added recent C++ code

This commit is contained in:
2016-01-09 18:34:03 +01:00
parent 1af38ba3b5
commit a5f2ee6f04
5 changed files with 243 additions and 27 deletions

View File

@@ -55,7 +55,7 @@ ADD_DEFINITIONS(
-Wall
-Werror=return-type
-Wextra
#-O2
-O2
)
endif()

View File

@@ -23,6 +23,10 @@ std::string getClass(const std::vector<ClassifiedFeature>& nns) {
return "";
}
struct ClassStats {
int counts[6] = {};
};
struct Stats{
int match;
int error;
@@ -31,23 +35,178 @@ struct Stats{
float getSum() {return match+error+unknown;}
};
std::vector<ClassifiedPattern> removePatterns(const std::vector<ClassifiedPattern>& patAll, const std::string& fileName) {
std::vector<ClassifiedPattern> res;
for (const ClassifiedPattern& pat : patAll) {
if (pat.belongsToFile(fileName)) {
continue;
} else {
res.push_back(pat);
}
}
return res;
}
template <int numFeatures> struct PCA {
aKNN<ClassifiedFeature, numFeatures> knn;
TrainPCA::Matrices m;
};
class Plot {
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementLines lines[5];
public:
Plot() {
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
}
void add(int idx, std::vector<float>& vec) {
K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]);
lines[idx].add(p3);
}
void clear() {
for (int i = 0; i < 5; ++i) {lines[i].clear();}
}
void show() {
gp.setDebugOutput(false);
gp.draw(splot);
gp.flush();
}
};
int main(void) {
omp_set_dynamic(false);
omp_set_num_threads(3);
const int numFeatures = 3;
const int numFeatures = 10;
TrainPCA::Settings setTrain;
TrainPCA::Settings setClass; setClass.regionStart_ms += 25;
Data::getAllDataFiles();
Plot p;
// convert all provided datasets into patterns
std::vector<ClassifiedPattern> srcTrain = TrainPCA::getAllData(setTrain);
std::vector<ClassifiedPattern> srcClass = TrainPCA::getAllData(setClass);
std::cout << "windows: " << srcTrain.size() << std::endl;
// error calculation
std::unordered_map<std::string, Stats> stats;
std::unordered_map<std::string, ClassStats> classStats;
//int xx = 0;
std::unordered_map<std::string, PCA<numFeatures>*> pcas;
// try to classify each pattern
for (const ClassifiedPattern& patClassify : srcClass) {
// construct knn search for this leave-one-out ONLY ONCE
if (pcas.find(patClassify.fileName) == pcas.end()) {
std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl;
// remove all training patterns belonging to the same source file as the to be classifed pattern
std::vector<ClassifiedPattern> srcTrainLOO = removePatterns(srcTrain, patClassify.fileName);
// sanity check (have we removed all patterns?)
int diff = srcTrain.size() - srcTrainLOO.size();
if (diff < 200) {throw 1;}
p.clear();
PCA<numFeatures>* pca = new PCA<numFeatures>();
pcas[patClassify.fileName] = pca;
// train PCA using all pattern without those belonging to the same source file as the to-be-classified one
pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures);
// calculate features and add them to the KNN
for (const ClassifiedPattern& pat : srcTrainLOO) {
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
pca->knn.add(ClassifiedFeature(pat.className, arr));
const int idx = Settings::classToInt(pat.className);
p.add(idx, arr);
}
pca->knn.build();
//p.show();
//sleep(100);
}
{
PCA<numFeatures>* pca = pcas[patClassify.fileName];
// calculate features for the to-be-classified pattern
//const int idx = Settings::classToInt(pat.className);
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(patClassify.pattern);
// get KNN's answer
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = pca->knn.get(arr.data(), 5);
std::string gotClass = getClass(neighbors);
if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;}
else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;}
else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;}
int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass);
++classStats[patClassify.className].counts[gotIdx];
}
}
for (auto& it : stats) {
Stats& stats = it.second;
std::cout << "'" <<it.first << "',";
std::cout << stats.match/stats.getSum() << ",";
std::cout << stats.error/stats.getSum() << ",";
std::cout << stats.unknown/stats.getSum();
std::cout << std::endl;
}
for (auto& it : classStats) {
ClassStats& stats = it.second;
std::cout << "'" << it.first << "',";
for (int i = 0; i < 6; ++i) {
std::cout << stats.counts[i] << ",";
}
std::cout << std::endl;
}
/*
std::vector<ClassifiedPattern> patTrain = TrainPCA::getTrainData();
TrainPCA::Matrices m = TrainPCA::getMatrices(patTrain, numFeatures);
std::vector<ClassifiedPattern> patTest = TrainPCA::getTestData();
// construct knn
aKNN<ClassifiedFeature, 3> knn;
aKNN<ClassifiedFeature, numFeatures> knn;
for (const ClassifiedPattern& pat : patTrain) {
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
const std::vector<float> arr = {vec(0), vec(1), vec(2)};
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
knn.add(ClassifiedFeature(pat.className, arr));
}
knn.build();
@@ -65,7 +224,8 @@ int main(void) {
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
// get KNN's answer
std::vector<float> arr = {vec(0), vec(1), vec(2)};
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = knn.get(arr.data(), 10);
std::string gotClass = getClass(neighbors);
@@ -93,7 +253,7 @@ int main(void) {
sleep(10000);
*/

