commit before new model is implemented
This commit is contained in:
@@ -58,13 +58,14 @@ ADD_DEFINITIONS(
|
||||
-fstack-protector-all
|
||||
|
||||
-g3
|
||||
#-O2
|
||||
-O2
|
||||
-march=native
|
||||
|
||||
-DWITH_TESTS
|
||||
-DWITH_ASSERTIONS
|
||||
#-DWITH_DEBUG_LOG
|
||||
-DWITH_DEBUG_PLOT
|
||||
#-D_GLIBCXX_DEBUG
|
||||
|
||||
|
||||
)
|
||||
|
||||
10
Plotti.h
10
Plotti.h
@@ -22,7 +22,7 @@
|
||||
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
|
||||
#include <KLib/misc/gnuplot/GnuplotSplotElementColorPoints.h>
|
||||
|
||||
#include <KLib/math/filter/particles/ParticleFilter.h>
|
||||
#include <Indoor/smc/filtering/ParticleFilter.h>
|
||||
|
||||
struct Plotti {
|
||||
|
||||
@@ -112,7 +112,7 @@ struct Plotti {
|
||||
estPathSmoothed.add(est);
|
||||
}
|
||||
|
||||
void debugDistribution1(std::vector<K::Particle<MyState>> samples){
|
||||
void debugDistribution1(std::vector<SMC::Particle<MyState>> samples){
|
||||
|
||||
float min = +9999;
|
||||
float max = -9999;
|
||||
@@ -133,7 +133,7 @@ struct Plotti {
|
||||
gp << "set cbrange [" << min << ":" << max << "]\n";
|
||||
}
|
||||
|
||||
void debugDistribution2(std::vector<K::Particle<MyState>> samples){
|
||||
void debugDistribution2(std::vector<SMC::Particle<MyState>> samples){
|
||||
|
||||
float min = +9999;
|
||||
float max = -9999;
|
||||
@@ -299,10 +299,10 @@ struct Plotti {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename State> void addParticles(const std::vector<K::Particle<State>>& particles) {
|
||||
template <typename State> void addParticles(const std::vector<SMC::Particle<State>>& particles) {
|
||||
pParticles.clear();
|
||||
int i = 0;
|
||||
for (const K::Particle<State>& p : particles) {
|
||||
for (const SMC::Particle<State>& p : particles) {
|
||||
if (++i % 25 != 0) {continue;}
|
||||
K::GnuplotPoint3 pos(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm);
|
||||
pParticles.add(pos / 100.0f);
|
||||
|
||||
@@ -27,15 +27,19 @@ namespace Settings {
|
||||
}
|
||||
|
||||
namespace Smoothing {
|
||||
const bool activated = false;
|
||||
const bool activated = true;
|
||||
const double stepLength = 0.7;
|
||||
const double stepSigma = 0.2;
|
||||
const double headingSigma = 25.0;
|
||||
const double zChange = 0.0; // mu change in height between two time steps
|
||||
const double zSigma = 0.1;
|
||||
const int lag = 5;
|
||||
|
||||
}
|
||||
|
||||
namespace KDE {
|
||||
const Point2 bandwidth(100,100);
|
||||
}
|
||||
|
||||
//const GridPoint destination = GridPoint(70*100, 35*100, 0*100); // use destination
|
||||
const GridPoint destination = GridPoint(0,0,0); // do not use destination
|
||||
|
||||
53
filter/KLB.h
53
filter/KLB.h
@@ -29,31 +29,30 @@
|
||||
#include <Indoor/math/divergence/JensenShannon.h>
|
||||
#include <Indoor/data/Timestamp.h>
|
||||
|
||||
#include <KLib/math/statistics/Statistics.h>
|
||||
//#include <KLib/math/statistics/Statistics.h>
|
||||
|
||||
#include <KLib/math/filter/particles/Particle.h>
|
||||
#include <KLib/math/filter/particles/ParticleFilterMixing.h>
|
||||
#include <KLib/math/filter/particles/ParticleFilterInitializer.h>
|
||||
#include <KLib/math/filter/particles/ParticleFilterHistory.h>
|
||||
#include <Indoor/smc/Particle.h>
|
||||
#include <Indoor/smc/filtering/ParticleFilterMixing.h>
|
||||
#include <Indoor/smc/filtering/ParticleFilterInitializer.h>
|
||||
#include <Indoor/smc/filtering/ParticleFilterHistory.h>
|
||||
|
||||
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
|
||||
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationRegionalWeightedAverage.h>
|
||||
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
|
||||
//#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationKernelDensity.h>
|
||||
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationWeightedAverage.h>
|
||||
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationRegionalWeightedAverage.h>
|
||||
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
|
||||
|
||||
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
|
||||
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
|
||||
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingDivergence.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingSimple.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingPercent.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingDivergence.h>
|
||||
|
||||
#include <KLib/math/filter/merging/MarkovTransitionProbability.h>
|
||||
#include <KLib/math/filter/merging/mixing/MixingSamplerDivergency.h>
|
||||
#include <KLib/math/filter/merging/estimation/JointEstimationPosteriorOnly.h>
|
||||
#include <Indoor/smc/merging/MarkovTransitionProbability.h>
|
||||
#include <Indoor/smc/merging/mixing/MixingSamplerDivergency.h>
|
||||
#include <Indoor/smc/merging/estimation/JointEstimationPosteriorOnly.h>
|
||||
|
||||
#include <KLib/math/filter/smoothing/BackwardSimulation.h>
|
||||
#include <KLib/math/filter/smoothing/CondensationBackwardFilter.h>
|
||||
#include <KLib/math/filter/smoothing/sampling/ParticleTrajectorieSampler.h>
