geometry changes/fixes/new features

new grid walkers + fixes
new test-cases
worked on step/and turn detection
android offline-data-reader
worked on vap-grouping
This commit is contained in:
2016-09-07 10:16:51 +02:00
parent a203305628
commit d283d9b326
27 changed files with 976 additions and 333 deletions

View File

@@ -3,6 +3,7 @@
#include "Exception.h"
#include <sstream>
#include <cmath>
// for GTEST Testcases
#define FRIEND_TEST(test_case_name, test_name)\
@@ -66,9 +67,12 @@ namespace Assert {
if (std::abs(v1-v2) > delta) {doThrow(err);}
}
template <typename T, typename STR> static inline void isBetween(const T v, const T min, const T max, const STR err) {
if (v < min || v > max) {
std::stringstream ss; ss << "\n[" << min << ":" << max << "] but is " << v << "\n";
if (v < min || v > max) {doThrow(err+ss.str());}
doThrow(err+ss.str());
}
}
}

View File

@@ -46,10 +46,13 @@ public:
* - as a change-in-direction between [-PI:+PI]
*/
static float getSignedDiffRAD_2PI(const float r1, const float r2) {
Assert::isBetween(r1, 0.0f, (float)(2*M_PI), "r1 out of bounds");
Assert::isBetween(r2, 0.0f, (float)(2*M_PI), "r2 out of bounds");
const float a1 = (r2-r1);
if (std::abs(a1) < M_PI) {return a1;} else {return (M_PI-a1);}
Assert::isBetween(r1, 0.0f, (float)(2*M_PI), "r1 out of bounds"); // [0:360] deg
Assert::isBetween(r2, 0.0f, (float)(2*M_PI), "r2 out of bounds"); // [0:360] deg
float diff = r1-r2;
if (diff > +M_PI) {diff = -(2*M_PI - diff);}
else if (diff < -M_PI) {diff = +(2*M_PI + diff);}
Assert::isBetween(diff, (float)-M_PI, (float)(+M_PI), "result out of bounds"); // [-180:+180] deg
return diff;
}
/** convert degrees to radians */

View File

@@ -55,28 +55,54 @@ public:
bool getSegmentIntersection(const Line2& other) const {
const double delta = 0.0000001;
const float p0_x = p1.x, p1_x = p2.x, p2_x = other.p1.x, p3_x = other.p2.x;
const float p0_y = p1.y, p1_y = p2.y, p2_y = other.p1.y, p3_y = other.p2.y;
const double bx = p2.x - p1.x;
const double by = p2.y - p1.y;
const float s1_x = p1_x - p0_x;
const float s1_y = p1_y - p0_y;
const float s2_x = p3_x - p2_x;
const float s2_y = p3_y - p2_y;
const double dx = other.p2.x - other.p1.x;
const double dy = other.p2.y - other.p1.y;
const double b_dot_d_perp = bx*dy - by*dx;
if (std::abs(b_dot_d_perp) == 0) {return false;}
const double cx = other.p1.x - p1.x;
const double cy = other.p1.y - p1.y;
const double t = (cx * dy - cy * dx) / b_dot_d_perp;
if(t < 0+delta || t > 1-delta) {return false;}
const double u = (cx * by - cy * bx) / b_dot_d_perp;
if(u < 0+delta || u > 1-delta) {return false;}
const float s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / (-s2_x * s1_y + s1_x * s2_y);
const float t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / (-s2_x * s1_y + s1_x * s2_y);
if (s >= 0 && s <= 1 && t >= 0 && t <= 1) {
// Collision detected
// if (i_x != NULL)
// *i_x = p0_x + (t * s1_x);
// if (i_y != NULL)
// *i_y = p0_y + (t * s1_y);
return true;
}
return false; // No collision
// const double delta = 0.0000001;
// const double bx = p2.x - p1.x;
// const double by = p2.y - p1.y;
// const double dx = other.p2.x - other.p1.x;
// const double dy = other.p2.y - other.p1.y;
// const double b_dot_d_perp = bx*dy - by*dx;
// if (std::abs(b_dot_d_perp) == 0) {return false;}
// const double cx = other.p1.x - p1.x;
// const double cy = other.p1.y - p1.y;
// const double t = (cx * dy - cy * dx) / b_dot_d_perp;
// if(t < 0+delta || t > 1-delta) {
// return false;}
// const double u = (cx * by - cy * bx) / b_dot_d_perp;
// if(u < 0+delta || u > 1-delta) {
// return false;}
// return true;
}
@@ -98,10 +124,12 @@ public:
const float cy = other.p1.y - p1.y;
const float t = (cx * dy - cy * dx) / b_dot_d_perp;
if(t < 0+delta || t > 1-delta) {return false;}
if(t < 0+delta || t > 1-delta) {
return false;}
const float u = (cx * by - cy * bx) / b_dot_d_perp;
if(u < 0+delta || u > 1-delta) {return false;}
if(u < 0+delta || u > 1-delta) {
return false;}
result.x = p1.x + t * bx;
result.y = p1.y + t * by;

View File

@@ -18,18 +18,7 @@
#include <functional>
/** listen for events during the build process */
class GridFactoryListener {
public:
virtual void onGridBuildUpdateMajor(const std::string& what) = 0;
virtual void onGridBuildUpdateMajor(const int cnt, const int cur) = 0;
virtual void onGridBuildUpdateMinor(const std::string& what) = 0;
virtual void onGridBuildUpdateMinor(const int cnt, const int cur) = 0;
};
#include "GridFactoryListener.h"
template <typename T> class GridFactory {
@@ -156,7 +145,7 @@ public:
GridNodeBBox bbox(GridPoint(x_cm, y_cm, z_cm), helper.gridSize());
// slightly grow the bbox to ensure even obstacles that are directly aligned to the bbox are hit
bbox.grow(0.012345);
bbox.grow(0.42345);
if (intersects(bbox, floor)) {continue;}
// add to the grid
@@ -170,7 +159,7 @@ public:
}
// connect the g
connectAdjacent(z_cm);
connectAdjacent(floor, z_cm);
}
@@ -186,6 +175,9 @@ public:
if (listener) {listener->onGridBuildUpdateMinor(total, ++cur);}
}
// cleanup
stairs.finalize();
}
@@ -273,7 +265,7 @@ public:
}
/** connect all neighboring nodes located on the given height-plane */
void connectAdjacent(const float z_cm) {
void connectAdjacent(const Floorplan::Floor* floor, const float z_cm) {
Log::add(name, "connecting all adjacent nodes at height " + std::to_string(z_cm), false);
Log::tick();
@@ -285,7 +277,7 @@ public:
if (n1.z_cm != z_cm) {continue;}
// connect the node with its neighbors
connectAdjacent(n1);
connectAdjacent(floor, n1);
}
@@ -293,8 +285,13 @@ public:
}
/** connect the given node with its neighbors */
void connectAdjacent(T& n1) {
/**
* connect the given node with its neighbors.
* even though a node has a neighbor, it might still be blocked by an obstacle:
* e.g. a 45° wall directly between nodes. a neighbor exists, but is unreachable due to the wall.
* we thus perform an additional intersection check with all obstacles within the floor the node n1 belongs to
*/
void connectAdjacent(const Floorplan::Floor* floor, T& n1) {
const int gridSize_cm = grid.getGridSize_cm();
@@ -313,6 +310,7 @@ public:
// does the grid contain the potential neighbor?
const T* n2 = grid.getNodePtrFor(p);
if (n2 != nullptr) {
if (isBlocked(floor, n1, *n2)) {continue;} // is there a (e.g. small) obstacle between the two?
grid.connectUniDir(n1, *n2); // UNI-dir connection as EACH node is processed!
}
@@ -479,7 +477,46 @@ private:
}
}
return false;
}
/**
* normally, the algorithm will not try to connect two nodes that are neighbors but have an obstacle between them.
* however, especially for 45° obstacles it might happen that a neighbor exists but is blocked by an obstacle.
* we thus need this additional check to ensure everything is fine... even though it needs performance...
*/
static inline bool isBlocked(const Floorplan::Floor* floor, const GridPoint& n1, const GridPoint& n2) {
// (obstacles use meter, while the nodes are in centimeter!
const Point2 p1_m = n1.inMeter().xy();
const Point2 p2_m = n2.inMeter().xy();
const Line2 lineNodes(p1_m, p2_m);
// process each obstacle
for (Floorplan::FloorObstacle* fo : floor->obstacles) {
// depends on the type of obstacle
if (dynamic_cast<Floorplan::FloorObstacleLine*>(fo)) {
const Floorplan::FloorObstacleLine* line = (Floorplan::FloorObstacleLine*) fo;
const Line2 lineObstacle(line->from, line->to);
if (lineObstacle.getSegmentIntersection(lineNodes)) {return true;}
} else if (dynamic_cast<Floorplan::FloorObstacleCircle*>(fo)) {
throw Exception("should not happen");
} else if (dynamic_cast<Floorplan::FloorObstacleDoor*>(fo)) {
// DOORS ARE NOT AN OBSTACLE
} else {
throw Exception("TODO: not yet implemented obstacle type");
}
}
return false;
}
/** does the bbox intersect with any of the floor's walls? */

