worked on fir/iir filters

This commit is contained in:
2018-08-06 18:33:17 +02:00
parent 327b580b69
commit d6ac8a72ca
5 changed files with 216 additions and 442 deletions

View File

@@ -181,8 +181,16 @@ private:
}
// https://dsp.stackexchange.com/questions/4693/fir-filter-gain
static void normalizeAC(std::vector<std::complex<float>>& kernel, const float freq) {
throw std::runtime_error("TODO");
static void normalizeAC(std::vector<std::complex<float>>& kernel, const float freq, const float sRate) {
// std::complex<float> sum;
// for (size_t i = 0; i < kernel.size(); ++i) {
// const float t = (float) i / sRate;
// const float v = std::sin(t*freq);
// }
// for (auto f : kernel) {sum += f * sin;}
// for (auto& f : kernel) {f /= sum;}
throw std::runtime_error("todo");
}
/** build a lowpass filter kernel */

View File

@@ -35,6 +35,16 @@ namespace FIR {
this->kernel = kernel;
}
const Kernel& getKernel() const {
return this->kernel;
}
void prefill(float val) {
for (size_t i = 0; i < (kernel.size()-1)/2; ++i) {
append(val);
}
}
/** filter the given incoming real data */
DataVec append(const DataVec& newData) {
// append to local buffer (as we need some history)
@@ -56,10 +66,11 @@ namespace FIR {
DataVec processLocalBuffer() {
// sanity check
Assert::isNot0(kernel.size(), "FIRComplex:: kernel not yet configured!");
Assert::isNot0(kernel.size(), "FIR::Real::Filter kernel not yet configured!");
// number of processable elements (due to filter size)
const int processable = data.size() - kernel.size() + 1 - kernel.size()/2;
//const int processable = data.size() - kernel.size() + 1 - kernel.size()/2;
const int processable = data.size() - kernel.size();
// nothing to-do?
if (processable <= 0) {return DataVec();}