|
||||
#include <KLib/math/filter/smoothing/sampling/CumulativeSampler.h>
|
||||
#include <KLib/math/filter/smoothing/BackwardFilterTransition.h>
|
||||
//#include <Indoor/smc/smoothing/BackwardSimulation.h>
|
||||
//#include <Indoor/smc/CondensationBackwardFilter.h>
|
||||
//#include <Indoor/smc/smoothing/sampling/ParticleTrajectorieSampler.h>
|
||||
//#include <Indoor/smc/smoothing/sampling/CumulativeSampler.h>
|
||||
#include <Indoor/smc/smoothing/BackwardFilterTransition.h>
|
||||
|
||||
#include "Structs.h"
|
||||
|
||||
@@ -61,7 +60,7 @@
|
||||
#include "Logic.h"
|
||||
#include "../Settings.h"
|
||||
|
||||
static double getKernelDensityProbability(std::vector<K::Particle<MyState>>& particles, MyState state, std::vector<K::Particle<MyState>>& samplesWifi){
|
||||
static double getKernelDensityProbability(std::vector<SMC::Particle<MyState>>& particles, MyState state, std::vector<SMC::Particle<MyState>>& samplesWifi){
|
||||
|
||||
Distribution::KernelDensity<double, MyState> parzen([&](MyState state){
|
||||
int size = particles.size();
|
||||
@@ -80,11 +79,11 @@ static double getKernelDensityProbability(std::vector<K::Particle<MyState>>& par
|
||||
std::vector<double> probsParticleV;
|
||||
|
||||
//just for plottingstuff
|
||||
std::vector<K::Particle<MyState>> samplesParticles;
|
||||
std::vector<SMC::Particle<MyState>> samplesParticles;
|
||||
|
||||
const int step = 4;
|
||||
int i = 0;
|
||||
for(K::Particle<MyState> particle : samplesWifi){
|
||||
for(SMC::Particle<MyState> particle : samplesWifi){
|
||||
if(++i % step != 0){continue;}
|
||||
MyState state(GridPoint(particle.state.position.x_cm, particle.state.position.y_cm, particle.state.position.z_cm));
|
||||
|
||||
@@ -94,7 +93,7 @@ static double getKernelDensityProbability(std::vector<K::Particle<MyState>>& par
|
||||
double probiwifi = particle.weight;
|
||||
probsWifiV.push_back(probiwifi);
|
||||
|
||||
//samplesParticles.push_back(K::Particle<MyState>(state, probiParticle));
|
||||
//samplesParticles.push_back(SMC::Particle<MyState>(state, probiParticle));
|
||||
}
|
||||
|
||||
//make vectors
|
||||
@@ -111,7 +110,7 @@ static double getKernelDensityProbability(std::vector<K::Particle<MyState>>& par
|
||||
|
||||
|
||||
//estimate the mean
|
||||
// K::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
|
||||
// SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
|
||||
// const MyState estWifi = estimateWifi.estimate(samplesWifi);
|
||||
// plot.addEstimationNodeSmoothed(estWifi.position.inMeter());
|
||||
|
||||
@@ -119,7 +118,7 @@ static double getKernelDensityProbability(std::vector<K::Particle<MyState>>& par
|
||||
}
|
||||
|
||||
|
||||
static double kldFromMultivariatNormal(std::vector<K::Particle<MyState>>& particles, MyState state, std::vector<K::Particle<MyState>>& particleWifi){
|
||||
static double kldFromMultivariatNormal(std::vector<SMC::Particle<MyState>>& particles, MyState state, std::vector<SMC::Particle<MyState>>& particleWifi){
|
||||
//kld: particle die resampling hatten nehmen und nv daraus schätzen. vergleiche mit wi-fi
|
||||
//todo put this in depletionhelper.h
|
||||
|
||||
@@ -155,7 +154,7 @@ static double kldFromMultivariatNormal(std::vector<K::Particle<MyState>>& partic
|
||||
0, 0, 0.01;
|
||||
|
||||
//estimate the mean
|
||||
K::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
|
||||
SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
|
||||
const MyState estWifi = estimateWifi.estimate(particleWifi);
|
||||
|
||||
Eigen::VectorXd meanWifi(3);
|
||||
|
||||
199
filter/Logic.h
199
filter/Logic.h
@@ -26,26 +26,28 @@
|
||||
|
||||
#include <Indoor/sensors/activity/ActivityDetector.h>
|
||||
|
||||
#include <KLib/math/filter/particles/ParticleFilterMixing.h>
|
||||
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
|
||||
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
|
||||
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingKLD.h>
|
||||
#include <Indoor/smc/filtering/ParticleFilterMixing.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingSimple.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingPercent.h>
|
||||
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingKLD.h>
|
||||
|
||||
#include <KLib/math/filter/smoothing/BackwardFilterTransition.h>
|
||||
#include <Indoor/smc/smoothing/BackwardFilterTransition.h>
|
||||
#include <Indoor/smc/smoothing/BackwardSimulation.h>
|
||||
#include <Indoor/smc/sampling/CumulativeSampler.h>
|
||||
|
||||
#include "Structs.h"
|
||||
#include <omp.h>
|
||||
#include "../Settings.h"
|
||||
|
||||
/** particle-filter init randomly distributed within the building*/
|
||||
struct PFInit : public K::ParticleFilterInitializer<MyState> {
|
||||
struct PFInit : public SMC::ParticleFilterInitializer<MyState> {
|
||||
|
||||
Grid<MyNode>& grid;
|
||||
|
||||
PFInit(Grid<MyNode>& grid) : grid(grid) {;}
|
||||
|
||||
virtual void initialize(std::vector<K::Particle<MyState>>& particles) override {
|
||||
for (K::Particle<MyState>& p : particles) {
|