View File

@@ -0,0 +1,19 @@
#ifndef GRIDFACTORYLISTENER_H
#define GRIDFACTORYLISTENER_H
#include <string>
/** listen for events during the build process */
class GridFactoryListener {
public:
virtual void onGridBuildUpdateMajor(const std::string& what) = 0;
virtual void onGridBuildUpdateMajor(const int cnt, const int cur) = 0;
virtual void onGridBuildUpdateMinor(const std::string& what) = 0;
virtual void onGridBuildUpdateMinor(const int cnt, const int cur) = 0;
};
#endif // GRIDFACTORYLISTENER_H

View File

@@ -1,8 +1,11 @@
#ifndef IMPORTANCE_H
#define IMPORTANCE_H
#include "../../../geo/Units.h"
#include "../../Grid.h"
#include "GridFactoryListener.h"
#include "../../../misc/KNN.h"
#include "../../../misc/KNNArray.h"
@@ -35,9 +38,14 @@ public:
}
/** attach importance-factors to the grid */
template <typename T> static void addImportance(Grid<T>& g) {
template <typename T> static void addImportance(Grid<T>& g, GridFactoryListener* l = nullptr) {
Log::add(name, "adding importance information to all nodes");// at height " + std::to_string(z_cm));
Log::add(name, "adding importance information to all nodes");
if (l) {
l->onGridBuildUpdateMajor(2, 0);
l->onGridBuildUpdateMajor("adding importance information");
l->onGridBuildUpdateMinor("performing initial setups");
}
// get an inverted version of the grid
Grid<T> inv(g.getGridSize_cm());
@@ -51,15 +59,13 @@ public:
// construct KNN search
KNN<Grid<T>, 3> knn(inv);
// the number of neighbors to use
static constexpr int numNeighbors = 12;
// create list of all door-nodes
std::vector<T> doors;
// create list of all stair-nodes
std::vector<T> stairs;
// process each node
for (T& n1 : g) {
@@ -83,9 +89,26 @@ public:
Distribution::Normal<float> favorDoors(0.0f, 0.5f);
Distribution::Normal<float> favorStairs(0.0f, 3.5f);
if (l) {
l->onGridBuildUpdateMajor(2, 1);
l->onGridBuildUpdateMinor("calculating importance for each node");
}
std::cout << "dunno why, but the KNN for stairs searches extremely slow!" << std::endl;
// process each node again
for (T& n1 : g) {
for (int i = 0; i < g.getNumNodes(); ++i) {
// log
if (i % (g.getNumNodes() / 20) == 0) {
if (l) {
l->onGridBuildUpdateMinor(g.getNumNodes(), i);
}
}
// get the node
T& n1 = g[i];
// get the distance to the nearest wall
const float distToWall_m = Units::cmToM(knn.getNearestDistance( {n1.x_cm, n1.y_cm, n1.z_cm} ));
@@ -101,12 +124,16 @@ public:
// final probability
n1.navImportance = 1.0f;
n1.navImportance += favorDoors.getProbability(distToDoor_m) * 1.25f;
n1.navImportance += favorStairs.getProbability(distToStair_m) * 3.5f;
n1.navImportance += favorStairs.getProbability(distToStair_m) * 2.5f;
// use wall avoidance
if (useNormal) {
n1.navImportance -= avoidWalls.getProbability(distToWall_m);
n1.navImportance -= avoidWalls.getProbability(distToWall_m) * 0.5f;
}
// sanity check
Assert::isTrue(n1.navImportance >= 0, "detected negative importance. does not make sense!");
}
}

View File

@@ -22,6 +22,9 @@ private:
/** calculation helper */
Helper<T> helper;
// keep a list of all vertices below stairwells and remove them hereafter
std::vector<T*> toDelete;
std::ofstream outStairs;
std::ofstream outDelete;
@@ -77,6 +80,7 @@ public:
}
~Stairs() {
finalize();
outStairs.close();
outDelete.close();
}
@@ -201,10 +205,6 @@ public:
}
// keep a list of all vertices below stairwells and remove them hereafter
std::vector<T*> toDelete;
// add all stair nodes or replace them with already existing ones
for (Intermediate& iNode : stairNodes) {
@@ -288,13 +288,23 @@ public:
}
}
// delete all pending nodes and perform a cleanup
for (T* n : toDelete) {grid.remove(*n);}
grid.cleanup();
// finalize after ALL stairs were added. much faster and should be safe!
//finalize();
}
void finalize() {
// delete all pending nodes and perform a cleanup
if (!toDelete.empty()) {
for (T* n : toDelete) {grid.remove(*n);}
toDelete.clear();
grid.cleanup();
}
}
static float minZ(const std::vector<XYZ>& points) {
auto comp = [] (const XYZ& a, const XYZ& b) {return a.z < b.z;};
auto it = std::min_element(points.begin(), points.end(), comp);

