vec));
|
||||
patterns.push_back(ClassifiedPattern(cdf.className, cdf.fileName, vec));
|
||||
}
|
||||
|
||||
}
|
||||
@@ -46,16 +80,16 @@ public:
|
||||
|
||||
}
|
||||
|
||||
/** train PCA features */
|
||||
// train PCA features
|
||||
static std::vector<ClassifiedPattern> getTrainData() {
|
||||
|
||||
const int windowSize_ms = 1000;
|
||||
const int windowSize_ms = 2000;
|
||||
const int regionStart_ms = 1500;
|
||||
const float regionPercent = 0.4;
|
||||
const int stepSize_ms = 50;
|
||||
|
||||
// get 5 data-files per class
|
||||
std::vector<ClassifiedDataFile> files = Data::getDataFiles(30);
|
||||
std::vector<ClassifiedDataFile> files = Data::getDataFiles(6);
|
||||
|
||||
// get patterns for each class
|
||||
std::vector<ClassifiedPattern> patterns;
|
||||
@@ -66,7 +100,7 @@ public:
|
||||
std::cout << "\tgot" << samples.size() << " samples, each " << samples[0].size() << " values" << std::endl;
|
||||
|
||||
for (const std::vector<float> vec : samples) {
|
||||
patterns.push_back(ClassifiedPattern(cdf.className, vec));
|
||||
patterns.push_back(ClassifiedPattern(cdf.className, cdf.fileName, vec));
|
||||
}
|
||||
|
||||
}
|
||||
@@ -74,28 +108,29 @@ public:
|
||||
return patterns;
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
/** get the A1,A2,A3 matrices for the given training data */
|
||||
static Matrices getMatrices(const std::vector<ClassifiedPattern>& data, const int numFeatures) {
|
||||
|
||||
K::LinearTransform<float>::PCA pca;
|
||||
K::LinearTransform<float>::MaxInterClassDistance<std::string> inter;
|
||||
K::LinearTransform<float>::MinIntraClassDistance<std::string> intra;
|
||||
//K::LinearTransform<float>::MaxInterClassDistance<std::string> inter;
|
||||
//K::LinearTransform<float>::MinIntraClassDistance<std::string> intra;
|
||||
|
||||
for (const ClassifiedPattern& pat : data) {
|
||||
pca.add(pat.pattern);
|
||||
inter.add(pat.className, pat.pattern);
|
||||
intra.add(pat.className, pat.pattern);
|
||||
//inter.add(pat.className, pat.pattern);
|
||||
//intra.add(pat.className, pat.pattern);
|
||||
}
|
||||
|
||||
Matrices m;
|
||||
m.A1 = pca.getA(numFeatures);
|
||||
m.A2 = inter.getA(numFeatures);
|
||||
m.A3 = intra.getA(numFeatures);
|
||||
//m.A2 = inter.getA(numFeatures);
|
||||
//m.A3 = intra.getA(numFeatures);
|
||||
|
||||
std::cout << "A1: " << std::endl << m.A1 << std::endl;
|
||||
std::cout << "A2: " << std::endl << m.A2 << std::endl;
|
||||
std::cout << "A3: " << std::endl << m.A3 << std::endl;
|
||||
//std::cout << "A1: " << std::endl << m.A1 << std::endl;
|
||||
//std::cout << "A2: " << std::endl << m.A2 << std::endl;
|
||||
//std::cout << "A3: " << std::endl << m.A3 << std::endl;
|
||||
|
||||
return m;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user