||||
virtual void initialize(std::vector<SMC::Particle<MyState>>& particles) override {
|
||||
for (SMC::Particle<MyState>& p : particles) {
|
||||
|
||||
int idx = rand() % grid.getNumNodes();
|
||||
p.state.position = grid[idx]; // random position
|
||||
@@ -60,7 +62,7 @@ struct PFInit : public K::ParticleFilterInitializer<MyState> {
|
||||
};
|
||||
|
||||
/** particle-filter init with fixed position*/
|
||||
struct PFInitFixed : public K::ParticleFilterInitializer<MyState> {
|
||||
struct PFInitFixed : public SMC::ParticleFilterInitializer<MyState> {
|
||||
|
||||
Grid<MyNode>& grid;
|
||||
GridPoint startPos;
|
||||
@@ -69,11 +71,11 @@ struct PFInitFixed : public K::ParticleFilterInitializer<MyState> {
|
||||
PFInitFixed(Grid<MyNode>& grid, GridPoint startPos, float headingDeg) :
|
||||
grid(grid), startPos(startPos), headingDeg(headingDeg) {;}
|
||||
|
||||
virtual void initialize(std::vector<K::Particle<MyState>>& particles) override {
|
||||
virtual void initialize(std::vector<SMC::Particle<MyState>>& particles) override {
|
||||
|
||||
Distribution::Normal<float> norm(0.0f, 1.5f);
|
||||
|
||||
for (K::Particle<MyState>& p : particles) {
|
||||
for (SMC::Particle<MyState>& p : particles) {
|
||||
|
||||
GridPoint pos = startPos + GridPoint(norm.draw(),norm.draw(),0.0f);
|
||||
|
||||
@@ -89,7 +91,7 @@ struct PFInitFixed : public K::ParticleFilterInitializer<MyState> {
|
||||
};
|
||||
|
||||
/** very simple transition model, just scatter normal distributed */
|
||||
struct PFTransSimple : public K::ParticleFilterTransition<MyState, MyControl>{
|
||||
struct PFTransSimple : public SMC::ParticleFilterTransition<MyState, MyControl>{
|
||||
|
||||
Grid<MyNode>& grid;
|
||||
|
||||
@@ -106,13 +108,13 @@ struct PFTransSimple : public K::ParticleFilterTransition<MyState, MyControl>{
|
||||
/** ctor */
|
||||
PFTransSimple(Grid<MyNode>& grid) : grid(grid) {}
|
||||
|
||||
virtual void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* control) override {
|
||||
virtual void transition(std::vector<SMC::Particle<MyState>>& particles, const MyControl* control) override {
|
||||
|
||||
//int noNewPositionCounter = 0;
|
||||
|
||||
#pragma omp parallel for num_threads(6)
|
||||
for (int i = 0; i < particles.size(); ++i) {
|
||||
K::Particle<MyState>& p = particles[i];
|
||||
SMC::Particle<MyState>& p = particles[i];
|
||||
|
||||
// update the baromter
|
||||
float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z;
|
||||
@@ -151,7 +153,7 @@ struct PFTransSimple : public K::ParticleFilterTransition<MyState, MyControl>{
|
||||
};
|
||||
|
||||
/** particle-filter transition */
|
||||
struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
|
||||
struct PFTrans : public SMC::ParticleFilterTransition<MyState, MyControl> {
|
||||
|
||||
Grid<MyNode>& grid;
|
||||
|
||||
@@ -169,7 +171,6 @@ struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
|
||||
|
||||
std::minstd_rand gen;
|
||||
|
||||
|
||||
PFTrans(Grid<MyNode>& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) {
|
||||
|
||||
walker.addModule(&modHead);
|
||||
@@ -177,18 +178,18 @@ struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
|
||||
//walker.addModule(&modSpread); // might help in some situations! keep in mind!
|
||||
//walker.addModule(&modActivity);
|
||||
//walker.addModule(&modHeadUgly);
|
||||
walker.addModule(&modImportance);
|
||||
//walker.addModule(&modImportance);
|
||||
//walker.addModule(&modFavorZ);
|
||||
//walker.addModule(&modButterAct);
|
||||
//walker.addModule(&modWifi);
|
||||
//walker.addModule(&modPreventVisited);
|
||||
}
|
||||
|
||||
virtual void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* control) override {
|
||||
virtual void transition(std::vector<SMC::Particle<MyState>>& particles, const MyControl* control) override {
|
||||
|
||||
std::normal_distribution<float> noise(0, Settings::IMU::stepSigma);
|
||||
|
||||
for (K::Particle<MyState>& p : particles) {
|
||||
for (SMC::Particle<MyState>& p : particles) {
|
||||
|
||||
//this is just for the smoothing transition... quick and dirty
|
||||
p.state.headingChangeMeasured_rad = control->turnSinceLastTransition_rad;
|
||||
@@ -215,7 +216,7 @@ struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
|
||||
* particle-filter transition
|
||||
* Adapting the Sample Size in Particle Filters Through KLD-Sampling - D. Fox
|
||||
*/
|
||||
struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyControl> {
|
||||
struct PFTransKLDSampling : public SMC::ParticleFilterTransition<MyState, MyControl> {
|
||||
|
||||
Grid<MyNode>& grid;
|
||||
|
||||
@@ -248,8 +249,8 @@ struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyContro
|
||||
|
||||
PFTransKLDSampling(Grid<MyNode>& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) {
|
||||
|
||||
walker.addModule(&modHead);
|
||||
//walker.addModule(&modHeadMises);
|
||||
//walker.addModule(&modHead);
|
||||
walker.addModule(&modHeadMises);
|
||||
//walker.addModule(&modSpread); // might help in some situations! keep in mind!