View File

@@ -28,13 +28,15 @@ public:
/** perform the walk based on the configured setup */
WalkState getDestination(Grid<Node>& grid, const WalkState& _startState, float dist_m) {
WalkState startState = _startState;
updateBefore(startState);
// keep the starting state for reference
//const WalkState startState = _startState;
// the current state that is modified for each step
WalkState currentState = _startState;
updateBefore(currentState);
// get the node that corresponds to start;
const Node* startNode = grid.getNodePtrFor(startState.startPos);
const Node* startNode = grid.getNodePtrFor(currentState.position);
Assert::isNotNull(startNode, "failed to termine start-node for grid-walk");
// currently examined node
@@ -47,7 +49,7 @@ public:
// evaluate each neighbor
for (const Node& neighbor : grid.neighbors(*curNode)) {
const double prob = getProbability(startState, *startNode, *curNode, neighbor);
const double prob = getProbability(currentState, *startNode, *curNode, neighbor);
drawer.add(&neighbor, prob);
}
@@ -55,23 +57,21 @@ public:
const Node* nextNode = drawer.get();
// inform
step(startState, *curNode, *nextNode);
step(currentState, *curNode, *nextNode);
// update
// update distance-to-walk and current position
dist_m -= nextNode->getDistanceInMeter(*curNode);
curNode = nextNode;
currentState.position = *curNode;
}
// output state
WalkState nextState = startState;
nextState.startPos = *curNode;
// update
updateAfter(nextState, *startNode, *curNode);
// update after
updateAfter(currentState, *startNode, *curNode);
// done
return nextState;
return currentState;
}
@@ -107,16 +107,18 @@ private:
/** get the probability for the given random walk (one edge) */
inline double getProbability(const WalkState& state, const Node& start, const Node& cur, const Node& next) const {
//double prob = 1.0;
double prob = 0;
double prob = 1.0;
//double prob = 0;
for (const WalkModule<Node, WalkState>* mdl : modules) {
//prob *= mdl->getProbability(state, start, cur, next);
prob += std::log( mdl->getProbability(state, start, cur, next) );
const double subProb = mdl->getProbability(state, start, cur, next);
Assert::isTrue(subProb >= 0, "probability must not be negative!");
prob *= subProb;
//prob += std::log( mdl->getProbability(state, start, cur, next) );
}
//return prob;
return std::exp(prob);
return prob;
//return std::exp(prob);
}

View File

@@ -6,11 +6,11 @@
/** base-class for all WalkStates */
struct WalkState {
/** position where the walk starts */
GridPoint startPos;
/** current position within the grid (-> in cm!) */
GridPoint position;
/** ctor */
WalkState(const GridPoint& startPos) : startPos(startPos) {;}
explicit WalkState(const GridPoint& position) : position(position) {;}
};

View File

@@ -41,7 +41,7 @@ public:
(void) startNode;
if (curNode.z_cm != potentialNode.z_cm) {
return 8;
return 40;
} else {
return 1;
}

View File

@@ -28,13 +28,16 @@ public:
virtual void updateBefore(WalkState& state) override {
(void) state;
state.startHeading += draw.get();
// add noise
state.heading.direction += draw.get();
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {
(void) state;
(void) startNode;
(void) endNode;
// if (startNode.x_cm != endNode.x_cm || startNode.y_cm != endNode.y_cm) {
// Heading head(startNode.x_cm, startNode.y_cm, endNode.x_cm, endNode.y_cm);
// state.startHeading = head;
@@ -60,7 +63,7 @@ public:
const Heading head(curNode.x_cm, curNode.y_cm, potentialNode.x_cm, potentialNode.y_cm);
// compare the heading against the state's heading
const Heading stateHead = state.startHeading;
const Heading stateHead = state.heading.direction;
// get the difference
const float angularDiff = head.getDiffHalfRAD(stateHead);//head.getRAD() - stateHead.getRAD();

View File

@@ -13,11 +13,11 @@ template <typename Node, typename WalkState, typename Control> class WalkModuleH
private:
/** van-Mises distribution */
/** CURRENTLY NOT USED van-Mises distribution */
Distribution::LUT<double> dist;
/** van-Mises draw list */
DrawList<double> draw;
/** random noise */
Distribution::Normal<float> distNoise;
Control* ctrl;
@@ -26,16 +26,25 @@ private:
public:
/** ctor 3.0 should be OK! */
WalkModuleHeadingControl(Control* ctrl) : dist(Distribution::VonMises<double>(0.0f, 2.0).getLUT()), draw(dist.getDrawList()), ctrl(ctrl) {
WalkModuleHeadingControl(Control* ctrl, const float sensorNoiseDegreesSigma) :
dist(Distribution::VonMises<double>(0.0f, 2.0).getLUT()),
distNoise(0, Angle::degToRad(sensorNoiseDegreesSigma)),
ctrl(ctrl) {
;
}
virtual void updateBefore(WalkState& state) override {
const float var = draw.get() * 0.20;//0.05;
//const float var = 0;
state.startHeading += ctrl->turnAngle + var;
// NOTE: ctrl->turnAngle is cumulative SINCE the last transition!
// reset this one after every transition!
Assert::isBetween(ctrl->turnAngle, -3.0f, +3.0f, "the given turn angle is too high to make sense.. did you forget to set ctrl->turnAngle = 0 after each transition?");
// sensor noise
const float var = distNoise.draw();
// adjust the state's heading using the control-data
state.heading.direction += ctrl->turnAngle + var;
}
@@ -46,9 +55,24 @@ public:
}
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) override {
(void) state;
(void) curNode;
(void) nextNode;
// get the heading denoted by the way from curNode to nextNode
const Heading head(curNode.x_cm, curNode.y_cm, nextNode.x_cm, nextNode.y_cm);
// get the heading requested by the state
const Heading stateHead = state.heading.direction;
// get the error (signed difference) between both
const float angularDiff = stateHead.getSignedDiff(head);
// adjust the error.
// note: the error may get > +/- 2PI but this is not an issue!
// when the error is added to the current heading within getProbability(),
// it is ensured their sum is within [0:2pi]
state.heading.error += angularDiff;
}
@@ -60,11 +84,18 @@ public:
const Heading head(curNode.x_cm, curNode.y_cm, potentialNode.x_cm, potentialNode.y_cm);
// compare the heading against the state's heading - the last error
const Heading stateHead = state.startHeading;
const Heading stateHead = state.heading.direction + state.heading.error;
// get the difference
const float angularDiff = head.getDiffHalfRAD(stateHead);
if (angularDiff > Angle::degToRad(135)) {return 0.01;}
if (angularDiff > Angle::degToRad(90)) {return 0.02;}
if (angularDiff > Angle::degToRad(45)) {return 0.07;}
{return 0.90;}
// add error to allow stronger deviation with respect to the "BIG GLOBAL SCOPE"
// determine probability
const float prob = dist.getProbability(angularDiff);
return prob;

View File

@@ -24,7 +24,7 @@ public:
virtual void updateBefore(WalkState& state) override {
(void) state;
avg = avg * 0.999 + state.startPos.inMeter() * 0.001;
avg = avg * 0.999 + state.position.inMeter() * 0.001;
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {

View File

@@ -3,12 +3,39 @@
#include "../../../../geo/Heading.h"
/**
* base-class e.g. needed for GridWalkHeading and GridWalkHeadingControl to work
*/
struct WalkStateHeading {
Heading startHeading;
/** used for better naming: heading.error instead of headingError */
struct _Heading {
/**
* the direction [0:2pi] the walk should move to
* e.g. indiciated by:
* compass
* integration over gyroscope values
*/
Heading direction;
/**
* (cumulative) error between walked edges and requested direction (above).
* is used to ensure that (even though the grid contains only 45° edges) we
* approximately walk into the requested direction.
*/
float error = 0;
/** ctor */
WalkStateHeading(const Heading& curHeading) : startHeading(curHeading) {;}
_Heading(const Heading direction, const float error) : direction(direction), error(error) {;}
} heading;
/** ctor */
explicit WalkStateHeading(const Heading& direction, const float error) : heading(direction, error) {;}
};

View File

@@ -60,6 +60,7 @@ public:
/** add a new user-element and its probability */
void add(T element, const double probability) {
Assert::isTrue(probability >= 0, "probability must not be negative!");
cumProbability += probability;
elements.push_back(Entry(element, cumProbability));
}

