first commit init project

This commit is contained in:
toni
2017-10-12 13:20:39 +02:00
commit ba3b758744
7 changed files with 1824 additions and 0 deletions

94
CMakeLists.txt Executable file
View File

@@ -0,0 +1,94 @@
# Usage:
# Create build folder, like RC-build next to RobotControl and WifiScan folder
# CD into build folder and execute 'cmake -DCMAKE_BUILD_TYPE=Debug ../RobotControl'
# make
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
# select build type
SET( CMAKE_BUILD_TYPE "${CMAKE_BUILD_TYPE}" )
PROJECT(Museum)
IF(NOT CMAKE_BUILD_TYPE)
MESSAGE(STATUS "No build type selected. Default to Debug")
SET(CMAKE_BUILD_TYPE "Debug")
ENDIF()
INCLUDE_DIRECTORIES(
../
../../
../../../
../../../../
)
FILE(GLOB HEADERS
./notes.txt
./*.h
./*/*.h
./*/*/*.h
./*/*/*/*.h
./*/*/*/*/*.h
./*/*/*/*/*/*.h
)
FILE(GLOB SOURCES
./*.cpp
./*/*.cpp
./*/*/*.cpp
./*/*/*/*.cpp
../../Indoor/lib/tinyxml/tinyxml2.cpp
)
# system specific compiler flags
ADD_DEFINITIONS(
-std=gnu++11
-Wall
-Werror=return-type
-Wextra
-Wpedantic
-fstack-protector-all
-g3
#-O2
-march=native
-DWITH_TESTS
-DWITH_ASSERTIONS
-DWITH_DEBUG_LOG
)
# allow OMP
find_package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
endif()
# build a binary file
ADD_EXECUTABLE(
${PROJECT_NAME}
${HEADERS}
${SOURCES}
)
# needed external libraries
TARGET_LINK_LIBRARIES(
${PROJECT_NAME}
gtest
pthread
)
SET(CMAKE_C_COMPILER ${CMAKE_CXX_COMPILER})