|
||||
//walker.addModule(&modActivity);
|
||||
//walker.addModule(&modHeadUgly);
|
||||
@@ -267,7 +268,7 @@ struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyContro
|
||||
bins.setRanges({BinningRange(-1,100), BinningRange(-10,60), BinningRange(-1,15), BinningRange(0, 2 * M_PI)});
|
||||
}
|
||||
|
||||
virtual void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* control) override {
|
||||
virtual void transition(std::vector<SMC::Particle<MyState>>& particles, const MyControl* control) override {
|
||||
|
||||
std::normal_distribution<float> noise(0, Settings::IMU::stepSigma);
|
||||
Distribution::Uniform<int> getParticle(0, particles.size()-1);
|
||||
@@ -281,13 +282,13 @@ struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyContro
|
||||
bins.clearUsed();
|
||||
|
||||
//create new particle set
|
||||
std::vector<K::Particle<MyState>> particlesNew;
|
||||
std::vector<SMC::Particle<MyState>> particlesNew;
|
||||
|
||||
do{
|
||||
|
||||
//draw equally from the particle set
|
||||
int particleIdx = getParticle.draw();
|
||||
K::Particle<MyState>& p = particles[particleIdx];
|
||||
SMC::Particle<MyState>& p = particles[particleIdx];
|
||||
|
||||
//sample new particles based on the transition step
|
||||
// save old position
|
||||
@@ -310,7 +311,7 @@ struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyContro
|
||||
bins.markUsed(p.state);
|
||||
|
||||
//calculate the new N
|
||||
double z_delta = K::NormalDistributionCDF::getProbit(1 - delta);
|
||||
double z_delta = Distribution::NormalCDF<double>::getProbit(1 - delta);
|
||||
double front = (k - 1) / (2 * epsilon);
|
||||
double back = 1 - (2 / (9 * (k - 1))) + (std::sqrt(2 / (9 * (k - 1))) * z_delta );
|
||||
|
||||
@@ -332,8 +333,7 @@ struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyContro
|
||||
|
||||
};
|
||||
|
||||
|
||||
struct BFTrans : public K::BackwardFilterTransition<MyState>{
|
||||
struct BFTrans : public SMC::BackwardFilterTransition<MyState, MyControl>{
|
||||
|
||||
|
||||
public:
|
||||
@@ -362,28 +362,21 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<SMC::Particle<MyState>> transition(std::vector<SMC::Particle<MyState>> const& toBeSmoothedParticles_qt, std::vector<MyControl> const& controls_1T) override{
|
||||
Assert::doThrow( "Wrong transition function. Use the other one!");
|
||||
|
||||
std::vector<SMC::Particle<MyState>> dummyReturn;
|
||||
return dummyReturn;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* smoothing transition starting at T with t, t-1,...0
|
||||
* @param particles_qt q_t (Forward Filter) p2
|
||||
* @param particles_qt1 q_t+1 (Smoothed Particles from Step before) p1
|
||||
*/
|
||||
std::vector<std::vector<double>> transition(std::vector<K::Particle<MyState>>const& particles_qt,
|
||||
std::vector<K::Particle<MyState>>const& particles_qt1,
|
||||
const MyControl* control) override {
|
||||
|
||||
|
||||
|
||||
// Forward Transition von q_t nach q_t+1* with tracking of particle using an id = p(q_t+1* | q_t)
|
||||
//TODO: darf ich das einfach? einfach eine neue Dichte Sampeln? Brauch ich da nicht eine "Erlaubnis" (Two-Filter Smoother kann das)
|
||||
// law of total probabality auch einfach über ziehen ??
|
||||
|
||||
// KDE auf q_t+1 Samples = p(q_t+1 | o_1:T)
|
||||
|
||||
// Apply Position from Samples from q_t+1* into KDE of p(q_t+1 | o_1:T) to get p(q_t+1* | o_1:T)
|
||||
|
||||
// Calculate new weight w(q_(t|T)) = w(q_t) * p(q_t+1* | o_1:T) * p(q_t+1* | q_t) * normalisation
|
||||
|
||||
std::vector<std::vector<double>> transition(std::vector<SMC::Particle<MyState>>const& particles_qt,
|
||||
std::vector<SMC::Particle<MyState>>const& particles_qt1) override {
|
||||
|
||||
|
||||
// calculate alpha(m,n) = p(q_t+1(m) | q_t(n))
|
||||
@@ -395,33 +388,33 @@ public:
|
||||
omp_set_dynamic(0); // Explicitly disable dynamic teams
|
||||
omp_set_num_threads(7);
|
||||
#pragma omp parallel for shared(predictionProbabilities)
|
||||
for (int i = 0; i < particles_old.size(); ++i) {
|
||||
for (int i = 0; i < particles_qt1.size(); ++i) {
|
||||
std::vector<double> innerVector;
|
||||
auto p1 = &particles_old[i];
|
||||
auto p1 = &particles_qt1[i];
|
||||
|
||||
for(int j = 0; j < particles_new.size(); ++j){
|
||||
for(int j = 0; j < particles_qt.size(); ++j){
|
||||
|
||||
auto p2 = &particles_new[j];
|
||||
auto p2 = &particles_qt[j];
|
||||
|
||||
const double distance_m = p2->state.position.inMeter().getDistance(p1->state.position.inMeter()) / 100.0;
|
||||
|
||||
//TODO Incorporated Activity - see IPIN16 MySmoothingTransitionExperimental
|
||||
|
||||
const double distProb = K::NormalDistribution::getProbability(Settings::Smoothing::stepLength, Settings::Smoothing::stepSigma, distance_m);
|
||||
const double distProb = Distribution::Normal<double>::getProbability(Settings::Smoothing::stepLength, Settings::Smoothing::stepSigma, distance_m);
|
||||
|
||||
// TODO: FIX THIS CORRECTLY is the heading change similiar to the measurement?