67
math/MovingAverageTS.h Normal file
View File

@@ -0,0 +1,67 @@
#ifndef MOVINGAVERAGETS_H
#define MOVINGAVERAGETS_H
#include <vector>
#include "../data/Timestamp.h"
#include <algorithm>
template <typename T> class MovingAverageTS {
private:
/** timestamp -> value combination */
struct Entry {
Timestamp ts;
T value;
Entry(const Timestamp ts, const T& value) : ts(ts), value(value) {;}
};
/** the regional window to use */
Timestamp window;
/** the value history for the window-size */
std::vector<Entry> history;
/** current sum */
T sum;
public:
/** ctor with the window-size to use */
MovingAverageTS(const Timestamp window, const T zeroElement) : window(window), sum(zeroElement) {
}
/** add a new entry */
void add(const Timestamp ts, const T& data) {
// append to history
history.push_back(Entry(ts, data));
// adjust sum
sum += data;
// remove too-old history entries
const Timestamp oldest = ts - window;
while(history.front().ts < oldest) {
// adjust sum
sum -= history.front().value;
// remove from history
history.erase(history.begin());
}
}
/** get the current average */
T get() const {
return sum / history.size();
}
};
#endif // MOVINGAVERAGETS_H

View File

@@ -94,13 +94,21 @@ public:
}
/** get the distance to the element nearest to the given point */
float getNearestDistance(const std::initializer_list<Scalar> lst) {
float getNearestDistance(const std::initializer_list<Scalar> lst) const {
size_t idx;
float distSquared;
tree.knnSearch(lst.begin(), 1, &idx, &distSquared);
return std::sqrt(distSquared);
}
/** get the distance to the element nearest to the given point */
float getNearestDistanceWithinRadius(const std::initializer_list<Scalar> lst, const float maxRadius) const {
std::vector<std::pair<size_t, float>> res;
tree.radiusSearch(lst.begin(), maxRadius*maxRadius, res, nanoflann::SearchParams());
if (res.empty()) {return NAN;}
return std::sqrt(res[0].second);
}
void get(const Scalar* point, const int numNeighbors, size_t* indices, float* squaredDist) {
// find k-nearest-neighbors

View File

@@ -18,6 +18,28 @@ struct AccelerometerData {
return std::sqrt( x*x + y*y + z*z );
}
AccelerometerData& operator += (const AccelerometerData& o) {
this->x += o.x;
this->y += o.y;
this->z += o.z;
return *this;
}
AccelerometerData& operator -= (const AccelerometerData& o) {
this->x -= o.x;
this->y -= o.y;
this->z -= o.z;
return *this;
}
AccelerometerData operator - (const AccelerometerData& o) const {
return AccelerometerData(x-o.x, y-o.y, z-o.z);
}
AccelerometerData operator / (const float val) const {
return AccelerometerData(x/val, y/val, z/val);
}
};
#endif // ACCELEROMETERDATA_H

View File

@@ -16,6 +16,7 @@
#include "../../Assertions.h"
#include "../../math/MovingAverageTS.h"
/**
@@ -27,83 +28,153 @@ class StepDetection {
private:
/** low pass acc-magnitude */
float avg1 = 0;
MovingAverageTS<float> avgLong;
MovingAverageTS<float> avgShort;
/** even-more low-pass acc-magnitude */
float avg2 = 0;
private:
class Stepper {
private:
/** block for 300 ms after every step */
const Timestamp blockTime = Timestamp::fromMS(300);
/** the threshold for detecting a spike as step */
const float threshold = 0.17;
/** block until the given timestamp before detecting additional steps */
Timestamp blockUntil;
bool waitForUp = false;
const Timestamp blockTime = Timestamp::fromMS(150); // 150-250 looks good
const float upperThreshold = +0.4f; // + is usually smaller than down (look at graphs)
const float lowerThreshold = -0.8f;
public:
/** is the given (relative!) magnitude (mag - ~9.81) a step? */
bool isStep(const Timestamp ts, const float mag) {
// still blocking
if (ts < blockUntil) {
return false;
/** ctor */
StepDetection() : avgLong(Timestamp::fromMS(500), 0), avgShort(Timestamp::fromMS(40), 0) {
;
}
// threshold reached? -> step!
if (mag > threshold) {
// block x milliseconds until detecting the next step
blockUntil = ts + blockTime;
// we have a step
return true;
}
// no step
return false;
}
};
Stepper stepper;
public:
/** does the given data indicate a step? */
bool isStep(const Timestamp ts, const AccelerometerData& acc) {
bool add(const Timestamp ts, const AccelerometerData& acc) {
avg1 = avg1 * 0.91 + acc.magnitude() * 0.09; // short-time average [filtered steps]
avg2 = avg2 * 0.97 + acc.magnitude() * 0.03; // long-time average [gravity]
// update averages
avgLong.add(ts, acc.magnitude());
avgShort.add(ts, acc.magnitude());
// average maginitude must be > 9.0 to be stable enough to proceed
if (avg2 > 9) {
// difference between long-term-average (gravity) and very-short-time average
const float delta = avgShort.get() - avgLong.get();
// gravity-free magnitude
const float avg = avg1 - avg2;
bool step = false;
// detect steps
return stepper.isStep(ts, avg);
} else {
if (blockUntil > ts) {return false;}
// wait for a rising edge
if (waitForUp && delta > upperThreshold) {
blockUntil = ts + blockTime; // block some time
waitForUp = false;
}
// wait for a falling edge
if (!waitForUp && delta < lowerThreshold) {
blockUntil = ts + blockTime; // block some time
waitForUp = true;
step = true;
}
// static K::Gnuplot gp;
// static K::GnuplotPlot plot;
// static K::GnuplotPlotElementLines lines1; plot.add(&lines1);
// static K::GnuplotPlotElementLines lines2; plot.add(&lines2); lines2.setColorHex("#0000ff");
// static Timestamp ref = ts;
// static int i = 0;
// //lines1.add( K::GnuplotPoint2((ts-ref).ms(), _delta) );
// lines2.add( K::GnuplotPoint2((ts-ref).ms(), delta) );
// if (++i % 100 == 0) {
// gp.draw(plot);
// gp.flush();
// usleep(1000*25);
// }
return step;
return false;
}
}
//private:
// /** low pass acc-magnitude */
// float avg1 = 0;
// /** even-more low-pass acc-magnitude */
// float avg2 = 0;
//private:
// class Stepper {
// private:
// /** block for 300 ms after every step */
// const Timestamp blockTime = Timestamp::fromMS(300);
// /** the threshold for detecting a spike as step */
// const float threshold = 0.30;
// /** block until the given timestamp before detecting additional steps */
// Timestamp blockUntil;
// public:
// /** is the given (relative!) magnitude (mag - ~9.81) a step? */
// bool isStep(const Timestamp ts, const float mag) {
// // still blocking
// if (ts < blockUntil) {
// return false;
// }
// // threshold reached? -> step!
// if (mag > threshold) {
// // block x milliseconds until detecting the next step
// blockUntil = ts + blockTime;
// // we have a step
// return true;
// }
// // no step
// return false;
// }
// };
// Stepper stepper;
//public:
// /** does the given data indicate a step? */
// bool add(const Timestamp ts, const AccelerometerData& acc) {
// avg1 = avg1 * 0.91 + acc.magnitude() * 0.09; // short-time average [filtered steps]
// avg2 = avg2 * 0.97 + acc.magnitude() * 0.03; // long-time average [gravity]
// // average maginitude must be > 9.0 to be stable enough to proceed
// if (avg2 > 9) {
// // gravity-free magnitude
// const float avg = avg1 - avg2;
// // detect steps
// return stepper.isStep(ts, avg);
// } else {
// return false;
// }
// }
};