352
Plotti.h Normal file
View File

@@ -0,0 +1,352 @@
#ifndef PLOTTI_H
#define PLOTTI_H
#include "filter/Structs.h"
#include "Settings.h"
#include <functional>
#include <Indoor/geo/Point2.h>
#include <Indoor/geo/Point3.h>
#include <Indoor/floorplan/v2/Floorplan.h>
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/WiFiProbabilityGrid.h>
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementColorPoints.h>
#include <KLib/math/filter/particles/ParticleFilter.h>
struct Plotti {
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementPoints pGrid;
K::GnuplotSplotElementLines pFloor;
K::GnuplotSplotElementLines pOutline;
K::GnuplotSplotElementLines pStairs;
K::GnuplotSplotElementPoints pAPs;
K::GnuplotSplotElementPoints pInterest;
K::GnuplotSplotElementPoints pParticles;
K::GnuplotSplotElementPoints pNormal1;
K::GnuplotSplotElementPoints pNormal2;
K::GnuplotSplotElementColorPoints pDistributation1;
K::GnuplotSplotElementColorPoints pDistributation2;
K::GnuplotSplotElementColorPoints pColorPoints;
K::GnuplotSplotElementLines gtPath;
K::GnuplotSplotElementLines estPath;
K::GnuplotSplotElementLines estPathSmoothed;
Plotti() {
gp << "set xrange[0-50:70+50]\nset yrange[0-50:50+50]\nset ticslevel 0\n";
splot.add(&pGrid); pGrid.setPointSize(0.25); pGrid.getColor().setHexStr("#888888");
splot.add(&pAPs); pAPs.setPointSize(0.7);
splot.add(&pColorPoints); pColorPoints.setPointSize(0.6);
splot.add(&pDistributation1); pDistributation1.setPointSize(0.6);
splot.add(&pDistributation2); pDistributation2.setPointSize(0.6);
splot.add(&pParticles); pParticles.getColor().setHexStr("#0000ff"); pParticles.setPointSize(0.4f);
splot.add(&pNormal1); pNormal1.getColor().setHexStr("#ff00ff"); pNormal1.setPointSize(0.4f);
splot.add(&pNormal2); pNormal2.getColor().setHexStr("#00aaff"); pNormal2.setPointSize(0.4f);
splot.add(&pFloor);
splot.add(&pOutline); pOutline.getStroke().getColor().setHexStr("#999999");
splot.add(&pStairs); pStairs.getStroke().getColor().setHexStr("#000000");
splot.add(&pInterest); pInterest.setPointSize(2); pInterest.getColor().setHexStr("#ff0000");
splot.add(&gtPath); gtPath.getStroke().setWidth(2); gtPath.getStroke().getColor().setHexStr("#000000");
splot.add(&estPath); estPath.getStroke().setWidth(2); estPath.getStroke().getColor().setHexStr("#00ff00");
splot.add(&estPathSmoothed); estPathSmoothed.getStroke().setWidth(2); estPathSmoothed.getStroke().getColor().setHexStr("#0000ff");
}
void addLabel(const int idx, const Point3 p, const std::string& str, const int fontSize = 10) {
gp << "set label " << idx << " at " << p.x << "," << p.y << "," << p.z << "'" << str << "'" << " font '," << fontSize << "'\n";
}
void addLabelV(const int idx, const Point3 p, const std::string& str, const int fontSize = 10) {
gp << "set label " << idx << " at " << p.x << "," << p.y << "," << p.z << "'" << str << "'" << " font '," << fontSize << "' rotate by 90\n";
}
void showAngle(const int idx, const float rad, const Point2 cen, const std::string& str) {
Point2 rot(0, 1);
Point2 pos = cen + rot.rotated(rad) * 0.05;
gp << "set label "<<idx<<" at screen " << cen.x << "," << cen.y << " '" << str << "'"<< "\n";
gp << "set arrow "<<idx<<" from screen " << cen.x << "," << cen.y << " to screen " << pos.x << "," << pos.y << "\n";
}
void setEst(const Point3 pos) {
gp << "set arrow 991 from " << pos.x << "," << pos.y << "," << std::round(pos.z * 10) / 10 << " to " << pos.x << "," << pos.y << "," << (std::round(pos.z * 10) / 10)+1 << " nohead lw 1 front \n";
}
void setGT(const Point3 pos) {
gp << "set arrow 995 from " << pos.x << "," << pos.y << "," << pos.z << " to " << pos.x << "," << pos.y << "," << pos.z+0.3 << " nohead lw 3 front \n";
gp << "set arrow 996 from " << pos.x << "," << pos.y << "," << pos.z << " to " << pos.x+0.3 << "," << pos.y << "," << pos.z << " nohead lw 3 front \n";
}
void setTimeInMinute(const int minutes, const int seconds) {
gp << "set label 1002 at screen 0.02, 0.94 'Time: " << minutes << ":" << seconds << "'\n";
}
void addGroundTruthNode(const Point3 pos) {
K::GnuplotPoint3 gp(pos.x, pos.y, std::round(pos.z * 10) / 10);
gtPath.add(gp);
}
// estimated path
void addEstimationNode(const Point3 pos){
K::GnuplotPoint3 est(pos.x, pos.y, std::round(pos.z * 10) / 10);
estPath.add(est);
}
// estimated path
void addEstimationNodeSmoothed(const Point3 pos){
K::GnuplotPoint3 est(pos.x, pos.y, std::round(pos.z * 10) / 10);
estPathSmoothed.add(est);
}
void debugDistribution1(std::vector<K::Particle<MyState>> samples){
float min = +9999;
float max = -9999;
pDistributation1.clear();
for (int i = 0; i < samples.size(); ++i) {
//if (i % 10 != 0) {continue;}
double prob = samples[i].weight;
if (prob < min) {min = prob;}
if (prob > max) {max = prob;}
K::GnuplotPoint3 pos(samples[i].state.position.x_cm / 100.0f, samples[i].state.position.y_cm / 100.0f, samples[i].state.position.z_cm / 100.0f);
pDistributation1.add(pos, prob);
}
if (min == max) {min -= 1;}
gp << "set cbrange [" << min << ":" << max << "]\n";
}
void debugDistribution2(std::vector<K::Particle<MyState>> samples){
float min = +9999;
float max = -9999;
pDistributation2.clear();
for (int i = 0; i < samples.size(); ++i) {
if (i % 25 != 0) {continue;}
double prob = samples[i].weight;
if (prob < min) {min = prob;}
if (prob > max) {max = prob;}
K::GnuplotPoint3 pos(samples[i].state.position.x_cm / 100.0f, samples[i].state.position.y_cm / 100.0f, samples[i].state.position.z_cm / 100.0f);
pDistributation2.add(pos, prob);
}
if (min == max) {min -= 1;}
gp << "set cbrange [" << min << ":" << max << "]\n";
}
void drawNormalN1(Distribution::NormalDistributionN normParticle){
pNormal1.clear();
for (int i = 0; i < 100000; ++i) {
if (++i % 25 != 0) {continue;}
Eigen::VectorXd vec = normParticle.draw();
K::GnuplotPoint3 pos(vec.x(), vec.y(), vec.z());
pNormal1.add(pos);
}
}
void drawNormalN2(Distribution::NormalDistributionN normParticle){
pNormal2.clear();
for (int i = 0; i < 100000; ++i) {
if (++i % 25 != 0) {continue;}
Eigen::VectorXd vec = normParticle.draw();
K::GnuplotPoint3 pos(vec.x(), vec.y(), vec.z());
pNormal2.add(pos);
}
}
void debugWiFi(WiFiModelLogDistCeiling& model, const WiFiMeasurements& scan, const Timestamp curTS, const float z) {
WiFiObserverFree wiFiProbability(Settings::WiFiModel::sigma, model);
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(scan);
float min = +9999;
float max = -9999;
const float step = 2.0f;
for (float x = 0; x < 80; x += step) {
for (float y = 0; y < 55; y += step) {
Point3 pt(x,y,z);
double prob = wiFiProbability.getProbability(pt + Point3(0,0,1.3), curTS, wifiObs);
if (prob < min) {min = prob;}
if (prob > max) {max = prob;}
pColorPoints.add(K::GnuplotPoint3(x,y,z), prob);
}
}
if (min == max) {min -= 1;}
gp << "set cbrange [" << min << ":" << max << "]\n";
}
template <typename Node> void debugProb(Grid<Node>& grid, std::function<double(const MyObs&, const Point3& pos)> func, const MyObs& obs) {
pColorPoints.clear();
// const float step = 2.0;
// float z = 0;
// for (float x = -20; x < 90; x += step) {
// for (float y = -10; y < 60; y += step) {
// const Point3 pos_m(x,y,z);
// const double prob = func(obs, pos_m);
// pColorPoints.add(K::GnuplotPoint3(x,y,z), prob);
// }
// }
std::minstd_rand gen;
std::uniform_int_distribution<int> dist(0, grid.getNumNodes()-1);
float min = +9999;
float max = -9999;
for (int i = 0; i < 10000; ++i) {
int idx = dist(gen);
Node& n = grid[idx];
const Point3 pos_cm(n.x_cm, n.y_cm, n.z_cm);
const Point3 pos_m = pos_cm / 100.0f;
const double prob = func(obs, pos_m);
if (prob < min) {min = prob;}
if (prob > max) {max = prob;}
pColorPoints.add(K::GnuplotPoint3(pos_m.x, pos_m.y, pos_m.z), prob);
}
if (min == max) {min -= 1;}
gp << "set cbrange [" << min << ":" << max << "]\n";
}
void addStairs(Floorplan::IndoorMap* map) {
for (Floorplan::Floor* f : map->floors) {
for (Floorplan::Stair* stair : f->stairs) {
std::vector<Floorplan::Quad3> quads = Floorplan::getQuads(stair->getParts(), f);
for (const Floorplan::Quad3& quad : quads) {
for (int i = 0; i < 4; ++i) {
int idx1 = i;
int idx2 = (i+1) % 4;
pStairs.addSegment(
K::GnuplotPoint3(quad[idx1].x,quad[idx1].y, quad[idx1].z),
K::GnuplotPoint3(quad[idx2].x,quad[idx2].y, quad[idx2].z)
);
}
}
}
}
}
void addFloors(Floorplan::IndoorMap* map) {
for (Floorplan::Floor* f : map->floors) {
for (Floorplan::FloorObstacle* obs : f->obstacles) {
Floorplan::FloorObstacleLine* line = dynamic_cast<Floorplan::FloorObstacleLine*>(obs);
if (line) {
K::GnuplotPoint3 p1(line->from.x, line->from.y, f->atHeight);
K::GnuplotPoint3 p2(line->to.x, line->to.y, f->atHeight);
pFloor.addSegment(p1, p2);
}
}
}
}
void addOutline(Floorplan::IndoorMap* map) {
for (Floorplan::Floor* f : map->floors) {
for (Floorplan::FloorOutlinePolygon* poly : f->outline) {
const int cnt = poly->poly.points.size();
for (int i = 0; i < cnt; ++i) {
Point2 p1 = poly->poly.points[(i+0)];
Point2 p2 = poly->poly.points[(i+1)%cnt];
K::GnuplotPoint3 gp1(p1.x, p1.y, f->atHeight);
K::GnuplotPoint3 gp2(p2.x, p2.y, f->atHeight);
pOutline.addSegment(gp1, gp2);
}
}
}
}
template <typename Node> void addGrid(Grid<Node>& grid) {
pGrid.clear();
for (const Node& n : grid) {
K::GnuplotPoint3 p(n.x_cm, n.y_cm, n.z_cm);
pGrid.add(p/100.0f);
}
}
template <typename State> void addParticles(const std::vector<K::Particle<State>>& particles) {
pParticles.clear();
int i = 0;
for (const K::Particle<State>& p : particles) {
if (++i % 25 != 0) {continue;}
K::GnuplotPoint3 pos(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm);
pParticles.add(pos / 100.0f);
}
}
void show() {
gp.draw(splot);
gp.flush();
}
void saveToFile(std::ofstream& stream){
gp.draw(splot);
stream << "set terminal x11 size 2000,1500\n";
stream << gp.getBuffer();
stream << "pause -1\n";
gp.flush();
}
void printSingleFloor(const std::string& path, const int floorNum) {
gp << "set terminal png size 1280,720\n";
gp << "set output '" << path << "_" << floorNum <<".png'\n";
gp << "set view 0,0\n";
gp << "set zrange [" << (floorNum * 4) - 2 << " : " << (floorNum * 4) + 2 << "]\n";
gp << "set autoscale xy\n";
}
void printSideView(const std::string& path, const int degree) {
gp << "set terminal png size 1280,720\n";
gp << "set output '" << path << "_deg" << degree <<".png'\n";
gp << "set view 90,"<< degree << "\n";
gp << "set autoscale xy\n";
gp << "set autoscale z\n";
}
void printOverview(const std::string& path) {
gp << "set terminal png size 1280,720\n";
gp << "set output '" << path << "_overview" << ".png'\n";
gp << "set view 75,60\n";
gp << "set autoscale xy\n";
gp << "set autoscale z\n";
}
};
#endif // PLOTTI_H