|
||||
double diffRad = Angle::getDiffRAD_2PI_PI(p2->state.heading.direction.getRAD(), p1->state.heading.direction.getRAD());
|
||||
double diffDeg = Angle::radToDeg(diffRad);
|
||||
double measurementRad = Angle::makeSafe_2PI(p1->state.headingChangeMeasured_rad);
|
||||
double measurementDeg = Angle::radToDeg(measurementRad);
|
||||
const double headingProb = K::NormalDistribution::getProbability(measurementDeg, Settings::Smoothing::headingSigma, diffDeg);
|
||||
const double headingProb = Distribution::Normal<double>::getProbability(measurementDeg, Settings::Smoothing::headingSigma, diffDeg);
|
||||
|
||||
// does the angle between two particles positions is similiar to the measurement
|
||||
//double angleBetweenParticles = Angle::getDEG_360(p2->state.position.x, p2->state.position.y, p1->state.position.x, p1->state.position.y);
|
||||
|
||||
//check how near we are to the measurement
|
||||
double diffZ = (p2->state.position.inMeter().z - p1->state.position.inMeter().z) / 100.0;
|
||||
const double floorProb = K::NormalDistribution::getProbability(Settings::Smoothing::zChange, Settings::Smoothing::zSigma, diffZ);
|
||||
const double floorProb = Distribution::Normal<double>::getProbability(Settings::Smoothing::zChange, Settings::Smoothing::zSigma, diffZ);
|
||||
|
||||
//combine the probabilities
|
||||
double prob = distProb;// * floorProb * headingProb;
|
||||
@@ -437,99 +430,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
struct BFTransKDESlow : public K::BackwardFilterTransition<MyState>{
|
||||
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* ctor
|
||||
* @param choice the choice to use for randomly drawing nodes
|
||||
* @param fp the underlying floorplan
|
||||
*/
|
||||
BFTrans()
|
||||
{
|
||||
//nothin
|
||||
}
|
||||
|
||||
uint64_t ts = 0;
|
||||
uint64_t deltaMS = 0;
|
||||
|
||||
/** set the current time in millisconds */
|
||||
void setCurrentTime(const uint64_t ts) {
|
||||
if (this->ts == 0) {
|
||||
this->ts = ts;
|
||||
deltaMS = 0;
|
||||
} else {
|
||||
deltaMS = this->ts - ts;
|
||||
this->ts = ts;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* smoothing transition starting at T with t, t-1,...0
|
||||
* @param particles_new p_t (Forward Filter) p2
|
||||
* @param particles_old p_t+1 (Smoothed Particles from Step before) p1
|
||||
* q(p1 | p2) is calculated
|
||||
*/
|
||||
std::vector<std::vector<double>> transition(std::vector<K::Particle<MyState>>const& particles_new,
|
||||
std::vector<K::Particle<MyState>>const& particles_old ) override {
|
||||
|
||||
|
||||
// calculate alpha(m,n) = p(q_t+1(m) | q_t(n))
|
||||
// this means, predict all possible states q_t+1 with all passible states q_t
|
||||
// e.g. p(q_490(1)|q_489(1));p(q_490(1)|q_489(2)) ... p(q_490(1)|q_489(N)) and
|
||||
// p(q_490(1)|q_489(1)); p(q_490(2)|q_489(1)) ... p(q_490(M)|q_489(1))
|
||||
std::vector<std::vector<double>> predictionProbabilities;
|
||||
|
||||
omp_set_dynamic(0); // Explicitly disable dynamic teams
|
||||
omp_set_num_threads(7);
|
||||
#pragma omp parallel for shared(predictionProbabilities)
|
||||
for (int i = 0; i < particles_old.size(); ++i) {
|
||||
std::vector<double> innerVector;
|
||||
auto p1 = &particles_old[i];
|
||||
|
||||
for(int j = 0; j < particles_new.size(); ++j){
|
||||
|
||||
auto p2 = &particles_new[j];
|
||||
|
||||
const double distance_m = p2->state.position.inMeter().getDistance(p1->state.position.inMeter()) / 100.0;
|
||||
|
||||
//TODO Incorporated Activity - see IPIN16 MySmoothingTransitionExperimental
|
||||
|
||||
const double distProb = K::NormalDistribution::getProbability(Settings::Smoothing::stepLength, Settings::Smoothing::stepSigma, distance_m);
|
||||
|
||||
// TODO: FIX THIS CORRECTLY is the heading change similiar to the measurement?