View File

@@ -4,6 +4,7 @@
#include "GyroscopeData.h"
#include "AccelerometerData.h"
#include "../../data/Timestamp.h"
#include "../../math/MovingAverageTS.h"
#include <eigen3/Eigen/Dense>
@@ -23,147 +24,100 @@ class TurnDetection {
private:
//std::vector<AccelerometerData> accData;
std::vector<GyroscopeData> gyroData;
Timestamp lastGyro;
Timestamp lastRotMatEst;
//std::vector<GyroscopeData> gyroData;
Eigen::Vector3f prevGyro = Eigen::Vector3f::Zero();
Timestamp lastGyroReading;
struct {
Eigen::Matrix3f rotationMatrix = Eigen::Matrix3f::Identity();
bool isKnown = false;
Timestamp lastEstimation;
} orientation;
Eigen::Matrix3f rotMat;
Eigen::Vector3f avgAcc;
Eigen::Vector3f leGyro;
public:
/** ctor */
TurnDetection() : rotMat(Eigen::Matrix3f::Identity()) {
TurnDetection() {
;
}
// does not seem to help...
// struct DriftEstimator {
// MovingAverageTS<Eigen::Vector3f> avg;
// DriftEstimator() : avg(Timestamp::fromSec(5.0), Eigen::Vector3f::Zero()) {
// ;
// }
// void removeDrift(const Timestamp ts, Eigen::Vector3f& gyro) {
// if (gyro.norm() < 0.15) {
// avg.add(ts, gyro);
// gyro -= avg.get();
// }
// }
// } driftEst;
float addGyroscope(const Timestamp& ts, const GyroscopeData& gyro) {
if (lastGyro.isZero()) {lastGyro = ts;}
// ignore the first reading completely, just remember its timestamp
if (lastGyroReading.isZero()) {lastGyroReading = ts; return 0.0f;}
// time-difference between previous and current reading
const Timestamp curDiff = ts - lastGyroReading;
lastGyroReading = ts;
// fast sensors might lead to delay = 0 ms. filter those values
if (curDiff.isZero()) {return 0.0f;}
// ignore readings until the first orientation-estimation is available
// otherwise we would use a wrong rotation matrix which yields wrong results!
if (!orientation.isKnown) {return 0.0f;}
// TESTING!
gyroData.push_back(gyro);
static Eigen::Matrix3f rotMat = Eigen::Matrix3f::Identity();
if (gyroData.size() > 25) {
Eigen::Vector3f sum = Eigen::Vector3f::Zero();
int cnt = 0;
for (GyroscopeData gd : gyroData) {
//if (gd.z > gd.x && gd.z > gd.y) {
Eigen::Vector3f vec; vec << (gd.x), (gd.y), (gd.z);
sum += vec;
++cnt;
//}
}
gyroData.clear();
if (cnt > 10) {
Eigen::Vector3f z; z << 0,0, sum(2) < 0 ? -1 : +1;
rotMat = getRotationMatrix(sum.normalized(), z.normalized());
}
}
// current gyro-reading as vector
// get the current gyro-reading as vector
Eigen::Vector3f vec; vec << gyro.x, gyro.y, gyro.z;
leGyro = vec;
// current value, rotated into the new coordinate system
Eigen::Vector3f curVec = rotMat * vec;
// previous value
static Eigen::Vector3f oldVec = curVec;
// time-difference between previous and current value
const Timestamp diff = ts - lastGyro;
lastGyro = ts;
// rotate it into our desired coordinate system, where the smartphone lies flat on the ground
Eigen::Vector3f curGyro = orientation.rotationMatrix * vec;
//driftEst.removeDrift(ts, curGyro);
// area
Eigen::Vector3f area = Eigen::Vector3f::Zero();
if (!diff.isZero()) {
area = (oldVec * diff.sec()) + // squared region
((curVec - oldVec) * 0.5 * diff.sec()); // triangle region to the next (enhances the quality)
}
const Eigen::Vector3f area =
// Trapezoid rule (should be more accurate but does not always help?!)
//(prevGyro * curDiff.sec()) + // squared region
//((curGyro - prevGyro) * 0.5 * curDiff.sec()); // triangle region to the next (enhances the quality)
// just the rectangular region
(prevGyro * curDiff.sec()); // BEST?!
//}
// update the old value
oldVec = curVec;
prevGyro = curGyro;
const float delta = area(2);// * 0.8;
static int i = 0; ++i;
if (i % 50 == 0) {
static K::Gnuplot gp;
gp << "set view equal xyz\n";
gp << "set xrange[-1:+1]\n";
gp << "set yrange[-1:+1]\n";
gp << "set zrange[-1:+1]\n";
K::GnuplotSplot plot;
K::GnuplotSplotElementLines lines; plot.add(&lines);
K::GnuplotPoint3 p0(0,0,0);
//K::GnuplotPoint3 pO(vec(0), vec(1), vec(2));
K::GnuplotPoint3 px(rotMat(0,0), rotMat(1,0), rotMat(2,0)); //px = px * eval(0);
K::GnuplotPoint3 py(rotMat(0,1), rotMat(1,1), rotMat(2,1)); //py = py * eval(1);
K::GnuplotPoint3 pz(rotMat(0,2), rotMat(1,2), rotMat(2,2)); //pz = pz * eval(2);
lines.addSegment(p0, px*0.15);
lines.addSegment(p0, py*0.4);
lines.addSegment(p0, pz*1.0);
Eigen::Vector3f ori = leGyro;
Eigen::Vector3f re = rotMat * leGyro;
Eigen::Vector3f avg = est.lastAvg * 0.3;
gp << "set arrow 1 from 0,0,0 to " << avg(0) << "," << avg(1) << "," << avg(2) << " lw 2\n";
gp << "set arrow 2 from 0,0,0 to " << ori(0) << "," << ori(1) << "," << ori(2) << " lw 1 dashtype 2 \n";
gp << "set arrow 3 from 0,0,0 to " << re(0) << "," << re(1) << "," << re(2) << " lw 1\n";
// gp << "set arrow 2 from 0,0,0 to " << vec(0) << "," << vec(1) << "," << vec(2) << "\n";
// gp << "set arrow 3 from 0,0,0 to " << nVec(0) << "," << nVec(1) << "," << nVec(2) << "\n";
gp.draw(plot);
//gp.flush();
}
static Eigen::Vector3f sum = Eigen::Vector3f::Zero();
sum += area;
if (i % 30 == 0) {
static int idx = 0;
static K::Gnuplot gp2;
gp2 << "set arrow 1 from 0,0 to 10000,0\n";
gp2 << "set arrow 2 from 0,5 to 10000,5\n";
gp2 << "set arrow 3 from 0,10 to 10000,10\n";
K::GnuplotPlot plot2;
static K::GnuplotPlotElementLines linesX; plot2.add(&linesX);
static K::GnuplotPlotElementLines linesY; plot2.add(&linesY);
static K::GnuplotPlotElementLines linesZ; plot2.add(&linesZ);
//linesX.add(K::GnuplotPoint2(idx, sum(0) + 0));
//linesY.add(K::GnuplotPoint2(idx, sum(1) + 5));
linesZ.add(K::GnuplotPoint2(idx, sum(2) + 10));
++idx;
gp2.draw(plot2);
//gp2.flush();
}
// rotation = z-axis only!
const float delta = area(2);
// done
return delta;
}
@@ -174,15 +128,17 @@ public:
// add accelerometer data
//pca.add(std::abs(acc.x), std::abs(acc.y), std::abs(acc.z));
est.add((acc.x), (acc.y), (acc.z));
est.addAcc(acc);
// start with the first available timestamp
if (lastRotMatEst.isZero()) {lastRotMatEst = ts;}
if (orientation.lastEstimation.isZero()) {orientation.lastEstimation = ts;}
// if we have at-least 1 sec of acc-data, re-calculate the current smartphone holding
if (ts - lastRotMatEst > Timestamp::fromMS(500)) {
rotMat = est.get();
lastRotMatEst = ts;
// if we have at-least 500 ms of acc-data, re-calculate the current smartphone holding
if (ts - orientation.lastEstimation > Timestamp::fromMS(1500)) {
orientation.rotationMatrix = est.get();
orientation.isKnown = true;
orientation.lastEstimation = ts;
est.reset();
}
}
@@ -243,44 +199,49 @@ public:
struct XYZ {
Eigen::Vector3f lastAvg;
Eigen::Vector3f avg;
Eigen::Vector3f sum;
int cnt;
XYZ() {
reset();
}
void add(const float x, const float y, const float z) {
/** add the given accelerometer reading */
void addAcc(const AccelerometerData& acc) {
Eigen::Vector3f vec; vec << x,y,z;
avg += vec;
// did NOT improve the result for every smartphone (only some)
//const float deltaMag = std::abs(acc.magnitude() - 9.81);
//if (deltaMag > 5.0) {return;}
// adjust sum and count (for average calculation)
Eigen::Vector3f vec; vec << acc.x, acc.y, acc.z;
sum += vec;
++cnt;
}
Eigen::Matrix3f get() {
/** get the current rotation matrix estimation */
Eigen::Matrix3f get() const {
avg/= cnt;
lastAvg = avg;
// get the current acceleromter average
const Eigen::Vector3f avg = sum / cnt;
// rotate average accelerometer into (0,0,1)
Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
// sanity check
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
Eigen::Vector3f aligned = (rotMat * avg).normalized();
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
reset();
return rotMat;
}
/** reset the current sum etc. */
void reset() {
cnt = 0;
avg = Eigen::Vector3f::Zero();
sum = Eigen::Vector3f::Zero();
}