88
Settings.h Normal file
View File

@@ -0,0 +1,88 @@
#ifndef SETTINGS_H
#define SETTINGS_H
#include <Indoor/grid/GridPoint.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/sensors/radio/VAPGrouper.h>
namespace Settings {
bool useKLB = false;
const int numParticles = 6000;
const int numBSParticles = 50;
namespace IMU {
const float turnSigma = 2.5; // 3.5
const float stepLength = 1.00;
const float stepSigma = 0.15; //toni changed
}
const float smartphoneAboveGround = 1.3;
const float offlineSensorSpeedup = 2;
namespace Grid {
constexpr int gridSize_cm = 20;
}
namespace Smoothing {
const bool activated = false;
const double stepLength = 0.7;
const double stepSigma = 0.2;
const double headingSigma = 25.0;
const double zChange = 0.0; // mu change in height between two time steps
const double zSigma = 0.1;
const int lag = 5;
}
//const GridPoint destination = GridPoint(70*100, 35*100, 0*100); // use destination
const GridPoint destination = GridPoint(0,0,0); // do not use destination
namespace SensorDebug {
const Timestamp updateEvery = Timestamp::fromMS(200);
}
namespace WiFiModel {
constexpr float sigma = 8.0;
/** if the wifi-signal-strengths are stored on the grid-nodes, this needs a grid rebuild! */
constexpr float TXP = -40;
constexpr float EXP = 2.3;
constexpr float WAF = 0.0;
// how to perform VAP grouping. see
// - calibration in Controller.cpp
// - eval in Filter.h
// NOTE: maybe the UAH does not allow valid VAP grouping? delete the grid and rebuild without!
const VAPGrouper vg_calib = VAPGrouper(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MAXIMUM, 1);
const VAPGrouper vg_eval = VAPGrouper(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MAXIMUM, 1);
}
namespace BeaconModel {
constexpr float sigma = 8.0;
constexpr float TXP = -71;
constexpr float EXP = 1.5;
constexpr float WAF = -20.0; //-5 //20??
}
namespace MapView3D {
const int maxColorPoints = 1000;
constexpr int fps = 15;
const Timestamp msPerFrame = Timestamp::fromMS(1000/fps);
}
namespace Filter {
const Timestamp updateEvery = Timestamp::fromMS(500);
constexpr bool useMainThread = false; // perform filtering in the main thread
}
namespace Path_DongleTest {
const std::vector<int> path1 = {0, 1, 2, 3, 4, 5, 6};
const std::vector<int> path2 = {6, 5, 4, 7, 8, 9, 8, 10};
const std::vector<int> path3 = {10, 8, 7, 4, 11, 12, 13, 14, 6};
}
}
#endif // SETTINGS_H

180
filter/KLB.h Normal file
View File

@@ -0,0 +1,180 @@
#ifndef KLB_H
#define KLB_H
#include <chrono>
#include <Indoor/math/divergence/KullbackLeibler.h>
#include <Indoor/grid/factory/v2/GridFactory.h>
#include <Indoor/floorplan/v2/Floorplan.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/grid/factory/v2/GridFactory.h>
#include <Indoor/grid/factory/v2/Importance.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/imu/TurnDetection.h>
#include <Indoor/sensors/imu/StepDetection.h>
#include <Indoor/sensors/imu/MotionDetection.h>
#include <Indoor/sensors/pressure/RelativePressure.h>
#include <Indoor/sensors/radio/WiFiGridEstimator.h>
#include <Indoor/sensors/beacon/model/BeaconModelLogDistCeiling.h>
#include <Indoor/math/MovingAVG.h>
#include <Indoor/math/FixedFrequencyInterpolator.h>
#include <Indoor/math/divergence/KullbackLeibler.h>
#include <Indoor/math/divergence/JensenShannon.h>
#include <Indoor/data/Timestamp.h>
#include <KLib/math/statistics/Statistics.h>
#include <KLib/math/filter/particles/Particle.h>
#include <KLib/math/filter/particles/ParticleFilterMixing.h>
#include <KLib/math/filter/particles/ParticleFilterInitializer.h>
#include <KLib/math/filter/particles/ParticleFilterHistory.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationRegionalWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
//#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationKernelDensity.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingDivergence.h>
#include <KLib/math/filter/merging/MarkovTransitionProbability.h>
#include <KLib/math/filter/merging/mixing/MixingSamplerDivergency.h>
#include <KLib/math/filter/merging/estimation/JointEstimationPosteriorOnly.h>
#include <KLib/math/filter/smoothing/BackwardSimulation.h>
#include <KLib/math/filter/smoothing/CondensationBackwardFilter.h>
#include <KLib/math/filter/smoothing/sampling/ParticleTrajectorieSampler.h>
#include <KLib/math/filter/smoothing/sampling/CumulativeSampler.h>
#include <KLib/math/filter/smoothing/BackwardFilterTransition.h>
#include "Structs.h"
#include "../Plotti.h"
#include "Logic.h"
#include "../Settings.h"
static double getKernelDensityProbability(std::vector<K::Particle<MyState>>& particles, MyState state, std::vector<K::Particle<MyState>>& samplesWifi){
Distribution::KernelDensity<double, MyState> parzen([&](MyState state){
int size = particles.size();
double prob = 0;
#pragma omp parallel for reduction(+:prob) num_threads(6)
for(int i = 0; i < size; ++i){
double distance = particles[i].state.position.getDistanceInCM(state.position);
prob += Distribution::Normal<double>::getProbability(0, 100, distance) * particles[i].weight;
}
return prob;
;});
std::vector<double> probsWifiV;
std::vector<double> probsParticleV;
//just for plottingstuff
std::vector<K::Particle<MyState>> samplesParticles;
const int step = 4;
int i = 0;
for(K::Particle<MyState> particle : samplesWifi){
if(++i % step != 0){continue;}
MyState state(GridPoint(particle.state.position.x_cm, particle.state.position.y_cm, particle.state.position.z_cm));
double probiParticle = parzen.getProbability(state);
probsParticleV.push_back(probiParticle);
double probiwifi = particle.weight;
probsWifiV.push_back(probiwifi);
//samplesParticles.push_back(K::Particle<MyState>(state, probiParticle));
}
//make vectors
Eigen::Map<Eigen::VectorXd> probsWifi(&probsWifiV[0], probsWifiV.size());
Eigen::Map<Eigen::VectorXd> probsParticle(&probsParticleV[0], probsParticleV.size());
//get divergence
double kld = Divergence::KullbackLeibler<double>::getGeneralFromSamples(probsParticle, probsWifi, Divergence::LOGMODE::NATURALIS);
//double kld = Divergence::JensenShannon<double>::getGeneralFromSamples(probsParticle, probsWifi, Divergence::LOGMODE::NATURALIS);
//plotti
//plot.debugDistribution1(samplesWifi);
//plot.debugDistribution1(samplesParticles);
//estimate the mean
// K::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
// const MyState estWifi = estimateWifi.estimate(samplesWifi);
// plot.addEstimationNodeSmoothed(estWifi.position.inMeter());
return kld;
}
static double kldFromMultivariatNormal(std::vector<K::Particle<MyState>>& particles, MyState state, std::vector<K::Particle<MyState>>& particleWifi){
//kld: particle die resampling hatten nehmen und nv daraus schätzen. vergleiche mit wi-fi
//todo put this in depletionhelper.h
Point3 estPos = state.position.inMeter();
//this is a hack! it is possible that the sigma of z is getting 0 and therefore the rank decreases to 2 and
//no inverse matrix is possible
std::mt19937_64 rng;
// initialize the random number generator with time-dependent seed
uint64_t timeSeed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::seed_seq ss{uint32_t(timeSeed & 0xffffffff), uint32_t(timeSeed>>32)};
rng.seed(ss);
// initialize a uniform distribution between -0.0001 and 0.0001
std::uniform_real_distribution<double> unif(-0.0001, 0.0001);
//create a gauss dist for the current particle approx.
Eigen::MatrixXd m(particles.size(), 3);
for(int i = 0; i < particles.size(); ++i){
m(i,0) = (particles[i].state.position.x_cm / 100.0) + unif(rng);
m(i,1) = (particles[i].state.position.y_cm / 100.0) + unif(rng);
m(i,2) = (particles[i].state.position.z_cm / 100.0) + unif(rng);
}
Eigen::VectorXd mean(3);
mean << estPos.x, estPos.y, estPos.z;
Distribution::NormalDistributionN normParticle = Distribution::NormalDistributionN::getNormalNFromSamplesAndMean(m, mean);
//create a gauss dist for wifi
Eigen::MatrixXd covWifi(3,3);
covWifi << Settings::WiFiModel::sigma, 0, 0,
0, Settings::WiFiModel::sigma, 0,
0, 0, 0.01;
//estimate the mean
K::ParticleFilterEstimationOrderedWeightedAverage<MyState> estimateWifi(0.95);
const MyState estWifi = estimateWifi.estimate(particleWifi);
Eigen::VectorXd meanWifi(3);
meanWifi << estWifi.position.x_cm / 100.0, estWifi.position.y_cm / 100.0, estWifi.position.z_cm / 100.0;
Distribution::NormalDistributionN normWifi(meanWifi, covWifi);
//get the kld distance
double kld = Divergence::KullbackLeibler<double>::getMultivariateGauss(normParticle, normWifi);
//plot.debugDistribution1(particleWifi);
//plot.drawNormalN1(normParticle);
//plot.drawNormalN2(normWifi);
//plot.addEstimationNodeSmoothed(estWifi.position.inMeter());
return kld;
}
#endif // KLB_H