View File

@@ -46,6 +46,14 @@ namespace IIR {
}
float getA0() {return 1;}
float getA1() {return a1a0;}
float getA2() {return a2a0;}
float getB0() {return b0a0;}
float getB1() {return b1a0;}
float getB2() {return b2a0;}
void preFill(const Scalar s) {
for (int i = 0; i < 100; ++i) {
filter(s);
@@ -67,12 +75,14 @@ namespace IIR {
}
/** configure the filter as low-pass. freqFact between ]0;0.5[ */
void setLowPass( double freqFact, const float octaves ) {
//void setLowPass( double freqFact, const float octaves ) {
void setLowPass( double freqFact, const float Q ) {
sanityCheck(freqFact);
double w0 = 2.0 * M_PI * freqFact;
double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
//double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double alpha = sin(w0)/(2*Q);
double b0 = (1.0 - cos(w0))/2.0;
double b1 = 1.0 - cos(w0);
@@ -94,46 +104,48 @@ namespace IIR {
//http://dspwiki.com/index.php?title=Lowpass_Resonant_Biquad_Filter
//http://www.opensource.apple.com/source/WebCore/WebCore-7536.26.14/platform/audio/Biquad.cpp
/**
* configure as low-pass filter with resonance
* @param freqFact the frequency factor between ]0;0.5[
* @param res
*/
void setLowPassResonance( double freqFact, float res ) {
// //http://dspwiki.com/index.php?title=Lowpass_Resonant_Biquad_Filter
// //http://www.opensource.apple.com/source/WebCore/WebCore-7536.26.14/platform/audio/Biquad.cpp
// /**
// * configure as low-pass filter with resonance
// * @param freqFact the frequency factor between ]0;0.5[
// * @param res
// */
// void setLowPassResonance( double freqFact, float res ) {
sanityCheck(freqFact);
// sanityCheck(freqFact);
res *= 10;
// res *= 10;
double g = pow(10.0, 0.05 * res);
double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
// double g = pow(10.0, 0.05 * res);
// double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
double theta = M_PI * freqFact;
double sn = 0.5 * d * sin(theta);
double beta = 0.5 * (1 - sn) / (1 + sn);
double gamma = (0.5 + beta) * cos(theta);
double alpha = 0.25 * (0.5 + beta - gamma);
// double theta = M_PI * freqFact;
// double sn = 0.5 * d * sin(theta);
// double beta = 0.5 * (1 - sn) / (1 + sn);
// double gamma = (0.5 + beta) * cos(theta);
// double alpha = 0.25 * (0.5 + beta - gamma);
double a0 = 1.0;
double b0 = 2.0 * alpha;
double b1 = 2.0 * 2.0 * alpha;
double b2 = 2.0 * alpha;
double a1 = 2.0 * -gamma;
double a2 = 2.0 * beta;
// double a0 = 1.0;
// double b0 = 2.0 * alpha;
// double b1 = 2.0 * 2.0 * alpha;
// double b2 = 2.0 * alpha;
// double a1 = 2.0 * -gamma;
// double a2 = 2.0 * beta;
setValues(a0, a1, a2, b0, b1, b2);
// setValues(a0, a1, a2, b0, b1, b2);
}
// }
/** configure the filter as high-pass. freqFact between ]0;0.5[ */
void setHighPass( double freqFact, const float octaves ) {
//void setHighPass( double freqFact, const float octaves ) {
void setHighPass( double freqFact, const float Q ) {
sanityCheck(freqFact);
double w0 = 2.0 * M_PI * freqFact;
double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
//double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double alpha = sin(w0)/(2*Q);
double b0 = (1.0 + cos(w0))/2.0;
double b1 = -(1.0 + cos(w0));
@@ -153,17 +165,21 @@ namespace IIR {
}
/** configure the filter as band-pass. freqFact between ]0;0.5[ */
void setBandPass( double freqFact, const float octaves ) {
//void setBandPass( double freqFact, const float octaves ) {
void setBandPass( double freqFact, const float Q ) {
sanityCheck(freqFact);
//double w0 = 2 * K_PI * / 2 / freqFact;
double w0 = 2.0 * M_PI * freqFact;
double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
//double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double alpha = sin(w0)/(2*Q);
double b0 = sin(w0)/2.0;
// constant 0dB peak gain
double b0 = alpha;
double b1 = 0.0;
double b2 = -sin(w0)/2.0;
double b2 = -alpha;
double a0 = 1.0 + alpha;
double a1 = -2.0*cos(w0);
double a2 = 1.0 - alpha;
@@ -179,108 +195,112 @@ namespace IIR {
}
/** configure the filter as all-pass. freqFact between ]0;0.5[ */
void setAllPass( double freqFact, const float octaves ) {
// /** configure the filter as all-pass. freqFact between ]0;0.5[ */
// void setAllPass( double freqFact, const float octaves ) {
sanityCheck(freqFact);
// sanityCheck(freqFact);
double w0 = 2.0 * M_PI * freqFact;
double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double b0 = 1 - alpha;
double b1 = -2*cos(w0);
double b2 = 1 + alpha;
double a0 = 1 + alpha;
double a1 = -2*cos(w0);
double a2 = 1 - alpha;
// double b0 = 1 - alpha;
// double b1 = -2*cos(w0);
// double b2 = 1 + alpha;
// double a0 = 1 + alpha;
// double a1 = -2*cos(w0);
// double a2 = 1 - alpha;
setValues(a0, a1, a2, b0, b1, b2);
// setValues(a0, a1, a2, b0, b1, b2);
}
// }
/** configure the filter as all-pass */
void setAllPass( const float freq, const float octaves, const float sRate ) {
double freqFact = double(freq) / double(sRate);
setAllPass(freqFact, octaves);
}
/** configure as notch filter. freqFact between ]0;0.5[ */
void setNotch( double freqFact, const float octaves ) {
sanityCheck(freqFact);
double w0 = 2.0 * M_PI * freqFact;
double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double b0 = 1.0;
double b1 = -2.0*cos(w0);
double b2 = 1.0;
double a0 = 1.0 + alpha;
double a1 = -2.0*cos(w0);
double a2 = 1.0 - alpha;
