#ifndef GRIDIMPORTANCE_H #define GRIDIMPORTANCE_H #include "../Grid.h" #include "GridFactory.h" #include "../../misc/KNN.h" #include "../../misc/KNNArray.h" #include "../../math/MiniMat2.h" #include "../../misc/Debug.h" #include "../../nav/dijkstra/Dijkstra.h" #include "../../nav/dijkstra/DijkstraPath.h" #include /** * add an importance factor to each node within the grid. * the importance is calculated based on several facts: * - nodes that belong to a door or narrow path are more important * - nodes directly located at walls are less important */ class GridImportance { private: static constexpr const char* name = "GridImp"; public: /** attach importance-factors to the grid */ template void addImportance(Grid& g, const float z_cm) { Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm)); // get an inverted version of the grid Grid inv; GridFactory fac(inv); fac.addInverted(g, z_cm); // construct KNN search KNN, 3> knn(inv); // the number of neighbors to use static constexpr int numNeighbors = 8; for (int idx = 0; idx < g.getNumNodes(); ++idx) { // process each point T& n1 = (T&) g[idx]; // get the 10 nearest neighbors and their distance size_t indices[numNeighbors]; float squaredDist[numNeighbors]; float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm}; knn.get(point, numNeighbors, indices, squaredDist); // get the neighbors std::vector neighbors; for (int i = 0; i < numNeighbors; ++i) { neighbors.push_back(&inv[indices[i]]); } addImportance(n1, Units::cmToM(std::sqrt(squaredDist[0])) ); addDoor(n1, neighbors); } } /** attach importance-factors to the grid */ template void addDistanceToTarget(Grid& g, Dijkstra& d) { //Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm)); for (T& node : g) { DijkstraNode* dn = d.getNode(node); if (dn != nullptr) { node.distToTarget = dn->cumWeight / 2000; } } } template void addImportance(Grid& g, DijkstraNode* start, DijkstraNode* end) { // routing path DijkstraPath path(end, start); // knn search within the path KNN, 3> knn(path); // update each node from the grid using its distance to the path for (T& n : g) { //const int idx = knn.getNearestIndex( {n.x_cm, n.y_cm, n.z_cm} ); //T& node = g[idx]; const float dist_cm = knn.getNearestDistance( {n.x_cm, n.y_cm, n.z_cm} ); const float dist_m = Units::cmToM(dist_cm); n.impPath = 1.0 + K::NormalDistribution::getProbability(0, 1.0, dist_m) * 0.8; } } /** add importance to nSrc if it is part of a door */ template void addDoor( T& nSrc, std::vector neighbors ) { MiniMat2 m; Point3 center = nSrc; // calculate the centroid of the nSrc's nearest-neighbors Point3 centroid(0,0,0); for (const T* n : neighbors) { centroid = centroid + (Point3)*n; } centroid /= neighbors.size(); // if nSrc is too far from the centroid, this does not make sense if ((centroid-center).length() > 60) {return;} // build covariance of the nearest-neighbors int used = 0; for (const T* n : neighbors) { Point3 d = (Point3)*n - center; if (d.length() > 100) {continue;} // radius search m.addSquared(d.x, d.y); ++used; } // we need at least two points for the covariance if (used < 2) {return;} // check eigenvalues MiniMat2::EV ev = m.getEigenvalues(); // ensure e1 > e2 if (ev.e1 < ev.e2) {std::swap(ev.e1, ev.e2);} // door? if ((ev.e2/ev.e1) < 0.15) { nSrc.imp *= 1.3; } } /** get the importance of the given node depending on its nearest wall */ template void addImportance(T& nSrc, float dist_m) { // avoid sticking too close to walls (unlikely) static K::NormalDistribution avoidWalls(0.0, 0.3); // favour walking near walls (likely) static K::NormalDistribution sticToWalls(0.9, 0.5); // favour walking far away (likely) static K::NormalDistribution farAway(2.2, 0.5); if (dist_m > 2.0) {dist_m = 2.0;} // overall importance nSrc.imp *= 1.0 - avoidWalls.getProbability(dist_m) * 0.35 // avoid walls + sticToWalls.getProbability(dist_m) * 0.15 // walk near walls + farAway.getProbability(dist_m) * 0.20 // walk in the middle ; } }; #endif // GRIDIMPORTANCE_H