554
filter/Logic.h Normal file
View File

@@ -0,0 +1,554 @@
#ifndef FLOGIC_H
#define FLOGIC_H
#include <Indoor/grid/Grid.h>
#include <Indoor/grid/walk/v2/GridWalker.h>
#include <Indoor/grid/walk/v2/GridWalkerMulti.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFollowDestination.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeading.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeadingControl.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeadingVonMises.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleNodeImportance.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleSpread.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFavorZ.h>
#include <Indoor/grid/walk/v2/modules/WalkModulePreventVisited.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleActivityControl.h>
#include <Indoor/sensors/radio/WiFiQualityAnalyzer.h>
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/WiFiProbabilityGrid.h>
#include <Indoor/sensors/beacon/model/BeaconModelLogDistCeiling.h>
#include <Indoor/sensors/beacon/BeaconProbabilityFree.h>
#include <KLib/math/filter/particles/ParticleFilterMixing.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingKLD.h>
#include <KLib/math/filter/smoothing/BackwardFilterTransition.h>
#include "Structs.h"
#include <omp.h>
#include "../Settings.h"
/** particle-filter init randomly distributed within the building*/
struct PFInit : public K::ParticleFilterInitializer<MyState> {
Grid<MyNode>& grid;
PFInit(Grid<MyNode>& grid) : grid(grid) {;}
virtual void initialize(std::vector<K::Particle<MyState>>& particles) override {
for (K::Particle<MyState>& p : particles) {
int idx = rand() % grid.getNumNodes();
p.state.position = grid[idx]; // random position
p.state.heading.direction = (rand() % 360) / 180.0 * M_PI; // random heading
p.state.heading.error = 0;
p.state.relativePressure = 0; // start with a relative pressure of 0
p.weight = 1.0 / particles.size(); // equal weight
}
}
};
/** particle-filter init with fixed position*/
struct PFInitFixed : public K::ParticleFilterInitializer<MyState> {
Grid<MyNode>& grid;
GridPoint startPos;
float headingDeg;
PFInitFixed(Grid<MyNode>& grid, GridPoint startPos, float headingDeg) :
grid(grid), startPos(startPos), headingDeg(headingDeg) {;}
virtual void initialize(std::vector<K::Particle<MyState>>& particles) override {
Distribution::Normal<float> norm(0.0f, 1.5f);
for (K::Particle<MyState>& p : particles) {
GridPoint pos = startPos + GridPoint(norm.draw(),norm.draw(),0.0f);
GridPoint startPos = grid.getNodeFor(pos);
p.state.position = startPos; // scatter arround the start position
p.state.heading.direction = headingDeg / 180.0 * M_PI; // fixed heading
p.state.heading.error = 0;
p.state.relativePressure = 0; // start with a relative pressure of 0
p.weight = 1.0 / particles.size(); // equal weight
}
}
};
/** very simple transition model, just scatter normal distributed */
struct PFTransSimple : public K::ParticleFilterTransition<MyState, MyControl>{
Grid<MyNode>& grid;
// define the noise
Distribution::Normal<float> noise_cm = Distribution::Normal<float>(0.0, Settings::IMU::stepLength * 2.0 * 100.0);
Distribution::Normal<float> height_m = Distribution::Normal<float>(0.0, 6.0);
// draw randomly from a vector
//random_selector<> rand;
// draw from 0 - 1
Distribution::Uniform<float> uniRand = Distribution::Uniform<float>(0,1);
/** ctor */
PFTransSimple(Grid<MyNode>& grid) : grid(grid) {}
virtual void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* control) override {
//int noNewPositionCounter = 0;
#pragma omp parallel for num_threads(6)
for (int i = 0; i < particles.size(); ++i) {
K::Particle<MyState>& p = particles[i];
// update the baromter
float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z;
p.state.relativePressure += deltaZ_cm * 0.105f;
double diffHeight = p.state.position.inMeter().z + height_m.draw();
double newHeight_cm = p.state.position.z_cm;
if(diffHeight > 9.1){
newHeight_cm = 10.8 * 100.0;
} else if (diffHeight < 9.1 && diffHeight > 5.7){
newHeight_cm = 7.4 * 100.0;
} else if (diffHeight < 5.7 && diffHeight > 2.0) {
newHeight_cm = 4.0 * 100.0;
} else {
newHeight_cm = 0.0;
}
GridPoint noisePt(noise_cm.draw(), noise_cm.draw(), 0.0);
GridPoint newPosition = p.state.position + noisePt;
newPosition.z_cm = newHeight_cm;
// p.state.position = grid.getNearestNode(newPosition);
if(grid.hasNodeFor(newPosition)){
p.state.position = newPosition;
}else{
//no new position!
// #pragma omp atomic
// noNewPositionCounter++;
}
}
// std::cout << noNewPositionCounter << std::endl;
}
};
/** particle-filter transition */
struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
Grid<MyNode>& grid;
GridWalker<MyNode, MyState> walker;
WalkModuleHeading<MyNode, MyState> modHeadUgly; // stupid
WalkModuleHeadingControl<MyNode, MyState, MyControl> modHead;
WalkModuleHeadingVonMises<MyNode, MyState, MyControl> modHeadMises;
WalkModuleNodeImportance<MyNode, MyState> modImportance;
WalkModuleSpread<MyNode, MyState> modSpread;
WalkModuleFavorZ<MyNode, MyState> modFavorZ;
//WalkModulePreventVisited<MyNode, MyState> modPreventVisited;
//WalkModuleActivityControl<MyNode, MyState, MyControl> modActivity;
std::minstd_rand gen;
PFTrans(Grid<MyNode>& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) {
walker.addModule(&modHead);
//walker.addModule(&modHeadMises);
//walker.addModule(&modSpread); // might help in some situations! keep in mind!
//walker.addModule(&modActivity);
//walker.addModule(&modHeadUgly);
walker.addModule(&modImportance);
//walker.addModule(&modFavorZ);
//walker.addModule(&modButterAct);
//walker.addModule(&modWifi);
//walker.addModule(&modPreventVisited);
}
virtual void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* control) override {
std::normal_distribution<float> noise(0, Settings::IMU::stepSigma);
for (K::Particle<MyState>& p : particles) {
//this is just for the smoothing transition... quick and dirty
p.state.headingChangeMeasured_rad = control->turnSinceLastTransition_rad;
// save old position
p.state.positionOld = p.state.position; //GridPoint(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm);
// update steps
const float dist_m = std::abs(control->numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen));
// update the particle in-place
p.state = walker.getDestination(grid, p.state, dist_m);
// update the baromter
float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z;
p.state.relativePressure += deltaZ_cm * 0.105f;
}
}
};
/**
* particle-filter transition
* Adapting the Sample Size in Particle Filters Through KLD-Sampling - D. Fox
*/
struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyControl> {
Grid<MyNode>& grid;
GridWalker<MyNode, MyState> walker;
WalkModuleHeading<MyNode, MyState> modHeadUgly; // stupid
WalkModuleHeadingControl<MyNode, MyState, MyControl> modHead;
WalkModuleHeadingVonMises<MyNode, MyState, MyControl> modHeadMises;
WalkModuleNodeImportance<MyNode, MyState> modImportance;
WalkModuleSpread<MyNode, MyState> modSpread;
WalkModuleFavorZ<MyNode, MyState> modFavorZ;
//WalkModulePreventVisited<MyNode, MyState> modPreventVisited;
//WalkModuleActivityControl<MyNode, MyState, MyControl> modActivity;
std::minstd_rand gen;
/** upper bound epsilon of the kld distance - the particle size is not allowed to exceed epsilon*/
double epsilon;
/** the upper 1 - delta quantil of the normal distribution. something like 0.01 */
double delta;
/** the bins */
Binning<MyState> bins;
/** max particle size */
uint32_t N_max;
PFTransKLDSampling(Grid<MyNode>& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) {
walker.addModule(&modHead);
//walker.addModule(&modHeadMises);
//walker.addModule(&modSpread); // might help in some situations! keep in mind!
//walker.addModule(&modActivity);
//walker.addModule(&modHeadUgly);
walker.addModule(&modImportance);
//walker.addModule(&modFavorZ);
//walker.addModule(&modButterAct);
//walker.addModule(&modWifi);
//walker.addModule(&modPreventVisited);
epsilon = 0.15;
delta = 0.01;
N_max = 5000;
bins.setBinSizes({0.01, 0.01, 0.2, 0.3});
bins.setRanges({BinningRange(-1,100), BinningRange(-10,60), BinningRange(-1,15), BinningRange(0, 2 * M_PI)});
}
virtual void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* control) override {
std::normal_distribution<float> noise(0, Settings::IMU::stepSigma);