setValues(a0, a1, a2, b0, b1, b2);
}
/** configure as notch filter */
void setNotch( const float freq, const float octaves, const float sRate ) {
double freqFact = double(freq) / double(sRate);
setNotch(freqFact, octaves);
}
/** configure the filter as low-shelf. increase all aplitudes below freq? freqFact between ]0;0.5[ */
void setLowShelf( double freqFact, const float octaves, const float gain ) {
sanityCheck(freqFact);
double A = sqrt( pow(10, (gain/20.0)) );
double w0 = 2.0 * M_PI * freqFact;
double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double b0 = A*( (A+1.0) - (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha );
double b1 = 2.0*A*( (A-1.0) - (A+1.0)*cos(w0) );
double b2 = A*( (A+1.0) - (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha );
double a0 = (A+1.0) + (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha;
double a1 = -2.0*( (A-1.0) + (A+1.0)*cos(w0) );
double a2 = (A+1.0) + (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha;
setValues(a0, a1, a2, b0, b1, b2);
}
/** configure the filter as low-shelf. increase all aplitudes below freq? */
void setLowShelf( const float freq, const float octaves, const float gain, const float sRate ) {
double freqFact = double(freq) / double(sRate);
setLowShelf(freqFact, octaves, gain);
}
/** configure the filter as high-shelf. increase all amplitues above freq? freqFact between ]0;0.5[ */
void setHighShelf( double freqFact, const float octaves, const float gain ) {
sanityCheck(freqFact);
double A = sqrt( pow(10, (gain/20.0)) );
double w0 = 2.0 * M_PI * freqFact;
double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double b0 = A*( (A+1.0) + (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha );
double b1 = -2.0*A*( (A-1.0) + (A+1.0)*cos(w0) );
double b2 = A*( (A+1.0) + (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha );
double a0 = (A+1.0) - (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha;
double a1 = 2.0*( (A-1.0) - (A+1.0)*cos(w0) );
double a2 = (A+1.0) - (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha;
setValues(a0, a1, a2, b0, b1, b2);
}
// /** configure the filter as all-pass */
// void setAllPass( const float freq, const float octaves, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setAllPass(freqFact, octaves);
// }
/** configure the filter as high-shelf. increase all amplitues above freq? */
void setHighShelf( const float freq, const float octaves, const float gain, const float sRate ) {
double freqFact = double(freq) / double(sRate);
setHighShelf(freqFact, octaves, gain);
}
// /** configure as notch filter. freqFact between ]0;0.5[ */
// //void setNotch( double freqFact, const float octaves ) {
// void setNotch( double freqFact, const float Q ) {
// sanityCheck(freqFact);
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double b0 = 1.0;
// double b1 = -2.0*cos(w0);
// double b2 = 1.0;
// double a0 = 1.0 + alpha;
// double a1 = -2.0*cos(w0);
// double a2 = 1.0 - alpha;
// setValues(a0, a1, a2, b0, b1, b2);
// }
// /** configure as notch filter */
// void setNotch( const float freq, const float octaves, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setNotch(freqFact, octaves);
// }
// /** configure the filter as low-shelf. increase all aplitudes below freq? freqFact between ]0;0.5[ */
// void setLowShelf( double freqFact, const float octaves, const float gain ) {
// sanityCheck(freqFact);
// double A = sqrt( pow(10, (gain/20.0)) );
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double b0 = A*( (A+1.0) - (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha );
// double b1 = 2.0*A*( (A-1.0) - (A+1.0)*cos(w0) );
// double b2 = A*( (A+1.0) - (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha );
// double a0 = (A+1.0) + (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha;
// double a1 = -2.0*( (A-1.0) + (A+1.0)*cos(w0) );
// double a2 = (A+1.0) + (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha;
// setValues(a0, a1, a2, b0, b1, b2);
// }
// /** configure the filter as low-shelf. increase all aplitudes below freq? */
// void setLowShelf( const float freq, const float octaves, const float gain, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setLowShelf(freqFact, octaves, gain);
// }
// /** configure the filter as high-shelf. increase all amplitues above freq? freqFact between ]0;0.5[ */
// void setHighShelf( double freqFact, const float octaves, const float gain ) {
// sanityCheck(freqFact);
// double A = sqrt( pow(10, (gain/20.0)) );
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double b0 = A*( (A+1.0) + (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha );
// double b1 = -2.0*A*( (A-1.0) + (A+1.0)*cos(w0) );
// double b2 = A*( (A+1.0) + (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha );
// double a0 = (A+1.0) - (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha;
// double a1 = 2.0*( (A-1.0) - (A+1.0)*cos(w0) );
// double a2 = (A+1.0) - (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha;
// setValues(a0, a1, a2, b0, b1, b2);
// }
// /** configure the filter as high-shelf. increase all amplitues above freq? */
// void setHighShelf( const float freq, const float octaves, const float gain, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setHighShelf(freqFact, octaves, gain);
// }
protected:

View File

@@ -21,61 +21,6 @@
*/
class PoseDetection {
// struct LongTermTriggerAverage {
// Eigen::Vector3f sum;
// int cnt;
// XYZ() {
// reset();
// }
// /** add the given accelerometer reading */
// void addAcc(const Timestamp ts, const AccelerometerData& acc) {
// // did NOT improve the result for every smartphone (only some)
// //const float deltaMag = std::abs(acc.magnitude() - 9.81);
// //if (deltaMag > 5.0) {return;}
// // adjust sum and count (for average calculation)
// Eigen::Vector3f vec; vec << acc.x, acc.y, acc.z;
// sum += vec;
// ++cnt;
// }
// AccelerometerData getAvg() const {
// return AccelerometerData(sum(0), sum(1), sum(2)) / cnt;
// }
// /** get the current rotation matrix estimation */
// Eigen::Matrix3f get() const {
// // get the current acceleromter average
// const Eigen::Vector3f avg = sum / cnt;
// // rotate average accelerometer into (0,0,1)
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
// const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
// // just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
// return rotMat;
// }
// /** reset the current sum etc. */
// void reset() {
// cnt = 0;
// sum = Eigen::Vector3f::Zero();
// }
// };
/** live-pose-estimation using moving average of the smartphone's accelerometer */
struct EstMovingAverage {
@@ -127,52 +72,52 @@ class PoseDetection {
};
/** live-pose-estimation using moving median of the smartphone's accelerometer */
struct EstMovingMedian {
// /** live-pose-estimation using moving median of the smartphone's accelerometer */
// struct EstMovingMedian {
// median the accelerometer
MovingMedianTS<float> medianX;
MovingMedianTS<float> medianY;
MovingMedianTS<float> medianZ;
// // median the accelerometer
// MovingMedianTS<float> medianX;
// MovingMedianTS<float> medianY;
// MovingMedianTS<float> medianZ;
EstMovingMedian(const Timestamp window) :
medianX(window), medianY(window), medianZ(window) {
// EstMovingMedian(const Timestamp window) :
// medianX(window), medianY(window), medianZ(window) {
// start approximately
addAcc(Timestamp(), AccelerometerData(0,0,9.81));
// // start approximately
// addAcc(Timestamp(), AccelerometerData(0,0,9.81));
}
// }
/** add the given accelerometer reading */
void addAcc(const Timestamp ts, const AccelerometerData& acc) {
medianX.add(ts, acc.x);
medianY.add(ts, acc.y);
medianZ.add(ts, acc.z);
}
// /** add the given accelerometer reading */
// void addAcc(const Timestamp ts, const AccelerometerData& acc) {
// medianX.add(ts, acc.x);
// medianY.add(ts, acc.y);
// medianZ.add(ts, acc.z);
// }
AccelerometerData getBase() const {
return AccelerometerData(medianX.get(), medianY.get(), medianZ.get());
}
// AccelerometerData getBase() const {
// return AccelerometerData(medianX.get(), medianY.get(), medianZ.get());
// }
/** get the current rotation matrix estimation */
//Eigen::Matrix3f get() const {
Matrix3 get() const {
// /** get the current rotation matrix estimation */
// //Eigen::Matrix3f get() const {
// Matrix3 get() const {
const Vector3 base(medianX.get(), medianY.get(), medianZ.get());
// const Vector3 base(medianX.get(), medianY.get(), medianZ.get());
// rotate average-accelerometer into (0,0,1)
const Vector3 zAxis(0,0,1);
const Matrix3 rotMat = getRotationMatrix(base.normalized(), zAxis);
// // rotate average-accelerometer into (0,0,1)
// const Vector3 zAxis(0,0,1);
// const Matrix3 rotMat = getRotationMatrix(base.normalized(), zAxis);