View File

@@ -4,11 +4,14 @@
#include <fstream>
#include <string>
#include "../../misc/Debug.h"
#include "../../Assertions.h"
#include "../../math/Interpolator.h"
#include "../../geo/Point3.h"
#include "../../data/Timestamp.h"
#include "../radio/WiFiMeasurements.h"
#include "../imu/AccelerometerData.h"
#include "../imu/GyroscopeData.h"
template <typename SensorData> struct OfflineEntry {
@@ -31,6 +34,15 @@ struct WalkedPath {
};
/** listener for event callbacks */
class OfflineAndroidListener {
public:
virtual void onGyroscope(const Timestamp ts, const GyroscopeData data) = 0;
virtual void onAccelerometer(const Timestamp ts, const AccelerometerData data) = 0;
virtual void onGravity(const Timestamp ts, const AccelerometerData data) = 0;
virtual void onWiFi(const Timestamp ts, const WiFiMeasurements data) = 0;
};
/** read recorded android sensor data files */
class OfflineAndroid {
@@ -39,13 +51,20 @@ private:
std::vector<OfflineEntry<WiFiMeasurements>> wifi;
std::vector<OfflineEntry<GroundTruthID>> groundTruth;
std::vector<OfflineEntry<GyroscopeData>> gyro;
std::vector<OfflineEntry<AccelerometerData>> accel;
std::vector<OfflineEntry<AccelerometerData>> gravity;
WalkedPath walkedPath;
const char* name = "OfflineData";
public:
/** ctor */
OfflineAndroid(const std::string& file) {
parse(file);
OfflineAndroid() {
;
}
/** get all ground truth readings */
@@ -54,6 +73,16 @@ public:
/** get all WiFi readings */
const std::vector<OfflineEntry<WiFiMeasurements>>& getWiFi() const {return wifi;}
/** get all gyroscope readings */
const std::vector<OfflineEntry<GyroscopeData>>& getGyroscope() const {return gyro;}
/** get all accelerometer readings */
const std::vector<OfflineEntry<AccelerometerData>>& getAccelerometer() const {return accel;}
/** get all gravity readings */
const std::vector<OfflineEntry<AccelerometerData>>& getGravity() const {return gravity;}
/** get the walked path */
const WalkedPath& getWalkedPath() const {return walkedPath;}
@@ -67,10 +96,12 @@ public:
return interpol;
}
public:
private:
void parse(const std::string& file, OfflineAndroidListener* listener = nullptr) {
void parse(const std::string& file) {
Log::add(name, "parsing data file: " + file , false);
Log::tick();
// open the stream
std::ifstream inp(file);
@@ -96,28 +127,64 @@ private:
if (delim == 0) {break;}
parse(Timestamp::fromMS(ts), sensorID, sensorData);
parse(Timestamp::fromMS(ts), sensorID, sensorData, listener);
}
Log::tock();
Log::add(name,
"gyro(" + std::to_string(gyro.size()) + ") " +
"accel(" + std::to_string(accel.size()) + ") "
"wifi(" + std::to_string(wifi.size()) + ") " +
"gt(" + std::to_string(groundTruth.size()) + ") "
);
}
private:
/** parse the given data */
void parse(const Timestamp ts, const int32_t sensorID, const std::string& sensorData) {
void parse(const Timestamp ts, const int32_t sensorID, const std::string& sensorData, OfflineAndroidListener* listener) {
// how to parse
switch(sensorID) {
case 0: {
const AccelerometerData data = parseAccelerometer(sensorData);
accel.push_back(OfflineEntry<AccelerometerData>(ts, data));
if (listener) {listener->onAccelerometer(ts, data);}
break;
}
case 1: {
const AccelerometerData data = parseAccelerometer(sensorData);
gravity.push_back(OfflineEntry<AccelerometerData>(ts, data));
if (listener) {listener->onGravity(ts, data);}
break;
}
case 3: {
const GyroscopeData data = parseGyroscope(sensorData);
gyro.push_back(OfflineEntry<GyroscopeData>(ts, data));
if (listener) {listener->onGyroscope(ts, data);}
break;
}
case 8: {
OfflineEntry<WiFiMeasurements> entry(ts, parseWiFi(sensorData));
wifi.push_back(entry);
const WiFiMeasurements data = parseWiFi(sensorData);
wifi.push_back(OfflineEntry<WiFiMeasurements>(ts, data));
if (listener) {listener->onWiFi(ts, data);}
break;
}
case 99: {
OfflineEntry<GroundTruthID> entry (ts, parseGroundTruthTick(sensorData));
groundTruth.push_back(entry);
const GroundTruthID data = parseGroundTruthTick(sensorData);
groundTruth.push_back(OfflineEntry<GroundTruthID>(ts, data));
// TODO listener
break;
}
case 100: {
walkedPath = parseWalkedPath(sensorData);
break;
@@ -138,16 +205,19 @@ private:
const std::string mac = data.substr(0, 17);
data = data.substr(17);
assert(data[0] == ';'); data = data.substr(1);
Assert::isTrue(data[0] == ';', "unexpected character");
data = data.substr(1);
const std::string freq = data.substr(0, 4);
data = data.substr(4);
assert(data[0] == ';'); data = data.substr(1);
Assert::isTrue(data[0] == ';', "unexpected character");
data = data.substr(1);
const int pos = data.find(';');
const std::string rssi = data.substr(0, pos);
data = data.substr(pos);
assert(data[0] == ';'); data = data.substr(1);
Assert::isTrue(data[0] == ';', "unexpected character");
data = data.substr(1);
const WiFiMeasurement e(mac, std::stof(rssi));
obs.entries.push_back(e);
@@ -158,6 +228,43 @@ private:
}
static inline GyroscopeData parseGyroscope(const std::string& data) {
const size_t pos1 = data.find(';', 0);
const size_t pos2 = data.find(';', pos1+1);
const size_t pos3 = data.find(';', pos2+1);
Assert::isTrue(pos1 != std::string::npos, "format error");
Assert::isTrue(pos2 != std::string::npos, "format error");
Assert::isTrue(pos3 != std::string::npos, "format error");
const std::string sx = data.substr(0, pos1);
const std::string sy = data.substr(pos1+1, pos2-pos1-1);
const std::string sz = data.substr(pos2+1, pos3-pos2-1);
return GyroscopeData(std::stof(sx), std::stof(sy), std::stof(sz));
}
static inline AccelerometerData parseAccelerometer(const std::string& data) {
const size_t pos1 = data.find(';', 0);
const size_t pos2 = data.find(';', pos1+1);
const size_t pos3 = data.find(';', pos2+1);
Assert::isTrue(pos1 != std::string::npos, "format error");
Assert::isTrue(pos2 != std::string::npos, "format error");
Assert::isTrue(pos3 != std::string::npos, "format error");
const std::string sx = data.substr(0, pos1);
const std::string sy = data.substr(pos1+1, pos2-pos1-1);
const std::string sz = data.substr(pos2+1, pos3-pos2-1);
return AccelerometerData(std::stof(sx), std::stof(sy), std::stof(sz));
}
/** parse the given GroundTruth entry */
static inline GroundTruthID parseGroundTruthTick(const std::string& data) {