Distribution::Uniform<int> getParticle(0, particles.size()-1);
//init stuff
uint32_t n = 0;
uint32_t k = 1;
double N = 0;
//clear the bins
bins.clearUsed();
//create new particle set
std::vector<K::Particle<MyState>> particlesNew;
do{
//draw equally from the particle set
int particleIdx = getParticle.draw();
K::Particle<MyState>& p = particles[particleIdx];
//sample new particles based on the transition step
// save old position
p.state.positionOld = p.state.position; //GridPoint(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm);
// update steps
const float dist_m = std::abs(control->numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen));
// update the particle in-place
p.state = walker.getDestination(grid, p.state, dist_m);
// update the baromter
float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z;
p.state.relativePressure += deltaZ_cm * 0.105f;
//if it falls into an empty bin then draw another particle
//is bin free?
if(bins.isFree(p.state)){
k++;
bins.markUsed(p.state);
//calculate the new N
double z_delta = K::NormalDistributionCDF::getProbit(1 - delta);
double front = (k - 1) / (2 * epsilon);
double back = 1 - (2 / (9 * (k - 1))) + (std::sqrt(2 / (9 * (k - 1))) * z_delta );
N = front * std::pow(back, 3.0);
}
++n;
//add particle to new particleset
particlesNew.push_back(p);
} while (n < N && n < N_max);
//write new particleset
particles.clear();
particles.swap(particlesNew);
}
};
struct BFTrans : public K::BackwardFilterTransition<MyState>{
public:
/**
* ctor
* @param choice the choice to use for randomly drawing nodes
* @param fp the underlying floorplan
*/
BFTrans()
{
//nothin
}
uint64_t ts = 0;
uint64_t deltaMS = 0;
/** set the current time in millisconds */
void setCurrentTime(const uint64_t ts) {
if (this->ts == 0) {
this->ts = ts;
deltaMS = 0;
} else {
deltaMS = this->ts - ts;
this->ts = ts;
}
}
/**
* smoothing transition starting at T with t, t-1,...0
* @param particles_new p_t (Forward Filter) p2
* @param particles_old p_t+1 (Smoothed Particles from Step before) p1
* q(p1 | p2) is calculated
*/
std::vector<std::vector<double>> transition(std::vector<K::Particle<MyState>>const& particles_new,
std::vector<K::Particle<MyState>>const& particles_old ) override {
// calculate alpha(m,n) = p(q_t+1(m) | q_t(n))
// this means, predict all possible states q_t+1 with all passible states q_t
// e.g. p(q_490(1)|q_489(1));p(q_490(1)|q_489(2)) ... p(q_490(1)|q_489(N)) and
// p(q_490(1)|q_489(1)); p(q_490(2)|q_489(1)) ... p(q_490(M)|q_489(1))
std::vector<std::vector<double>> predictionProbabilities;
omp_set_dynamic(0); // Explicitly disable dynamic teams
omp_set_num_threads(7);
#pragma omp parallel for shared(predictionProbabilities)
for (int i = 0; i < particles_old.size(); ++i) {
std::vector<double> innerVector;
auto p1 = &particles_old[i];
for(int j = 0; j < particles_new.size(); ++j){
auto p2 = &particles_new[j];
const double distance_m = p2->state.position.inMeter().getDistance(p1->state.position.inMeter()) / 100.0;
//TODO Incorporated Activity - see IPIN16 MySmoothingTransitionExperimental
const double distProb = K::NormalDistribution::getProbability(Settings::Smoothing::stepLength, Settings::Smoothing::stepSigma, distance_m);
// TODO: FIX THIS CORRECTLY is the heading change similiar to the measurement?
double diffRad = Angle::getDiffRAD_2PI_PI(p2->state.heading.direction.getRAD(), p1->state.heading.direction.getRAD());
double diffDeg = Angle::radToDeg(diffRad);
double measurementRad = Angle::makeSafe_2PI(p1->state.headingChangeMeasured_rad);
double measurementDeg = Angle::radToDeg(measurementRad);
const double headingProb = K::NormalDistribution::getProbability(measurementDeg, Settings::Smoothing::headingSigma, diffDeg);
// does the angle between two particles positions is similiar to the measurement
//double angleBetweenParticles = Angle::getDEG_360(p2->state.position.x, p2->state.position.y, p1->state.position.x, p1->state.position.y);
//check how near we are to the measurement
double diffZ = (p2->state.position.inMeter().z - p1->state.position.inMeter().z) / 100.0;
const double floorProb = K::NormalDistribution::getProbability(Settings::Smoothing::zChange, Settings::Smoothing::zSigma, diffZ);
//combine the probabilities
double prob = distProb;// * floorProb * headingProb;
innerVector.push_back(prob);
}
#pragma omp critical
predictionProbabilities.push_back(innerVector);
}
return predictionProbabilities;
}
};
struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
WiFiModel& wifiModel;
WiFiObserverFree wiFiProbability; // free-calculation
//WiFiObserverGrid<MyNode> wiFiProbability; // grid-calculation
WiFiQualityAnalyzer wqa;
BeaconModelLogDistCeiling& beaconModel;
BeaconObserverFree beaconProbability;
Grid<MyNode>& grid;
PFEval(WiFiModel& wifiModel, BeaconModelLogDistCeiling& beaconModel, Grid<MyNode>& grid) :
wifiModel(wifiModel),
beaconModel(beaconModel),
grid(grid),
wiFiProbability(Settings::WiFiModel::sigma, wifiModel),
beaconProbability(Settings::BeaconModel::sigma, beaconModel){
}
/** probability step-distance */
//TODO: add number of recognized steps
inline double getStepDistanceProb(const Point3 particle1, const Point3 particle2){
double distance = particle1.getDistance(particle2);
return Distribution::Normal<double>::getProbability(Settings::IMU::stepLength, Settings::IMU::stepSigma + 0.4, distance);
}
//TODO: combinied evaluation heading and distance
/** probability for WIFI */
inline double getWIFI(const MyObs& observation, const WiFiMeasurements& vapWifi, const GridPoint& point) const {
const MyNode& node = grid.getNodeFor(point);
return wiFiProbability.getProbability(node, observation.currentTime, vapWifi);
}
/** probability for BEACONS */
inline double getBEACON(const MyObs& observation, const GridPoint& point){
//consider adding the persons height
Point3 p = point.inMeter() + Point3(0,0,1.3);
return beaconProbability.getProbability(p, observation.currentTime, observation.beacons);
}
/** probability for Barometer */
inline double getBaroPressure(const MyObs& observation, const float hPa) const{
return Distribution::Normal<double>::getProbability(static_cast<double>(hPa), 0.10, static_cast<double>(observation.relativePressure));
}
double getStairProb(const K::Particle<MyState>& p, const ActivityButterPressure::Activity act) {
const float kappa = 0.75;
const MyNode& gn = grid.getNodeFor(p.state.position);
switch (act) {
case ActivityButterPressure::Activity::STAY:
if (gn.getType() == GridNode::TYPE_FLOOR) {return kappa;}
if (gn.getType() == GridNode::TYPE_DOOR) {return kappa;}
{return 1-kappa;}
case ActivityButterPressure::Activity::UP:
case ActivityButterPressure::Activity::DOWN:
if (gn.getType() == GridNode::TYPE_STAIR) {return kappa;}
if (gn.getType() == GridNode::TYPE_ELEVATOR) {return kappa;}
{return 1-kappa;}
}
return 1.0;
}
virtual double evaluation(std::vector<K::Particle<MyState>>& particles, const MyObs& observation) override {
double sum = 0;
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(observation.wifi);
wqa.add(wifiObs);
float quality = wqa.getQuality();
#pragma omp parallel for num_threads(3)
for (int i = 0; i < particles.size(); ++i) {
K::Particle<MyState>& p = particles[i];
Point3 pos_m = p.state.position.inMeter();
Point3 posOld_m = p.state.positionOld.inMeter();
double pWifi = getWIFI(observation, wifiObs, p.state.position);
const double pBaroPressure = getStairProb(p, observation.activity);
const double pStepDistance = getStepDistanceProb(pos_m, posOld_m);
//const double pBaroPressure = getBaroPressure(observation, p.state.relativePressure);
//const double pBeacon = getBEACON(observation, p.state.position);
//small checks
_assertNotNAN(pWifi, "Wifi prob is nan");
_assertNot0(pBaroPressure,"pBaroPressure is null");
const bool volatile init = observation.currentTime.sec() < 25;
//double pWiFiMod = (init) ? (std::pow(pWiFi, 0.1)) : (std::pow(pWiFi, 0.5));
//double pWiFiMod = (init) ? (std::pow(pWifi, 0.5)) : (std::pow(pWifi, 0.9));
// bad wifi? -> we have no idea where we are!
if (quality < 0.25 && !init) {
//pWifi = 1;
//p.weight = std::pow(p.weight, 0.5);
}
const double prob = pWifi * pStepDistance;// * pBaroPressure;
p.weight = prob;
#pragma omp atomic
sum += (prob);
}
if(sum == 0.0){
return 1.0;
}
return sum;
}
};
#endif // FLOGIC_H