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
const Vector3 aligned = (rotMat * base).normalized();
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
// // just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
// const Vector3 aligned = (rotMat * base).normalized();
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
return rotMat;
// return rotMat;
}
// }
};
// };
@@ -202,11 +147,6 @@ public:
;
}
// /** get the smartphone's rotation matrix */
// Eigen::Matrix3f getMatrix() const {
// return orientation.rotationMatrix;
// }
/** get the smartphone's rotation matrix */
const Matrix3& getMatrix() const {
return orientation.rotationMatrix;
@@ -236,22 +176,6 @@ public:
public:
// /** get a matrix that rotates the vector "from" into the vector "to" */
// static Eigen::Matrix3f getRotationMatrix(const Eigen::Vector3f& from, const Eigen::Vector3f to) {
// // http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
// const Eigen::Vector3f x = from.cross(to) / from.cross(to).norm();
// const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
// Eigen::Matrix3f A; A <<
// 0, -x(2), x(1),
// x(2), 0, -x(0),
// -x(1), x(0), 0;
// return Eigen::Matrix3f::Identity() + (std::sin(angle) * A) + ((1-std::cos(angle)) * (A*A));
// }
/** get a matrix that rotates the vector "from" into the vector "to" */
static Matrix3 getRotationMatrix(const Vector3& from, const Vector3 to) {
@@ -271,208 +195,6 @@ public:
}
// /** get a rotation matrix for the given x,y,z rotation (in radians) */
// static Eigen::Matrix3f getRotation(const float x, const float y, const float z) {
// const float g = x; const float b = y; const float a = z;
// const float a11 = std::cos(a)*std::cos(b);
// const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g);
// const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g);
// const float a21 = std::sin(a)*std::cos(b);
// const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g);
// const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g);
// const float a31 = -std::sin(b);
// const float a32 = std::cos(b)*std::sin(g);
// const float a33 = std::cos(b)*std::cos(g);
// Eigen::Matrix3f m;
// m <<
// a11, a12, a13,
// a21, a22, a23,
// a31, a32, a33;
// ;
// return m;
// }
// /** estimate the smartphones current holding position */
// void estimateHolding2() {
// // z-axis points through the device and is the axis we are interested in
// // http://www.kircherelectronics.com/blog/index.php/11-android/sensors/15-android-gyroscope-basics
// avgAcc = Eigen::Vector3f::Zero();
// for (const AccelerometerData& acc : accData) {
// //for (const GyroscopeData& acc : gyroData) {
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
// // Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
// avgAcc += vec;
// }
// //avgAcc /= accData.size();
// avgAcc = avgAcc.normalized();
// Eigen::Vector3f rev; rev << 0,0,1;
// rotMat = getRotationMatrix(avgAcc, rev);
// //Assert::isTrue(avgAcc(2) > avgAcc(0), "z is not the gravity axis");
// //Assert::isTrue(avgAcc(2) > avgAcc(1), "z is not the gravity axis");
//// Eigen::Vector3f re = rotMat * avgAcc;
//// Eigen::Vector3f diff = rev-re;
//// Assert::isTrue(diff.norm() < 0.001, "rotation error");
// }
// struct RotationMatrixEstimationUsingAccAngle {
// Eigen::Vector3f lastAvg;
// Eigen::Vector3f avg;
// int cnt;
// RotationMatrixEstimationUsingAccAngle() {
// reset();
// }
// void add(const float x, const float y, const float z) {