View File

@@ -16,6 +16,9 @@ public:
/** the mode denotes the algorithm that is used for grouping VAPs together */
enum class Mode {
/** do NOT group */
DISABLED,
/** group VAPs by setting the MAC's last digit to zero */
LAST_MAC_DIGIT_TO_ZERO,
@@ -91,6 +94,7 @@ public:
MACAddress getBaseMAC(const MACAddress& mac) const {
switch(mode) {
case Mode::DISABLED: return mac;
case Mode::LAST_MAC_DIGIT_TO_ZERO: return lastMacDigitToZero(mac);
default: throw Exception("unsupported vap-grouping mode given");
}

View File

@@ -0,0 +1,30 @@
<map width="70" depth="50">
<floors>
<floor atHeight="0" height="4" name="0. Stock">
<outline>
<polygon name="new" method="0">
<point x="0" y="0"/>
<point x="20" y="0"/>
<point x="20" y="20"/>
<point x="-0" y="20"/>
</polygon>
</outline>
<obstacles>
<line material="3" type="1" x1="9" y1="15" x2="11" y2="15"/>
<line material="3" type="1" x1="15" y1="11" x2="15" y2="9"/>
<line material="3" type="1" x1="9" y1="5" x2="11" y2="5"/>
<line material="3" type="1" x1="5" y1="11" x2="5" y2="9"/>
<line material="3" type="1" x1="14" y1="15" x2="15" y2="14"/>
<line material="3" type="1" x1="15" y1="6" x2="14" y2="5"/>
<line material="3" type="1" x1="5" y1="6" x2="6" y2="5"/>
<line material="3" type="1" x1="5" y1="14" x2="6" y2="15"/>
<line material="3" type="1" x1="21" y1="-1" x2="21" y2="-5"/>
</obstacles>
<underlays/>
<pois/>
<accesspoints/>
<beacons/>
<stairs/>
</floor>
</floors>
</map>

View File

@@ -43,6 +43,9 @@ public:
gp << "set cbrange[0.5:1.5]\n";
gp << "set palette gray negative\n";
gp << "set xlabel 'x'\n";
gp << "set ylabel 'y'\n";
//gp << "set hidden3d front\n";
splot.add(&nodes); nodes.setPointSize(0.5);
@@ -72,13 +75,14 @@ public:
template <typename T> Plot& addEdges(Grid<T>& g) {
// prevent adding edges twice
std::set<size_t> done;
std::set<std::string> done;
for (T& n1 : g) {
for (const T& n2 : g.neighbors(n1)) {
const size_t uid1 = g.getUID(n1);
const size_t uid2 = g.getUID(n2);
size_t edge = uid1+uid2;//std::max(uid1,uid2) << 32 | std::min(uid1,uid2);
//size_t edge = uid1+uid2;
std::string edge = std::to_string(std::max(uid1,uid2)) + std::to_string(std::min(uid1,uid2));
if (done.find(edge) == done.end()) {
K::GnuplotPoint3 p1(n1.x_cm, n1.y_cm, n1.z_cm);
K::GnuplotPoint3 p2(n2.x_cm, n2.y_cm, n2.z_cm);

