This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
museumLoc/filter/KLB.h
2018-01-17 13:19:16 +01:00

180 lines
6.8 KiB
C++

#ifndef KLB_H
#define KLB_H
#include <chrono>
#include <Indoor/math/divergence/KullbackLeibler.h>
#include <Indoor/grid/factory/v2/GridFactory.h>
#include <Indoor/floorplan/v2/Floorplan.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/grid/factory/v2/GridFactory.h>
#include <Indoor/grid/factory/v2/Importance.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/imu/TurnDetection.h>
#include <Indoor/sensors/imu/StepDetection.h>
#include <Indoor/sensors/imu/MotionDetection.h>
#include <Indoor/sensors/pressure/RelativePressure.h>
#include <Indoor/sensors/radio/WiFiGridEstimator.h>
#include <Indoor/sensors/beacon/model/BeaconModelLogDistCeiling.h>
#include <Indoor/math/MovingAVG.h>
#include <Indoor/math/FixedFrequencyInterpolator.h>
#include <Indoor/math/divergence/KullbackLeibler.h>
#include <Indoor/math/divergence/JensenShannon.h>
#include <Indoor/data/Timestamp.h>
//#include <KLib/math/statistics/Statistics.h>
#include <Indoor/smc/Particle.h>
#include <Indoor/smc/filtering/ParticleFilterMixing.h>
#include <Indoor/smc/filtering/ParticleFilterInitializer.h>
#include <Indoor/smc/filtering/ParticleFilterHistory.h>
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationRegionalWeightedAverage.h>
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingSimple.h>
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingPercent.h>
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingDivergence.h>
#include <Indoor/smc/merging/MarkovTransitionProbability.h>
#include <Indoor/smc/merging/mixing/MixingSamplerDivergency.h>
#include <Indoor/smc/merging/estimation/JointEstimationPosteriorOnly.h>
//#include <Indoor/smc/smoothing/BackwardSimulation.h>
//#include <Indoor/smc/CondensationBackwardFilter.h>
//#include <Indoor/smc/smoothing/sampling/ParticleTrajectorieSampler.h>
//#include <Indoor/smc/smoothing/sampling/CumulativeSampler.h>
#include <Indoor/smc/smoothing/BackwardFilterTransition.h>
#include "Structs.h"
#include "../Plotti.h"
#include "Logic.h"
#include "../Settings.h"
static double getKernelDensityProbability(std::vector<SMC::Particle<MyState>>& particles, MyState state, std::vector<SMC::Particle<MyState>>& samplesWifi){
Distribution::KernelDensity<double, MyState> parzen([&](MyState state){
int size = particles.size();
double prob = 0;
#pragma omp parallel for reduction(+:prob) num_threads(6)
for(int i = 0; i < size; ++i){
double distance = particles[i].state.position.getDistanceInCM(state.position);
prob += Distribution::Normal<double>::getProbability(0, 100, distance) * particles[i].weight;
}
return prob;
;});
std::vector<double> probsWifiV;
std::vector<double> probsParticleV;
//just for plottingstuff
std::vector<SMC::Particle<MyState>> samplesParticles;
const int step = 4;
int i = 0;
for(SMC::Particle<MyState> particle : samplesWifi){
if(++i % step != 0){continue;}
MyState state(GridPoint(particle.state.position.x_cm, particle.state.position.y_cm, particle.state.position.z_cm));
double probiParticle = parzen.getProbability(state);
probsParticleV.push_back(probiParticle);
double probiwifi = particle.weight;
probsWifiV.push_back(probiwifi);
//samplesParticles.push_back(SMC::Particle<MyState>(state, probiParticle));
}
//make vectors
Eigen::Map<Eigen::VectorXd> probsWifi(&probsWifiV[0], probsWifiV.size());
Eigen::Map<Eigen::VectorXd> probsParticle(&probsParticleV[0], probsParticleV.size());
//get divergence
double kld = Divergence::KullbackLeibler<double>::getGeneralFromSamples(probsParticle, probsWifi, Divergence::LOGMODE::NATURALIS);
//double kld = Divergence::JensenShannon<double>::getGeneralFromSamples(probsParticle, probsWifi, Divergence::LOGMODE::NATURALIS);
//plotti
//plot.debugDistribution1(samplesWifi);
//plot.debugDistribution1(samplesParticles);
//estimate the mean
// SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
// const MyState estWifi = estimateWifi.estimate(samplesWifi);
// plot.addEstimationNodeSmoothed(estWifi.position.inMeter());
return kld;
}
static double kldFromMultivariatNormal(std::vector<SMC::Particle<MyState>>& particles, MyState state, std::vector<SMC::Particle<MyState>>& particleWifi){
//kld: particle die resampling hatten nehmen und nv daraus schätzen. vergleiche mit wi-fi
//todo put this in depletionhelper.h
Point3 estPos = state.position.inMeter();
//this is a hack! it is possible that the sigma of z is getting 0 and therefore the rank decreases to 2 and
//no inverse matrix is possible
std::mt19937_64 rng;
// initialize the random number generator with time-dependent seed
uint64_t timeSeed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::seed_seq ss{uint32_t(timeSeed & 0xffffffff), uint32_t(timeSeed>>32)};
rng.seed(ss);
// initialize a uniform distribution between -0.0001 and 0.0001
std::uniform_real_distribution<double> unif(-0.0001, 0.0001);
//create a gauss dist for the current particle approx.
Eigen::MatrixXd m(particles.size(), 3);
for(int i = 0; i < particles.size(); ++i){
m(i,0) = (particles[i].state.position.x_cm / 100.0) + unif(rng);
m(i,1) = (particles[i].state.position.y_cm / 100.0) + unif(rng);
m(i,2) = (particles[i].state.position.z_cm / 100.0) + unif(rng);
}
Eigen::VectorXd mean(3);
mean << estPos.x, estPos.y, estPos.z;
Distribution::NormalDistributionN normParticle = Distribution::NormalDistributionN::getNormalNFromSamplesAndMean(m, mean);
//create a gauss dist for wifi
Eigen::MatrixXd covWifi(3,3);
covWifi << Settings::WiFiModel::sigma, 0, 0,
0, Settings::WiFiModel::sigma, 0,
0, 0, 0.01;
//estimate the mean
SMC::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
const MyState estWifi = estimateWifi.estimate(particleWifi);
Eigen::VectorXd meanWifi(3);
meanWifi << estWifi.position.x_cm / 100.0, estWifi.position.y_cm / 100.0, estWifi.position.z_cm / 100.0;
Distribution::NormalDistributionN normWifi(meanWifi, covWifi);
//get the kld distance
double kld = Divergence::KullbackLeibler<double>::getMultivariateGauss(normParticle, normWifi);
//plot.debugDistribution1(particleWifi);
//plot.drawNormalN1(normParticle);
//plot.drawNormalN2(normWifi);
//plot.addEstimationNodeSmoothed(estWifi.position.inMeter());
return kld;
}
#endif // KLB_H