132
filter/Structs.h Normal file
View File

@@ -0,0 +1,132 @@
#ifndef FSTRUCTS_H
#define FSTRUCTS_H
#include <Indoor/grid/Grid.h>
#include <Indoor/sensors/radio/WiFiGridNode.h>
#include <Indoor/math/Distributions.h>
#include <Indoor/sensors/radio/WiFiMeasurements.h>
#include <Indoor/sensors/beacon/BeaconMeasurements.h>
#include <Indoor/floorplan/v2/Floorplan.h>
#include <Indoor/floorplan/v2/FloorplanHelper.h>
#include <Indoor/grid/factory/v2/GridNodeImportance.h>
#include <Indoor/math/distribution/KernelDensity.h>
#include <Indoor/grid/walk/v2/GridWalker.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeading.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleSpread.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFavorZ.h>
#include <Indoor/grid/walk/v2/modules/WalkModulePreventVisited.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleActivityControl.h>
struct MyState : public WalkState, public WalkStateHeading, public WalkStateSpread, public WalkStateFavorZ {
static Floorplan::IndoorMap* map;
float relativePressure = 0.0f;
GridPoint positionOld;
float headingChangeMeasured_rad;
MyState() : WalkState(GridPoint(0,0,0)), WalkStateHeading(Heading(0), 0), positionOld(0,0,0), relativePressure(0) {;}
MyState(GridPoint pos) : WalkState(pos), WalkStateHeading(Heading(0), 0), positionOld(0,0,0), relativePressure(0) {;}
MyState& operator += (const MyState& o) {
this->position += o.position;
return *this;
}
MyState& operator /= (const double d) {
this->position /= d;
return *this;
}
MyState operator * (const double d) const {
return MyState(this->position*d);
}
bool belongsToRegion(const MyState& o) const {
return position.inMeter().getDistance(o.position.inMeter()) < 3.0;
}
float getBinValue(const int dim) const {
switch (dim) {
case 0: return this->position.x_cm / 100.0;
case 1: return this->position.y_cm / 100.0;
case 2: return this->position.z_cm / 100.0;
case 3: return this->heading.direction.getRAD();
}
throw "cant find this value within the bin";
}
};
struct MyControl {
/** turn angle (in radians) since the last transition */
float turnSinceLastTransition_rad = 0;
/** number of steps since the last transition */
int numStepsSinceLastTransition = 0;
/** current motion delta angle*/
float motionDeltaAngle_rad = 0;
/** reset the control-data after each transition */
void resetAfterTransition() {
turnSinceLastTransition_rad = 0;
numStepsSinceLastTransition = 0;
motionDeltaAngle_rad = 0;
}
};
struct MyObs {
/** relative pressure since t_0 */
float relativePressure = 0;
/** current estimated sigma for pressure sensor */
float sigmaPressure = 0.10f;
/** wifi measurements */
WiFiMeasurements wifi;
/** detected activity */
ActivityButterPressure::Activity activity = ActivityButterPressure::Activity::STAY;
/** beacon measurements */
BeaconMeasurements beacons;
/** gps measurements */
//GPSData gps;
/** time of evaluation */
Timestamp currentTime;
};
struct MyNode : public GridPoint, public GridNode, public GridNodeImportance, public WiFiGridNode<20> {
float navImportance;
float getNavImportance() const { return navImportance; }
float walkImportance;
float getWalkImportance() const { return walkImportance; }
/** empty ctor */
MyNode() : GridPoint(-1, -1, -1) {;}
/** ctor */
MyNode(const int x, const int y, const int z) : GridPoint(x,y,z) {;}
static void staticDeserialize(std::istream& inp) {
WiFiGridNode::staticDeserialize(inp);
}
static void staticSerialize(std::ostream& out) {
WiFiGridNode::staticSerialize(out);
}
};
#endif // FSTRUCTS_H

