This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/math/dsp/iir/BiQuad.h
2018-08-06 18:33:17 +02:00

343 lines
9.0 KiB
C++

#ifndef IIR_BIQUAD
#define IIR_BIQUAD
#include <string.h>
#include "../../../Assertions.h"
namespace IIR {
/** frequency limits */
#define BFG_MIN 0.0001
#define BFG_MAX 0.4999
/**
* a simple biquad filter that can be used
* for low- or high-pass filtering
* http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
*/
template <typename Scalar> class BiQuad {
public:
/** ctor */
BiQuad() : in(), out() {
reset();
}
/** filter the given amplitude of the given channel (history) */
Scalar filter( const Scalar aIn ) {
Scalar aOut = 0;
aOut += aIn *(b0a0);
aOut += in[0] *(b1a0);
aOut += in[1] *(b2a0);
aOut -= out[0]*(a1a0);
aOut -= out[1]*(a2a0);
in[1] = in[0];
in[0] = aIn;
out[1] = out[0];
out[0] = aOut;
return aOut;
}
float getA0() {return 1;}
float getA1() {return a1a0;}
float getA2() {return a2a0;}
float getB0() {return b0a0;}
float getB1() {return b1a0;}
float getB2() {return b2a0;}
void preFill(const Scalar s) {
for (int i = 0; i < 100; ++i) {
filter(s);
}
}
/** reset (disable) the filter */
void reset() {
b0a0 = 1.0;
b1a0 = 0.0;
b2a0 = 0.0;
a1a0 = 0.0;
a2a0 = 0.0;
memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
}
/** configure the filter as low-pass. freqFact between ]0;0.5[ */
//void setLowPass( double freqFact, const float octaves ) {
void setLowPass( double freqFact, const float Q ) {
sanityCheck(freqFact);
double w0 = 2.0 * M_PI * freqFact;
//double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double alpha = sin(w0)/(2*Q);
double b0 = (1.0 - cos(w0))/2.0;
double b1 = 1.0 - cos(w0);
double b2 = (1.0 - cos(w0))/2.0;
double a0 = 1.0 + alpha;
double a1 = -2.0*cos(w0);
double a2 = 1.0 - alpha;
setValues(a0, a1, a2, b0, b1, b2);
}
/** configure the filter as low-pass */
void setLowPass( const float freq, const float octaves, const float sRate ) {
double freqFact = double(freq) / double(sRate);
setLowPass(freqFact, octaves);
}
// //http://dspwiki.com/index.php?title=Lowpass_Resonant_Biquad_Filter
// //http://www.opensource.apple.com/source/WebCore/WebCore-7536.26.14/platform/audio/Biquad.cpp
// /**
// * configure as low-pass filter with resonance
// * @param freqFact the frequency factor between ]0;0.5[
// * @param res
// */
// void setLowPassResonance( double freqFact, float res ) {
// sanityCheck(freqFact);
// res *= 10;
// double g = pow(10.0, 0.05 * res);
// double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
// double theta = M_PI * freqFact;
// double sn = 0.5 * d * sin(theta);
// double beta = 0.5 * (1 - sn) / (1 + sn);
// double gamma = (0.5 + beta) * cos(theta);
// double alpha = 0.25 * (0.5 + beta - gamma);
// double a0 = 1.0;
// double b0 = 2.0 * alpha;
// double b1 = 2.0 * 2.0 * alpha;
// double b2 = 2.0 * alpha;
// double a1 = 2.0 * -gamma;
// double a2 = 2.0 * beta;
// setValues(a0, a1, a2, b0, b1, b2);
// }
/** configure the filter as high-pass. freqFact between ]0;0.5[ */
//void setHighPass( double freqFact, const float octaves ) {
void setHighPass( double freqFact, const float Q ) {
sanityCheck(freqFact);
double w0 = 2.0 * M_PI * freqFact;
//double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double alpha = sin(w0)/(2*Q);
double b0 = (1.0 + cos(w0))/2.0;
double b1 = -(1.0 + cos(w0));
double b2 = (1.0 + cos(w0))/2.0;
double a0 = 1.0 + alpha;
double a1 = -2.0*cos(w0);
double a2 = 1.0 - alpha;
setValues(a0, a1, a2, b0, b1, b2);
}
/** configure the filter as high-pass */
void setHighPass( const float freq, const float octaves, const float sRate ) {
double freqFact = double(freq) / double(sRate);
setHighPass(freqFact, octaves);
}
/** configure the filter as band-pass. freqFact between ]0;0.5[ */
//void setBandPass( double freqFact, const float octaves ) {
void setBandPass( double freqFact, const float Q ) {
sanityCheck(freqFact);
//double w0 = 2 * K_PI * / 2 / freqFact;
double w0 = 2.0 * M_PI * freqFact;
//double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
double alpha = sin(w0)/(2*Q);
// constant 0dB peak gain
double b0 = alpha;
double b1 = 0.0;
double b2 = -alpha;
double a0 = 1.0 + alpha;
double a1 = -2.0*cos(w0);
double a2 = 1.0 - alpha;
setValues(a0, a1, a2, b0, b1, b2);