|
||||
double diffRad = Angle::getDiffRAD_2PI_PI(p2->state.heading.direction.getRAD(), p1->state.heading.direction.getRAD());
|
||||
double diffDeg = Angle::radToDeg(diffRad);
|
||||
double measurementRad = Angle::makeSafe_2PI(p1->state.headingChangeMeasured_rad);
|
||||
double measurementDeg = Angle::radToDeg(measurementRad);
|
||||
const double headingProb = K::NormalDistribution::getProbability(measurementDeg, Settings::Smoothing::headingSigma, diffDeg);
|
||||
|
||||
// does the angle between two particles positions is similiar to the measurement
|
||||
//double angleBetweenParticles = Angle::getDEG_360(p2->state.position.x, p2->state.position.y, p1->state.position.x, p1->state.position.y);
|
||||
|
||||
//check how near we are to the measurement
|
||||
double diffZ = (p2->state.position.inMeter().z - p1->state.position.inMeter().z) / 100.0;
|
||||
const double floorProb = K::NormalDistribution::getProbability(Settings::Smoothing::zChange, Settings::Smoothing::zSigma, diffZ);
|
||||
|
||||
//combine the probabilities
|
||||
double prob = distProb;// * floorProb * headingProb;
|
||||
innerVector.push_back(prob);
|
||||
|
||||
}
|
||||
#pragma omp critical
|
||||
predictionProbabilities.push_back(innerVector);
|
||||
}
|
||||
|
||||
return predictionProbabilities;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
struct PFEval : public SMC::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
|
||||
WiFiModel& wifiModel;
|
||||
WiFiObserverFree wiFiProbability; // free-calculation
|
||||
@@ -579,7 +480,7 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
return Distribution::Normal<double>::getProbability(static_cast<double>(hPa), 0.10, static_cast<double>(observation.relativePressure));
|
||||
}
|
||||
|
||||
double getStairProb(const K::Particle<MyState>& p, const Activity act) {
|
||||
double getStairProb(const SMC::Particle<MyState>& p, const Activity act) {
|
||||
|
||||
const float kappa = 0.65;
|
||||
|
||||
@@ -603,7 +504,7 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
|
||||
}
|
||||
|
||||
virtual double evaluation(std::vector<K::Particle<MyState>>& particles, const MyObs& observation) override {
|
||||
virtual double evaluation(std::vector<SMC::Particle<MyState>>& particles, const MyObs& observation) override {
|
||||
|
||||
double sum = 0;
|
||||
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(observation.wifi);
|
||||
@@ -613,7 +514,7 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
|
||||
#pragma omp parallel for num_threads(3)
|
||||
for (int i = 0; i < particles.size(); ++i) {
|
||||
K::Particle<MyState>& p = particles[i];
|
||||
SMC::Particle<MyState>& p = particles[i];
|
||||
|
||||
Point3 pos_m = p.state.position.inMeter();
|
||||
Point3 posOld_m = p.state.positionOld.inMeter();
|
||||
@@ -625,8 +526,8 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
|
||||
//const double pBeacon = getBEACON(observation, p.state.position);
|
||||
|
||||
//small checks
|
||||
_assertNotNAN(pWifi, "Wifi prob is nan");
|
||||
_assertNot0(pBaroPressure,"pBaroPressure is null");
|
||||
Assert::isNotNaN(pWifi, "Wifi prob is nan");
|
||||
Assert::isNot0(pBaroPressure,"pBaroPressure is null");
|
||||
|
||||
const bool volatile init = observation.currentTime.sec() < 25;
|
||||
//double pWiFiMod = (init) ? (std::pow(pWiFi, 0.1)) : (std::pow(pWiFi, 0.5));
|
||||
|
||||
122
main.cpp
122
main.cpp
@@ -11,7 +11,10 @@
|
||||
|
||||
#include <Indoor/sensors/radio/model/WiFiModelFactory.h>
|
||||
#include <Indoor/sensors/radio/model/WiFiModelFactoryImpl.h>
|
||||
#include <Indoor/math/stats/Statistics.h>
|
||||
#include <Indoor/smc/smoothing/ForwardFilterHistory.h>
|
||||
|
||||
#include <Indoor/smc/smoothing/FastKDESmoothing.h>
|
||||
|
||||
//frank
|
||||
//const std::string mapDir = "/mnt/data/workspaces/IPIN2016/IPIN2016/competition/maps/";
|
||||
@@ -20,8 +23,8 @@
|
||||
//toni
|
||||
const std::string mapDir = "/home/toni/Documents/programme/localization/IndoorMap/maps/";
|
||||
//const std::string dataDir = "/home/toni/Documents/programme/localization/DynLag/code/data/";
|
||||
//const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/shl/";
|
||||
const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/motionAxisTest/";
|
||||
const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/shl/";
|
||||
//const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/motionAxisTest/";
|
||||
const std::string errorDir = dataDir + "results/";
|
||||
|
||||
/** describes one dataset (map, training, parameter-estimation, ...) */
|
||||
@@ -87,7 +90,7 @@ struct Data {
|
||||
|
||||
Floorplan::IndoorMap* MyState::map;
|
||||
|
||||
K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPath) {
|
||||
Stats::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPath) {
|
||||
|
||||
std::vector<double> kld_data;
|
||||
|
||||
@@ -111,7 +114,7 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
|
||||
|
||||
// build the grid
|
||||
std::ifstream inp(setup.grid, std::ifstream::binary);
|
||||
Grid<MyNode> grid(20);
|
||||
Grid<MyNode> grid(Settings::Grid::gridSize_cm);
|
||||
|
||||
// grid.dat empty? -> build one and save it
|
||||
if (!inp.good() || (inp.peek()&&0) || inp.eof()) {
|
||||
@@ -152,12 +155,11 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
|
||||
MyObs obs;
|
||||
|
||||
//History of all estimated particles. Used for smoothing
|
||||
std::vector<std::vector<K::Particle<MyState>>> pfHistory;
|
||||
std::vector<int64_t> tsHistory;
|
||||
SMC::ForwardFilterHistory<MyState, MyControl, MyObs> pfHistory;
|
||||
|
||||
//filter init
|
||||
//K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInit>(new PFInit(grid)));
|
||||
K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInitFixed>(new PFInitFixed(grid, GridPoint(55.5f * 100.0, 43.7f * 100.0, 740.0f), 180.0f)));