// Eigen::Vector3f vec; vec << x,y,z;
// avg += vec;
// ++cnt;
// }
// void reset() {
// cnt = 0;
// avg = Eigen::Vector3f::Zero();
// }
// Eigen::Matrix3f get() {
// // http://www.hobbytronics.co.uk/accelerometer-info
// avg /= cnt;
// lastAvg = avg;
// //const float mag = avg.norm();
// const float baseX = 0;
// const float baseY = 0;
// const float baseZ = 0; // mag?
// const float x = avg(0) - baseX;
// const float y = avg(1) - baseY;
// const float z = avg(2) - baseZ;
// const float ax = std::atan( x / (std::sqrt(y*y + z*z)) );
// const float ay = std::atan( y / (std::sqrt(x*x + z*z)) );
// const Eigen::Matrix3f rotMat = getRotation(ay, -ax, 0); // TODO -ax or +ax?
// // sanity check
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
// // int i = 0; (void) i;
// reset();
// return rotMat;
// }
// } est;
// struct PCA {
// Eigen::Vector3f avg;
// Eigen::Vector3f lastAvg;
// Eigen::Matrix3f covar;
// int cnt = 0;
// PCA() {
// reset();
// }
// void add(const float x, const float y, const float z) {
// Eigen::Vector3f vec; vec << x,y,z;
// avg += vec;
// covar += vec*vec.transpose();
// ++cnt;
// }
// Eigen::Matrix3f get() {
// avg /= cnt;
// covar /= cnt;
// lastAvg = avg;
// std::cout << avg << std::endl;
// Eigen::Matrix3f Q = covar;// - avg*avg.transpose();
// for (int i = 0; i < 9; ++i) {Q(i) = std::abs(Q(i));}
// Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver(Q);
// solver.eigenvalues();
// solver.eigenvectors();
// const auto eval = solver.eigenvalues();
// const auto evec = solver.eigenvectors();
// Assert::isTrue(eval(2) > eval(1) && eval(1) > eval(0), "eigenvalues are not sorted!");
// Eigen::Matrix3f rotMat;
// rotMat.col(0) = evec.col(0);
// rotMat.col(1) = evec.col(1);
// rotMat.col(2) = evec.col(2); // 0,0,1 (z-axis) belongs to the strongest eigenvalue
// rotMat.transposeInPlace();
// //Eigen::Vector3f gy; gy << 0, 30, 30;
// Eigen::Vector3f avg1 = rotMat * avg;
// int i = 0; (void) i;
// reset();
// return rotMat;
// }
// void reset() {
// cnt = 0;
// avg = Eigen::Vector3f::Zero();
// covar = Eigen::Matrix3f::Zero();
// }
// } pca1;
// /** estimate the smartphones current holding position */
// void estimateHolding() {
// Eigen::Vector3f avg = Eigen::Vector3f::Zero();
// Eigen::Matrix3f covar = Eigen::Matrix3f::Zero();
// for (const AccelerometerData& acc : accData) {
//// for (const GyroscopeData& acc : gyroData) {
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
//// Eigen::Vector3f vec; vec << (acc.x), (acc.y), (acc.z);
// avg += vec;
// covar += vec * vec.transpose();
// }
// avg /= accData.size(); // TODO
// covar /= accData.size(); //TODO
// avgAcc = avg.normalized();
};

View File

@@ -111,6 +111,19 @@
}
}
// // update un-rotated 3D smartphone model
// for (size_t i = 0; i < pose.size(); ++i) {
// K::GnuplotObjectPolygon* gp = (K::GnuplotObjectPolygon*) plotPose.getObjects().get(i+1); gp->clear();
// for (const std::vector<float>& pts : pose[i]) {
// const Vector3 vec1(pts[0], pts[1], pts[2]);
// const Vector3 vec2 = vec1 - Vector3(0.5, 0.5, 0.5); // center cube at 0,0,0
// const Vector3 vec3 = vec2 * Vector3(7, 15, 1); // stretch cube
// const Vector3 vec4 = rotation * vec3;
// gp->add(K::GnuplotCoordinate3(vec4.x, vec4.y, vec4.z, K::GnuplotCoordinateSystem::FIRST));
// }
// }
// add coordinate system
const Vector3 vx = rotation * Vector3(2,0,0);
const Vector3 vy = rotation * Vector3(0,3,0);