}
/** configure the filter as band-pass */
void setBandPass( const float freq, const float octaves, float sRate ) {
double freqFact = double(freq) / double(sRate);
setBandPass(freqFact, octaves);
}
// /** configure the filter as all-pass. freqFact between ]0;0.5[ */
// void setAllPass( double freqFact, const float octaves ) {
// sanityCheck(freqFact);
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double b0 = 1 - alpha;
// double b1 = -2*cos(w0);
// double b2 = 1 + alpha;
// double a0 = 1 + alpha;
// double a1 = -2*cos(w0);
// double a2 = 1 - alpha;
// setValues(a0, a1, a2, b0, b1, b2);
// }
// /** configure the filter as all-pass */
// void setAllPass( const float freq, const float octaves, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setAllPass(freqFact, octaves);
// }
// /** configure as notch filter. freqFact between ]0;0.5[ */
// //void setNotch( double freqFact, const float octaves ) {
// void setNotch( double freqFact, const float Q ) {
// sanityCheck(freqFact);
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double b0 = 1.0;
// double b1 = -2.0*cos(w0);
// double b2 = 1.0;
// double a0 = 1.0 + alpha;
// double a1 = -2.0*cos(w0);
// double a2 = 1.0 - alpha;
// setValues(a0, a1, a2, b0, b1, b2);
// }
// /** configure as notch filter */
// void setNotch( const float freq, const float octaves, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setNotch(freqFact, octaves);
// }
// /** configure the filter as low-shelf. increase all aplitudes below freq? freqFact between ]0;0.5[ */
// void setLowShelf( double freqFact, const float octaves, const float gain ) {
// sanityCheck(freqFact);
// double A = sqrt( pow(10, (gain/20.0)) );
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double b0 = A*( (A+1.0) - (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha );
// double b1 = 2.0*A*( (A-1.0) - (A+1.0)*cos(w0) );
// double b2 = A*( (A+1.0) - (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha );
// double a0 = (A+1.0) + (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha;
// double a1 = -2.0*( (A-1.0) + (A+1.0)*cos(w0) );
// double a2 = (A+1.0) + (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha;
// setValues(a0, a1, a2, b0, b1, b2);
// }
// /** configure the filter as low-shelf. increase all aplitudes below freq? */
// void setLowShelf( const float freq, const float octaves, const float gain, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setLowShelf(freqFact, octaves, gain);
// }
// /** configure the filter as high-shelf. increase all amplitues above freq? freqFact between ]0;0.5[ */
// void setHighShelf( double freqFact, const float octaves, const float gain ) {
// sanityCheck(freqFact);
// double A = sqrt( pow(10, (gain/20.0)) );
// double w0 = 2.0 * M_PI * freqFact;
// double alpha = sin(w0)*sinh( log(2)/2 * octaves * w0/sin(w0) );
// double b0 = A*( (A+1.0) + (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha );
// double b1 = -2.0*A*( (A-1.0) + (A+1.0)*cos(w0) );
// double b2 = A*( (A+1.0) + (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha );
// double a0 = (A+1.0) - (A-1.0)*cos(w0) + 2.0*sqrt(A)*alpha;
// double a1 = 2.0*( (A-1.0) - (A+1.0)*cos(w0) );
// double a2 = (A+1.0) - (A-1.0)*cos(w0) - 2.0*sqrt(A)*alpha;
// setValues(a0, a1, a2, b0, b1, b2);
// }
// /** configure the filter as high-shelf. increase all amplitues above freq? */
// void setHighShelf( const float freq, const float octaves, const float gain, const float sRate ) {
// double freqFact = double(freq) / double(sRate);
// setHighShelf(freqFact, octaves, gain);
// }
protected:
/** pre-calculate the quotients for the filtering */
void setValues(double a0, double a1, double a2, double b0, double b1, double b2) {
b0a0 = float(b0/a0);
b1a0 = float(b1/a0);
b2a0 = float(b2/a0);
a2a0 = float(a2/a0);
a1a0 = float(a1/a0);
}
/** the bi-quad filter params */
float b0a0;
float b1a0;
float b2a0;
float a1a0;
float a2a0;
/** history for input values, per channel */
Scalar in[2];
/** history for ouput values, per channel */
Scalar out[2];
void sanityCheck(const float freqFact) const {
Assert::isTrue(freqFact >= BFG_MIN, "frequency out of bounds");
Assert::isTrue(freqFact <= BFG_MAX, "frequency out of bounds");
}
};
}
#endif // IIR_BIQUAD