424
main.cpp Executable file
View File

@@ -0,0 +1,424 @@
#include <iostream>
#include "filter/Structs.h"
#include "filter/KLB.h"
#include "Plotti.h"
#include "filter/Logic.h"
#include "Settings.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <Indoor/sensors/radio/model/WiFiModelFactory.h>
#include <Indoor/sensors/radio/model/WiFiModelFactoryImpl.h>
//frank
//const std::string mapDir = "/mnt/data/workspaces/IPIN2016/IPIN2016/competition/maps/";
//const std::string dataDir = "/mnt/data/workspaces/IPIN2016/IPIN2016/competition/src/data/";
//toni
const std::string mapDir = "/home/toni/Documents/programme/localization/IndoorMap/maps/";
//const std::string dataDir = "/home/toni/Documents/programme/localization/DynLag/code/data/";
const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/shl/";
const std::string errorDir = dataDir + "results/";
/** describes one dataset (map, training, parameter-estimation, ...) */
struct DataSetup {
std::string map;
std::vector<std::string> training;
std::string wifiParams;
int minWifiOccurences;
VAPGrouper::Mode vapMode;
std::string grid;
};
/** all configured datasets */
struct Data {
DataSetup SecondFloorOnly = {
mapDir + "SHL_Stock_2_01.xml",
{
dataDir + "Path1_1.csv",
dataDir + "Path2_1.csv",
dataDir + "Path3_1.csv",
},
mapDir + "wifi_fp_all.dat",
40,
VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO,
mapDir + "grid_Stock_2_01.dat"
};
} data;
Floorplan::IndoorMap* MyState::map;
K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::vector<int> gtPath) {
std::vector<double> kld_data;
// load the floorplan
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
MyState::map = map;
WiFiModelLogDistCeiling WiFiModel(map);
WiFiModel.loadAPs(map, Settings::WiFiModel::TXP, Settings::WiFiModel::EXP, Settings::WiFiModel::WAF);
Assert::isFalse(WiFiModel.getAllAPs().empty(), "no AccessPoints stored within the map.xml");
//Wi-Fi model new
// WiFiModelFactory factory(map);
// WiFiModel* wifimodel= factory.loadXML("/home/toni/Documents/programme/localization/data/wifi/model/eachOptParPos_multimodel.xml");
// Assert::isFalse(wifimodel->getAllAPs().empty(), "no AccessPoints stored within the map.xml");
BeaconModelLogDistCeiling beaconModel(map);
beaconModel.loadBeaconsFromMap(map, Settings::BeaconModel::TXP, Settings::BeaconModel::EXP, Settings::BeaconModel::WAF);
//Assert::isFalse(beaconModel.getAllBeacons().empty(), "no Beacons stored within the map.xml");
// build the grid
std::ifstream inp(setup.grid, std::ifstream::binary);
Grid<MyNode> grid(20);
// grid.dat empty? -> build one and save it
if (!inp.good() || (inp.peek()&&0) || inp.eof()) {
std::ofstream onp;
onp.open(setup.grid);
GridFactory<MyNode> factory(grid);
factory.build(map);
// add node-importance
Importance::addImportance(grid);
grid.write(onp);
} else {
grid.read(inp);
}
// stamp WiFi signal-strengths onto the grid
WiFiGridEstimator::estimate(grid, WiFiModel, Settings::smartphoneAboveGround);
// reading file
Offline::FileReader fr(setup.training[numFile]);
//interpolator for ground truth
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, gtPath);
//gnuplot plot
Plotti plot;
plot.addFloors(map);
plot.addOutline(map);
plot.addStairs(map);
plot.gp << "set autoscale xy\n";
//plot.addGrid(grid);
// init ctrl and observation
MyControl ctrl;
ctrl.resetAfterTransition();
MyObs obs;
//History of all estimated particles. Used for smoothing
std::vector<std::vector<K::Particle<MyState>>> pfHistory;
std::vector<int64_t> tsHistory;
//filter init
K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInit>(new PFInit(grid)));
//K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInitFixed>(new PFInitFixed(grid, GridPoint(1120.0f, 750.0f, 740.0f), 90.0f)));
pf.setTransition(std::unique_ptr<PFTrans>(new PFTrans(grid, &ctrl)));
//pf.setTransition(std::unique_ptr<PFTransKLDSampling>(new PFTransKLDSampling(grid, &ctrl)));
//pf.setTransition(std::unique_ptr<PFTransSimple>(new PFTransSimple(grid)));
pf.setEvaluation(std::unique_ptr<PFEval>(new PFEval(WiFiModel, beaconModel, grid)));
//resampling
if(Settings::useKLB){
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingDivergence<MyState>>(new K::ParticleFilterResamplingDivergence<MyState>()));
} else {
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()));
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.4)));
//pf.setResampling(std::unique_ptr<NodeResampling<MyState, MyNode>>(new NodeResampling<MyState, MyNode>(*grid)););
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingKLD<MyState>>(new K::ParticleFilterResamplingKLD<MyState>()));
}
pf.setNEffThreshold(0.85);
//estimation
pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new K::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.5)));
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationKernelDensity<MyState, 3>>(new K::ParticleFilterEstimationKernelDensity<MyState, 3>()));
/** Smoothing Init */
K::BackwardSimulation<MyState> bf(Settings::numBSParticles);
if(Settings::Smoothing::activated){
//create the backward smoothing filter
bf.setSampler( std::unique_ptr<K::CumulativeSampler<MyState>>(new K::CumulativeSampler<MyState>()));
bool smoothing_resample = false;
//bf->setNEffThreshold(1.0);
if(smoothing_resample)
bf.setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf.setTransition(std::unique_ptr<BFTrans>( new BFTrans) );
//Smoothing estimation
bf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
//bf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new K::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
//bf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.50f)));
}
Timestamp lastTimestamp = Timestamp::fromMS(0);
StepDetection sd;
TurnDetection td;
MotionDetection md;
ActivityButterPressure act;
RelativePressure relBaro;
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
K::Statistics<float> errorStats;
K::Statistics<float> errorStatsSmoothing;
//file writing for error data
const long int t = static_cast<long int>(time(NULL));
const std::string evalDir = errorDir + folder + std::to_string(t);
if(mkdir(evalDir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH) == -1){
Assert::doThrow("Eval folder couldn't be created!");
}
std::ofstream errorFile;
errorFile.open (evalDir + "/" + std::to_string(numFile) + "_" + std::to_string(t) + ".csv");
std::ofstream errorFileSmoothing;
errorFileSmoothing.open (evalDir + "/" + std::to_string(numFile) + "_" + std::to_string(t) + "_Smoothing.csv");
// parse each sensor-value within the offline data
for (const Offline::Entry& e : fr.getEntries()) {
const Timestamp ts = Timestamp::fromMS(e.ts);