|
||||
SMC::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInit>(new PFInit(grid)));
|
||||
//SMC::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInitFixed>(new PFInitFixed(grid, GridPoint(55.5f * 100.0, 43.7f * 100.0, 740.0f), 180.0f)));
|
||||
|
||||
pf.setTransition(std::unique_ptr<PFTrans>(new PFTrans(grid, &ctrl)));
|
||||
//pf.setTransition(std::unique_ptr<PFTransKLDSampling>(new PFTransKLDSampling(grid, &ctrl)));
|
||||
@@ -166,40 +168,42 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
|
||||
|
||||
//resampling
|
||||
if(Settings::useKLB){
|
||||
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingDivergence<MyState>>(new K::ParticleFilterResamplingDivergence<MyState>()));
|
||||
pf.setResampling(std::unique_ptr<SMC::ParticleFilterResamplingDivergence<MyState>>(new SMC::ParticleFilterResamplingDivergence<MyState>()));
|
||||
} else {
|
||||
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()));
|
||||
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.4)));
|
||||
pf.setResampling(std::unique_ptr<SMC::ParticleFilterResamplingSimple<MyState>>(new SMC::ParticleFilterResamplingSimple<MyState>()));
|
||||
//pf.setResampling(std::unique_ptr<SMC::ParticleFilterResamplingPercent<MyState>>(new SMC::ParticleFilterResamplingPercent<MyState>(0.4)));
|
||||
//pf.setResampling(std::unique_ptr<NodeResampling<MyState, MyNode>>(new NodeResampling<MyState, MyNode>(*grid)););
|
||||
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingKLD<MyState>>(new K::ParticleFilterResamplingKLD<MyState>()));
|
||||
//pf.setResampling(std::unique_ptr<SMC::ParticleFilterResamplingKLD<MyState>>(new SMC::ParticleFilterResamplingKLD<MyState>()));
|
||||
}
|
||||
|
||||
pf.setNEffThreshold(0.95);
|
||||
|
||||
//estimation
|
||||
pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
|
||||
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new K::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
|
||||
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.5)));
|
||||
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationKernelDensity<MyState, 3>>(new K::ParticleFilterEstimationKernelDensity<MyState, 3>()));
|
||||
pf.setEstimation(std::unique_ptr<SMC::ParticleFilterEstimationWeightedAverage<MyState>>(new SMC::ParticleFilterEstimationWeightedAverage<MyState>()));
|
||||
//pf.setEstimation(std::unique_ptr<SMC::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new SMC::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
|
||||
//pf.setEstimation(std::unique_ptr<SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.5)));
|
||||
//pf.setEstimation(std::unique_ptr<SMC::ParticleFilterEstimationKernelDensity<MyState, 3>>(new SMC::ParticleFilterEstimationKernelDensity<MyState, 3>()));
|
||||
|
||||
|
||||
/** Smoothing Init */
|
||||
K::BackwardSimulation<MyState> bf(Settings::numBSParticles);
|
||||
SMC::FastKDESmoothing<MyState, MyControl, MyObs> bf(Settings::numParticles, map, Settings::Grid::gridSize_cm, Settings::KDE::bandwidth);
|
||||
if(Settings::Smoothing::activated){
|
||||
|
||||
//create the backward smoothing filter
|
||||
bf.setSampler( std::unique_ptr<K::CumulativeSampler<MyState>>(new K::CumulativeSampler<MyState>()));
|
||||
bf.setSampler( std::unique_ptr<SMC::CumulativeSampler<MyState>>(new SMC::CumulativeSampler<MyState>()));
|
||||
|
||||
bool smoothing_resample = false;
|
||||
//bf->setNEffThreshold(1.0);
|
||||
if(smoothing_resample)
|
||||
bf.setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
|
||||
bf.setTransition(std::unique_ptr<BFTrans>( new BFTrans) );
|
||||
bf.setResampling( std::unique_ptr<SMC::ParticleFilterResamplingSimple<MyState>>(new SMC::ParticleFilterResamplingSimple<MyState>()) );
|
||||
|
||||
//bf.setTransition(std::unique_ptr<BFTrans>( new BFTrans) );
|
||||
bf.setTransition(std::unique_ptr<PFTrans>(new PFTrans(grid, &ctrl)));
|
||||
|
||||
//Smoothing estimation
|
||||
bf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
|
||||
//bf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new K::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
|
||||
//bf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.50f)));
|
||||
bf.setEstimation(std::unique_ptr<SMC::ParticleFilterEstimationWeightedAverage<MyState>>(new SMC::ParticleFilterEstimationWeightedAverage<MyState>()));
|
||||
//bf->setEstimation( std::unique_ptr<SMC::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new SMC::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
|
||||
//bf->setEstimation( std::unique_ptr<SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.50f)));
|
||||
}
|
||||
|
||||
|
||||
@@ -216,8 +220,8 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
|
||||
RelativePressure relBaro;
|
||||
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
|
||||
|
||||
K::Statistics<float> errorStats;
|
||||
K::Statistics<float> errorStatsSmoothing;
|
||||
Stats::Statistics<float> errorStats;
|
||||
Stats::Statistics<float> errorStatsSmoothing;
|
||||
|
||||
//file writing for error data
|
||||
const long int t = static_cast<long int>(time(NULL));
|
||||
@@ -293,8 +297,8 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
|
||||
|
||||
plot.setEst(estPos);
|
||||
plot.setGT(gtPos);
|
||||
plot.addEstimationNode(estPos);
|
||||
plot.addParticles(pf.getParticles());
|
||||
//plot.addEstimationNode(estPos);
|
||||
//plot.addParticles(pf.getParticles());
|
||||
|
||||
/** error calculation stuff */
|
||||
float err_m = gtPos.getDistance(estPos);
|
||||
@@ -304,34 +308,36 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
|
||||
|
||||
/** smoothing stuff */
|
||||
if(Settings::Smoothing::activated){
|
||||
//save the current estimation for later smoothing.