View File

@@ -7,9 +7,11 @@
#include "../sensors/SensorReader.h"
struct ClassifiedPattern {
std::string className;
std::string className; // the class (practice) this pattenr belongs to
std::string fileName; // the file that produced this pattern
std::vector<float> pattern;
ClassifiedPattern(const std::string& className, const std::vector<float>& pattern) : className(className), pattern(pattern) {;}
ClassifiedPattern(const std::string& className, const std::string& fileName, const std::vector<float>& pattern) : className(className), fileName(fileName), pattern(pattern) {;}
bool belongsToFile(const std::string& fileName) const {return fileName == this->fileName;}
};
struct ClassifiedFeature {
@@ -38,6 +40,11 @@ class Data {
public:
/** get ALL data files for each practice */
static std::vector<ClassifiedDataFile> getAllDataFiles() {
return getDataFiles(99999);
}
/** get X data-files for each class */
static std::vector<ClassifiedDataFile> getDataFiles(const int filesPerClass) {
@@ -74,14 +81,28 @@ public:
for (const auto& val : rec.accel.values) {intAccel.add(val.ts, val.val);}
intAccel.makeRelative();
K::Interpolator<uint64_t, SensorGyro> intGyro;
for (const auto& val : rec.gyro.values) {intGyro.add(val.ts, val.val);}
intGyro.makeRelative();
K::Interpolator<uint64_t, SensorMagneticField> intMagnet;
for (const auto& val : rec.magField.values) {intMagnet.add(val.ts, val.val);}
intMagnet.makeRelative();
// determine the region's size
const int regionEnd_ms = intAccel.values.back().key * regionPercent;
// construct all sample windows
std::vector<std::vector<float>> samples;
for (int center = regionStart_ms; center < regionEnd_ms; center += stepSize_ms) {
std::vector<float> window = getSampleWindow(intAccel, center, windowSize_ms, stepSize_ms);
std::vector<float> window;
// which sensors to use
std::vector<float> wAccel = getSampleWindow(intAccel, center, windowSize_ms, stepSize_ms); window.insert(window.end(), wAccel.begin(), wAccel.end());
//std::vector<float> wGyro = getSampleWindow(intGyro, center, windowSize_ms, stepSize_ms); window.insert(window.end(), wGyro.begin(), wGyro.end());
//std::vector<float> wMagnet = getSampleWindow(intMagnet, center, windowSize_ms, stepSize_ms); window.insert(window.end(), wMagnet.begin(), wMagnet.end());
samples.push_back(window);
}

View File

@@ -7,7 +7,7 @@ class Settings {
public:
std::string path = "/mnt/firma/kunden/HandyGames/daten";
std::string path = "/mnt/firma/kunden/HandyGames/datenOK";
std::vector<std::string> classNames = {"forwardbend", "jumpingjack", "kneebend", "pushups", "situps"};
static int classToInt(const std::string className) {