if (e.type == Offline::Sensor::WIFI) {
obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
} else if (e.type == Offline::Sensor::BEACON){
obs.beacons.entries.push_back(fr.getBeacons()[e.idx].data);
// remove to old beacon measurements
obs.beacons.removeOld(ts);
} else if (e.type == Offline::Sensor::ACC) {
if (sd.add(ts, fr.getAccelerometer()[e.idx].data)) {
++ctrl.numStepsSinceLastTransition;
}
const Offline::TS<AccelerometerData>& _acc = fr.getAccelerometer()[e.idx];
td.addAccelerometer(ts, _acc.data);
} else if (e.type == Offline::Sensor::GYRO) {
const Offline::TS<GyroscopeData>& _gyr = fr.getGyroscope()[e.idx];
const float delta_gyro = td.addGyroscope(ts, _gyr.data);
ctrl.turnSinceLastTransition_rad += delta_gyro;
} else if (e.type == Offline::Sensor::BARO) {
relBaro.add(ts, fr.getBarometer()[e.idx].data);
obs.relativePressure = relBaro.getPressureRealtiveToStart();
obs.sigmaPressure = relBaro.getSigma();
//activity recognition
obs.activity = act.add(ts, fr.getBarometer()[e.idx].data);
//activity for transition
} else if (e.type == Offline::Sensor::LIN_ACC) {
md.addLinearAcceleration(ts, fr.getLinearAcceleration()[e.idx].data);
} else if (e.type == Offline::Sensor::GRAVITY) {
md.addGravity(ts, fr.getGravity()[e.idx].data);
Eigen::Vector2f curVec = md.getCurrentMotionAxis();
ctrl.motionDeltaAngle_rad = md.getMotionChangeInRad();
}
if (ts.ms() - lastTimestamp.ms() > 500) {
/** filtering stuff */
obs.currentTime = ts;
MyState est = pf.update(&ctrl, obs);
Point3 estPos = est.position.inMeter();
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms()));
/** plotting stuff */
plot.pInterest.clear();
plot.setEst(estPos);
plot.setGT(gtPos);
plot.addEstimationNode(estPos);
plot.addParticles(pf.getParticles());
/** error calculation stuff */
float err_m = gtPos.getDistance(estPos);
errorStats.add(err_m);
errorFile << err_m << "\n";
/** smoothing stuff */
if(Settings::Smoothing::activated){
//save the current estimation for later smoothing.
pfHistory.push_back(pf.getNonResamplingParticles());
tsHistory.push_back(ts.ms());
//backward filtering
MyState estBF = est;
if(pfHistory.size() > Settings::Smoothing::lag){
bf.reset();
//use every n-th (std = 1) particle set of the history within a given lag (std = 5)
for(int i = 0; i <= Settings::Smoothing::lag; ++i){
((BFTrans*)bf.getTransition())->setCurrentTime(tsHistory[(tsHistory.size() - 1) - i]);
estBF = bf.update(pfHistory[(pfHistory.size() - 1) - i]);
}
}
Point3 estPosSmoothing = estBF.position.inMeter();
Point3 gtPosSmoothed = gtInterpolator.get(static_cast<uint64_t>(tsHistory[(tsHistory.size() - 1) - Settings::Smoothing::lag]));
//plot
plot.addEstimationNodeSmoothed(estPosSmoothing);
// error between GT and smoothing
float errSmoothing_m = gtPosSmoothed.getDistance(estPosSmoothing);
errorStatsSmoothing.add(errSmoothing_m);
errorFileSmoothing << errSmoothing_m << "\n";
}
//plot misc
plot.setTimeInMinute(static_cast<int>(ts.sec()) / 60, static_cast<int>(static_cast<int>(ts.sec())%60));
if(Settings::useKLB){
plot.gp << "set label 1002 at screen 0.04, 0.94 'KLD: " << ":" << kld_data.back() << "'\n";
}
plot.gp << "set label 1002 at screen 0.98, 0.98 'act:" << obs.activity << "'\n";
/** Draw everything */
plot.show();
usleep(10*10);
lastTimestamp = ts;
// reset control
ctrl.resetAfterTransition();
}
}
errorFile.close();
std::cout << "Statistical Analysis Filtering: " << std::endl;
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << " Std: " << errorStats.getStdDev() << std::endl;
std::cout << "Statistical Analysis Smoothing: " << std::endl;
std::cout << "Median: " << errorStatsSmoothing.getMedian() << " Average: " << errorStatsSmoothing.getAvg() << " Std: " << errorStatsSmoothing.getStdDev() << std::endl;
//Write the current plotti buffer into file
std::ofstream plotFile;
plotFile.open(evalDir + "/plot_" + std::to_string(numFile) + "_" + std::to_string(t) + ".gp");
plot.saveToFile(plotFile);
plotFile.close();
for(int i = 0; i < map->floors.size(); ++i){
plot.printSingleFloor(evalDir + "/image" + std::to_string(numFile) + "_" + std::to_string(t), i);
plot.show();
usleep(10*10);
}
plot.printSideView(evalDir + "/image" + std::to_string(numFile) + "_" + std::to_string(t), 90);
plot.show();
plot.printSideView(evalDir + "/image" + std::to_string(numFile) + "_" + std::to_string(t), 0);
plot.show();
plot.printOverview(evalDir + "/image" + std::to_string(numFile) + "_" + std::to_string(t));
plot.show();
/** Draw KLB */
K::Gnuplot gp;
K::GnuplotPlot plotkld;
K::GnuplotPlotElementLines lines;
if(Settings::useKLB){
std::string path = evalDir + "/image" + std::to_string(numFile) + "_" + std::to_string(t);
gp << "set terminal png size 1280,720\n";
gp << "set output '" << path << "_shennendistance.png'\n";
for(int i=0; i < kld_data.size()-1; ++i){
K::GnuplotPoint2 p1(i, kld_data[i]);
K::GnuplotPoint2 p2(i+1, kld_data[i+1]);
lines.addSegment(p1, p2);
}
plotkld.add(&lines);
gp.draw(plotkld);
gp.flush();
}
std::cout << "finished" << std::endl;
sleep(1);
return errorStats;
}
int main(int argc, char** argv) {
K::Statistics<float> statsAVG;
K::Statistics<float> statsMedian;
K::Statistics<float> statsSTD;
K::Statistics<float> statsQuantil;
K::Statistics<float> tmp;
for(int i = 0; i < 1; ++i){
tmp = run(data.SecondFloorOnly, 2, "Wifi-Dongle-Test", Settings::Path_DongleTest::path3);
statsMedian.add(tmp.getMedian());
statsAVG.add(tmp.getAvg());
statsSTD.add(tmp.getStdDev());
statsQuantil.add(tmp.getQuantile(0.75));
std::cout << "Iteration " << i << " completed" << std::endl;;
}
std::cout << "==========================================================" << std::endl;
std::cout << "Average of all statistical data: " << std::endl;
std::cout << "Median: " << statsMedian.getAvg() << std::endl;
std::cout << "Average: " << statsAVG.getAvg() << std::endl;
std::cout << "Standard Deviation: " << statsSTD.getAvg() << std::endl;
std::cout << "75 Quantil: " << statsQuantil.getAvg() << std::endl;
std::cout << "==========================================================" << std::endl;
//EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS
std::ofstream finalStatisticFile;
finalStatisticFile.open (errorDir + "/tmp.csv");
finalStatisticFile << "Average of all statistical data: \n";
finalStatisticFile << "Median: " << statsMedian.getAvg() << "\n";
finalStatisticFile << "Average: " << statsAVG.getAvg() << "\n";
finalStatisticFile << "Standard Deviation: " << statsSTD.getAvg() << "\n";
finalStatisticFile << "75 Quantil: " << statsQuantil.getAvg() << "\n";
finalStatisticFile.close();
//EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS EDIT THIS
}