|
||||
pfHistory.push_back(pf.getNonResamplingParticles());
|
||||
tsHistory.push_back(ts.ms());
|
||||
|
||||
// add everything from the forward step to the history
|
||||
pfHistory.add(ts, pf.getNonResamplingParticles(), ctrl, obs);
|
||||
|
||||
//backward filtering
|
||||
MyState estBF = est;
|
||||
if(pfHistory.size() > Settings::Smoothing::lag){
|
||||
//((BFTrans*)bf.getTransition())->setCurrentTime(tsHistory[(tsHistory.size() - 1) - i]);
|
||||
MyState estBF = bf.update(pfHistory, Settings::Smoothing::lag);
|
||||
|
||||
bf.reset();
|
||||
|
||||
//use every n-th (std = 1) particle set of the history within a given lag (std = 5)
|
||||
for(int i = 0; i <= Settings::Smoothing::lag; ++i){
|
||||
|
||||
((BFTrans*)bf.getTransition())->setCurrentTime(tsHistory[(tsHistory.size() - 1) - i]);
|
||||
estBF = bf.update(pfHistory[(pfHistory.size() - 1) - i]);
|
||||
}
|
||||
// get ground truth position at lag time
|
||||
Point3 estPosSmoothing = estBF.position.inMeter();
|
||||
Point3 gtPosSmoothed;
|
||||
if(pfHistory.size() <= Settings::Smoothing::lag){
|
||||
gtPosSmoothed = gtInterpolator.get(static_cast<uint64_t>(pfHistory.getFirstTimestamp().ms()));
|
||||
} else {
|
||||
gtPosSmoothed = gtInterpolator.get(static_cast<uint64_t>(pfHistory.getTimestamp(Settings::Smoothing::lag).ms()));
|
||||
}
|
||||
|
||||
Point3 estPosSmoothing = estBF.position.inMeter();
|
||||
Point3 gtPosSmoothed = gtInterpolator.get(static_cast<uint64_t>(tsHistory[(tsHistory.size() - 1) - Settings::Smoothing::lag]));
|
||||
|
||||
//plot
|
||||
plot.addEstimationNodeSmoothed(estPosSmoothing);
|
||||
plot.addParticles(bf.getbackwardParticles().back());
|
||||
|
||||
|
||||
if(Settings::Smoothing::lag >= pfHistory.size()){
|
||||
// error between GT and smoothing
|
||||
float errSmoothing_m = gtPosSmoothed.getDistance(estPosSmoothing);
|
||||
errorStatsSmoothing.add(errSmoothing_m);
|
||||
errorFileSmoothing << errSmoothing_m << "\n";
|
||||
}
|
||||
|
||||
// error between GT and smoothing
|
||||
float errSmoothing_m = gtPosSmoothed.getDistance(estPosSmoothing);
|
||||
errorStatsSmoothing.add(errSmoothing_m);
|
||||
errorFileSmoothing << errSmoothing_m << "\n";
|
||||
}
|
||||
|
||||
//plot misc
|
||||
@@ -426,26 +432,26 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
K::Statistics<float> statsAVG;
|
||||
K::Statistics<float> statsMedian;
|
||||
K::Statistics<float> statsSTD;
|
||||
K::Statistics<float> statsQuantil;
|
||||
K::Statistics<float> tmp;
|
||||
Stats::Statistics<float> statsAVG;
|
||||
Stats::Statistics<float> statsMedian;
|
||||
Stats::Statistics<float> statsSTD;
|
||||
Stats::Statistics<float> statsQuantil;
|
||||
Stats::Statistics<float> tmp;
|
||||
|
||||
for(int i = 0; i < 10; ++i){
|
||||
|
||||
// tmp = run(data.FloorOneToThree, 0, "Wifi-Dongle-Test", Settings::Path_DongleTest::path4);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
|
||||
tmp = run(data.MotionAxisTest, 0, "Motion-Axis-Test", Settings::Path_DongleTest::path1);
|
||||
tmp = run(data.SecondFloorOnly, 0, "KDE-Smoothing-Test", Settings::Path_DongleTest::path1);
|
||||
statsMedian.add(tmp.getMedian());
|
||||
statsAVG.add(tmp.getAvg());
|
||||
statsSTD.add(tmp.getStdDev());
|
||||
statsQuantil.add(tmp.getQuantile(0.75));
|
||||
|
||||
// tmp = run(data.MotionAxisTest, 0, "Motion-Axis-Test", Settings::Path_DongleTest::path1);
|
||||
// statsMedian.add(tmp.getMedian());
|
||||
// statsAVG.add(tmp.getAvg());
|
||||
// statsSTD.add(tmp.getStdDev());
|
||||
// statsQuantil.add(tmp.getQuantile(0.75));
|
||||
|
||||
std::cout << "Iteration " << i << " completed" << std::endl;;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user