View File

@@ -19,9 +19,43 @@ public:
K::DynMatrix<float> A3;
};
struct Settings {
int windowSize_ms = 1000;
int regionStart_ms = 1400;
float regionPercent = 0.85;
int stepSize_ms = 50;
};
/** parse all available data files using the given settings */
static std::vector<ClassifiedPattern> getAllData(const Settings& s) {
// get all training-data files (all for each class)
std::vector<ClassifiedDataFile> files = Data::getDataFiles(999999);
std::cout << "training files: " << files.size() << std::endl;
// construct patterns for each file
std::vector<ClassifiedPattern> patterns;
for (ClassifiedDataFile cdf : files) {
// read all samples from the given input file
std::cout << cdf.fileName << std::endl;
std::vector<std::vector<float>> samples = Data::getSamples(cdf.fileName, s.windowSize_ms, s.regionStart_ms, s.regionPercent, s.stepSize_ms);
// convert them into a classified pattern
for (const std::vector<float> vec : samples) {
patterns.push_back(ClassifiedPattern(cdf.className, cdf.fileName, vec));
}
}
return patterns;
}
/*
static std::vector<ClassifiedPattern> getTestData() {
const int windowSize_ms = 1000;
const int windowSize_ms = 2000;
const int regionStart_ms = 1500 + 25; // worst case: half-window-size offset
const float regionPercent = 0.85;
const int stepSize_ms = 50;
@@ -37,7 +71,7 @@ public:
std::vector<std::vector<float>> samples = Data::getSamples(cdf.fileName, windowSize_ms, regionStart_ms, regionPercent, stepSize_ms);
for (const std::vector<float> vec : samples) {
patterns.push_back(ClassifiedPattern(cdf.className, vec));
patterns.push_back(ClassifiedPattern(cdf.className, cdf.fileName, vec));
}
}
@@ -46,16 +80,16 @@ public:
}
/** train PCA features */
// train PCA features
static std::vector<ClassifiedPattern> getTrainData() {
const int windowSize_ms = 1000;
const int windowSize_ms = 2000;
const int regionStart_ms = 1500;
const float regionPercent = 0.4;
const int stepSize_ms = 50;
// get 5 data-files per class
std::vector<ClassifiedDataFile> files = Data::getDataFiles(30);
std::vector<ClassifiedDataFile> files = Data::getDataFiles(6);
// get patterns for each class
std::vector<ClassifiedPattern> patterns;
@@ -66,7 +100,7 @@ public:
std::cout << "\tgot" << samples.size() << " samples, each " << samples[0].size() << " values" << std::endl;
for (const std::vector<float> vec : samples) {
patterns.push_back(ClassifiedPattern(cdf.className, vec));
patterns.push_back(ClassifiedPattern(cdf.className, cdf.fileName, vec));
}
}
@@ -74,28 +108,29 @@ public:
return patterns;
}
*/
/** get the A1,A2,A3 matrices for the given training data */
static Matrices getMatrices(const std::vector<ClassifiedPattern>& data, const int numFeatures) {
K::LinearTransform<float>::PCA pca;
K::LinearTransform<float>::MaxInterClassDistance<std::string> inter;
K::LinearTransform<float>::MinIntraClassDistance<std::string> intra;
//K::LinearTransform<float>::MaxInterClassDistance<std::string> inter;
//K::LinearTransform<float>::MinIntraClassDistance<std::string> intra;
for (const ClassifiedPattern& pat : data) {
pca.add(pat.pattern);
inter.add(pat.className, pat.pattern);
intra.add(pat.className, pat.pattern);
//inter.add(pat.className, pat.pattern);
//intra.add(pat.className, pat.pattern);
}
Matrices m;
m.A1 = pca.getA(numFeatures);
m.A2 = inter.getA(numFeatures);
m.A3 = intra.getA(numFeatures);
//m.A2 = inter.getA(numFeatures);
//m.A3 = intra.getA(numFeatures);
std::cout << "A1: " << std::endl << m.A1 << std::endl;
std::cout << "A2: " << std::endl << m.A2 << std::endl;
std::cout << "A3: " << std::endl << m.A3 << std::endl;
//std::cout << "A1: " << std::endl << m.A1 << std::endl;
//std::cout << "A2: " << std::endl << m.A2 << std::endl;
//std::cout << "A3: " << std::endl << m.A3 << std::endl;
return m;