added new helper methods/classes (e.g. for heading) new test cases optimize the dijkstra cleanups/refactoring added timed-benchmarks to the log many more...
180 lines
4.5 KiB
C++
180 lines
4.5 KiB
C++
#ifndef GRIDIMPORTANCE_H
|
|
#define GRIDIMPORTANCE_H
|
|
|
|
#include "../Grid.h"
|
|
#include "GridFactory.h"
|
|
#include "../../misc/KNN.h"
|
|
#include "../../misc/KNNArray.h"
|
|
#include "../../math/MiniMat2.h"
|
|
|
|
#include "../../misc/Debug.h"
|
|
#include "../../nav/dijkstra/Dijkstra.h"
|
|
#include "../../nav/dijkstra/DijkstraPath.h"
|
|
|
|
#include <KLib/math/distribution/Normal.h>
|
|
|
|
|
|
|
|
|
|
/**
|
|
* add an importance factor to each node within the grid.
|
|
* the importance is calculated based on several facts:
|
|
* - nodes that belong to a door or narrow path are more important
|
|
* - nodes directly located at walls are less important
|
|
*/
|
|
class GridImportance {
|
|
|
|
private:
|
|
|
|
static constexpr const char* name = "GridImp";
|
|
|
|
public:
|
|
|
|
/** attach importance-factors to the grid */
|
|
template <int gridSize_cm, typename T> void addImportance(Grid<gridSize_cm, T>& g, const float z_cm) {
|
|
|
|
Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm));
|
|
|
|
// get an inverted version of the grid
|
|
Grid<gridSize_cm, T> inv;
|
|
GridFactory<gridSize_cm, T> fac(inv);
|
|
fac.addInverted(g, z_cm);
|
|
|
|
// construct KNN search
|
|
KNN<Grid<gridSize_cm, T>, 3> knn(inv);
|
|
|
|
// the number of neighbors to use
|
|
static constexpr int numNeighbors = 8;
|
|
|
|
for (int idx = 0; idx < g.getNumNodes(); ++idx) {
|
|
|
|
// process each point
|
|
T& n1 = (T&) g[idx];
|
|
|
|
// get the 10 nearest neighbors and their distance
|
|
size_t indices[numNeighbors];
|
|
float squaredDist[numNeighbors];
|
|
float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm};
|
|
knn.get(point, numNeighbors, indices, squaredDist);
|
|
|
|
// get the neighbors
|
|
std::vector<T*> neighbors;
|
|
for (int i = 0; i < numNeighbors; ++i) {
|
|
neighbors.push_back(&inv[indices[i]]);
|
|
}
|
|
|
|
addImportance(n1, Units::cmToM(std::sqrt(squaredDist[0])) );
|
|
addDoor(n1, neighbors);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/** attach importance-factors to the grid */
|
|
template <int gridSize_cm, typename T> void addDistanceToTarget(Grid<gridSize_cm, T>& g, Dijkstra<T>& d) {
|
|
|
|
//Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm));
|
|
|
|
for (T& node : g) {
|
|
|
|
DijkstraNode<T>* dn = d.getNode(node);
|
|
if (dn != nullptr) {
|
|
node.distToTarget = dn->cumWeight / 2000;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
template <int gridSize_cm, typename T> void addImportance(Grid<gridSize_cm, T>& g, DijkstraNode<T>* start, DijkstraNode<T>* end) {
|
|
|
|
// routing path
|
|
DijkstraPath<T> path(end, start);
|
|
|
|
// knn search within the path
|
|
KNN<DijkstraPath<T>, 3> knn(path);
|
|
|
|
// update each node from the grid using its distance to the path
|
|
for (T& n : g) {
|
|
|
|
//const int idx = knn.getNearestIndex( {n.x_cm, n.y_cm, n.z_cm} );
|
|
//T& node = g[idx];
|
|
const float dist_cm = knn.getNearestDistance( {n.x_cm, n.y_cm, n.z_cm} );
|
|
const float dist_m = Units::cmToM(dist_cm);
|
|
n.impPath = 1.0 + K::NormalDistribution::getProbability(0, 1.0, dist_m) * 0.8;
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
/** add importance to nSrc if it is part of a door */
|
|
template <typename T> void addDoor( T& nSrc, std::vector<T*> neighbors ) {
|
|
|
|
MiniMat2 m;
|
|
Point3 center = nSrc;
|
|
|
|
// calculate the centroid of the nSrc's nearest-neighbors
|
|
Point3 centroid(0,0,0);
|
|
for (const T* n : neighbors) {
|
|
centroid = centroid + (Point3)*n;
|
|
}
|
|
centroid /= neighbors.size();
|
|
|
|
// if nSrc is too far from the centroid, this does not make sense
|
|
if ((centroid-center).length() > 60) {return;}
|
|
|
|
// build covariance of the nearest-neighbors
|
|
int used = 0;
|
|
for (const T* n : neighbors) {
|
|
Point3 d = (Point3)*n - center;
|
|
if (d.length() > 100) {continue;} // radius search
|
|
m.addSquared(d.x, d.y);
|
|
++used;
|
|
}
|
|
|
|
// we need at least two points for the covariance
|
|
if (used < 2) {return;}
|
|
|
|
// check eigenvalues
|
|
MiniMat2::EV ev = m.getEigenvalues();
|
|
|
|
// ensure e1 > e2
|
|
if (ev.e1 < ev.e2) {std::swap(ev.e1, ev.e2);}
|
|
|
|
// door?
|
|
if ((ev.e2/ev.e1) < 0.15) { nSrc.imp *= 1.3; }
|
|
|
|
}
|
|
|
|
/** get the importance of the given node depending on its nearest wall */
|
|
template <typename T> void addImportance(T& nSrc, float dist_m) {
|
|
|
|
// avoid sticking too close to walls (unlikely)
|
|
static K::NormalDistribution avoidWalls(0.0, 0.3);
|
|
|
|
// favour walking near walls (likely)
|
|
static K::NormalDistribution sticToWalls(0.9, 0.5);
|
|
|
|
// favour walking far away (likely)
|
|
static K::NormalDistribution farAway(2.2, 0.5);
|
|
if (dist_m > 2.0) {dist_m = 2.0;}
|
|
|
|
// overall importance
|
|
nSrc.imp *= 1.0
|
|
- avoidWalls.getProbability(dist_m) * 0.35 // avoid walls
|
|
+ sticToWalls.getProbability(dist_m) * 0.15 // walk near walls
|
|
+ farAway.getProbability(dist_m) * 0.20 // walk in the middle
|
|
;
|
|
|
|
|
|
}
|
|
|
|
};
|
|
|
|
#endif // GRIDIMPORTANCE_H
|