View File

@@ -0,0 +1,177 @@
#ifdef WITH_TESTS
#include <fstream>
#include "../Tests.h"
#include "Plot.h"
#include "../../floorplan/v2/FloorplanReader.h"
#include "../../grid/factory/v2/GridFactory.h"
#include "../../grid/factory/v2/GridNodeImportance.h"
#include "../../grid/walk/v2/GridWalker.h"
#include "../../grid/walk/v2/modules/WalkModuleHeading.h"
#include "../../grid/walk/v2/modules/WalkModuleHeadingControl.h"
#include "../../grid/walk/v2/modules/WalkModuleFollowDestination.h"
#include "../../grid/walk/v2/modules/WalkModuleRelativePressureControl.h"
#include "../../sensors/radio/WiFiGridNode.h"
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
struct MyNode12456012 : public GridPoint, public GridNode {
MyNode12456012() {;}
MyNode12456012(const int x, const int y, const int z) : GridPoint(x,y,z) {;}
};
struct MyState0012345 : public WalkState, public WalkStateHeading {
MyState0012345(const GridPoint& pos, const Heading& heading, const float headingError) : WalkState(pos), WalkStateHeading(heading, headingError) {;}
};
TEST(GridWalk2HeadingControl, Heading) {
const Heading head0(0, 0, 0, +20);
const Heading head1(0, 0, 20, +20);
const Heading head2(0, 0, 20, 0);
const Heading head3(0, 0, 20, -20);
const Heading head4(0, 0, 0, -20);
const Heading baseHead = 0;
const float diff0 = head0.getDiffHalfRAD(baseHead);
const float diff1 = head1.getDiffHalfRAD(baseHead);
const float diff2 = head2.getDiffHalfRAD(baseHead);
const float diff3 = head3.getDiffHalfRAD(baseHead);
const float diff4 = head4.getDiffHalfRAD(baseHead);
const float d = 0.0001;
ASSERT_NEAR(0, diff2, d);
ASSERT_NEAR(diff1, diff3, d);
ASSERT_NEAR(diff0, diff4, d);
}
TEST(GridWalk2HeadingControl, LIVE_walkHeading) {
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(getDataFile("WalkHeadingMap.xml"));
Grid<MyNode12456012> grid(25);
GridFactory<MyNode12456012> fac(grid);
fac.build(map);
const int sxy = 2000;
// int sxy = 2000;
// for (int x = 0; x < sxy; x += 20) {
// for (int y = 0; y < sxy; y+= 20) {
// grid.add(MyNode12456012(x,y,0));
// }
// }
// for (int x = 0; x < sxy; x += 20) {
// for (int y = 0; y < sxy; y+= 20) {
// MyNode12456012* n1 = (MyNode12456012*)grid.getNodePtrFor(GridPoint(x,y,0));
// // connect horizontally
// for (int dx = -20; dx <= +20; dx += 20) {
// for (int dy = -20; dy <= +20; dy += 20) {
// if (dx == 0 && dy == 0) {continue;}
// MyNode12456012* n2 = (MyNode12456012*)grid.getNodePtrFor(GridPoint(x+dx,y+dy,0));
// if (n2) { grid.connectUniDir(*n1, *n2); }
// }
// }
// }
// }
struct MyControl {
float turnAngle = 0;
} ctrl;
// one particle
struct Particle {
GridPoint pos;
Heading head;
float headErr = 0;
Particle(const GridPoint pos, const Heading head) : pos(pos), head(head) {;}
};
GridWalker<MyNode12456012, MyState0012345> walker;
WalkModuleHeadingControl<MyNode12456012, MyState0012345, MyControl> modPres(&ctrl, 0.0);
walker.addModule(&modPres);
Plot p;
//p.addEdges(grid);
p.addNodes(grid);
// noisy step size
std::minstd_rand gen;
std::normal_distribution<float> dist(0.75, 0.10);
for (float rad = 0; rad < 6*M_PI; rad += M_PI*0.125) {
// setup particles
std::vector<Particle> particles;
for (int i = 0; i < 75; ++i) {
particles.push_back( Particle(GridPoint(sxy/2, sxy/2, 0), 0.0f) );
}
// run
for (int i = 0; i < 30; ++i) {
ctrl.turnAngle = (i == 0) ? (rad) : (0);
p.clearParticles();
for (Particle& particle : particles) {
// particle -> state
MyState0012345 state(particle.pos, particle.head, particle.headErr);
// process state
const float dist_m = dist(gen);
state = walker.getDestination(grid, state, dist_m);
// state -> particle
particle.head = state.heading.direction;
particle.pos = state.position;
particle.headErr = state.heading.error;
p.addParticle(Point3(particle.pos.x_cm, particle.pos.y_cm, particle.pos.z_cm));
}
Point2 p1(sxy/2, sxy/2);
Point2 p2 = p1 + (Point2(1,0).rotated(rad) * sxy/2);
p.gp << "set arrow 1 from " << p1.x << "," << p1.y << "," << 0 << " to " << p2.x << "," << p2.y << "," << 0 << " front \n";
p.fire();
usleep(1000*33);
}
}
}
#endif

View File

@@ -27,13 +27,13 @@
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
struct MyNode : public GridPoint, public GridNode {
MyNode() {;}
MyNode(const int x, const int y, const int z) : GridPoint(x,y,z) {;}
struct MyNode124234 : public GridPoint, public GridNode {
MyNode124234() {;}
MyNode124234(const int x, const int y, const int z) : GridPoint(x,y,z) {;}
};
struct MyState : public WalkState, public WalkStateRelativePressure {
MyState(const GridPoint& pos, const float hpa) : WalkState(pos), WalkStateRelativePressure(hpa) {;}
struct MyState316123 : public WalkState, public WalkStateRelativePressure {
MyState316123(const GridPoint& pos, const float hpa) : WalkState(pos), WalkStateRelativePressure(hpa) {;}
};
@@ -41,7 +41,7 @@ struct MyState : public WalkState, public WalkStateRelativePressure {
TEST(GridWalk2RelPressure, LIVE_walkHeading) {
Grid<MyNode> grid(20);
Grid<MyNode124234> grid(20);
int sxy = 300;
int sz = 600;
@@ -49,7 +49,7 @@ TEST(GridWalk2RelPressure, LIVE_walkHeading) {
for (int x = 0; x < sxy; x += 40) {
for (int y = 0; y < sxy; y+= 40) {
for (int z = 0; z < sz; z += 20) {
grid.add(MyNode(x,y,z));
grid.add(MyNode124234(x,y,z));
}
}
}
@@ -60,8 +60,8 @@ TEST(GridWalk2RelPressure, LIVE_walkHeading) {
// connect vertically
for (int dz = -20; dz <= +20; dz += 40) {
MyNode* n1 = (MyNode*)grid.getNodePtrFor(GridPoint(x,y,z));
MyNode* n2 = (MyNode*)grid.getNodePtrFor(GridPoint(x,y,z+dz));
MyNode124234* n1 = (MyNode124234*)grid.getNodePtrFor(GridPoint(x,y,z));
MyNode124234* n2 = (MyNode124234*)grid.getNodePtrFor(GridPoint(x,y,z+dz));
if (n1&&n2) {
grid.connectUniDir(*n1, *n2);
}
@@ -71,8 +71,8 @@ TEST(GridWalk2RelPressure, LIVE_walkHeading) {
for (int dx = -40; dx <= +40; dx += 40) {
for (int dy = -40; dy <= +40; dy += 40) {
if (dx == 0 && dy == 0) {continue;}
MyNode* n1 = (MyNode*)grid.getNodePtrFor(GridPoint(x,y,z));
MyNode* n2 = (MyNode*)grid.getNodePtrFor(GridPoint(x+dx,y+dy,z));
MyNode124234* n1 = (MyNode124234*)grid.getNodePtrFor(GridPoint(x,y,z));
MyNode124234* n2 = (MyNode124234*)grid.getNodePtrFor(GridPoint(x+dx,y+dy,z));
if (n1&&n2) {
grid.connectUniDir(*n1, *n2);
}
@@ -92,11 +92,11 @@ TEST(GridWalk2RelPressure, LIVE_walkHeading) {
} ctrl;
GridPoint start(120,120,sz/2);
const MyNode* n = grid.getNodePtrFor(start);
const MyNode124234* n = grid.getNodePtrFor(start);
MyState ms(start, 0);
GridWalker<MyNode, MyState> walker;
WalkModuleRelativePressureControl<MyNode, MyState, MyControl> modPres(&ctrl, 0.1);
MyState316123 ms(start, 0);
GridWalker<MyNode124234, MyState316123> walker;
WalkModuleRelativePressureControl<MyNode124234, MyState316123, MyControl> modPres(&ctrl, 0.1);
walker.addModule(&modPres);
Plot p;
@@ -109,7 +109,7 @@ TEST(GridWalk2RelPressure, LIVE_walkHeading) {
ctrl.barometer.hPaRelativeToT0 = (std::sin(i/25.0)) * 0.3;
ms = walker.getDestination(grid, ms, 0.3);
p.addParticle(ms.startPos.inCentimeter());
p.addParticle(ms.position.inCentimeter());
usleep(1000*50);
p.gp << "set label 97 at screen 0.05, 0.95 ' baro: " << ctrl.barometer.hPaRelativeToT0 << "'\n";

View File

@@ -39,7 +39,7 @@ struct MyNode1239 : public GridPoint, public GridNode, public GridNodeImportance
// ENSURE UNIQUE CLASS NAME
struct MyState23452 : public WalkState, public WalkStateHeading {
MyState23452(const GridPoint& pos, const Heading head) : WalkState(pos), WalkStateHeading(head) {;}
MyState23452(const GridPoint& pos, const Heading head) : WalkState(pos), WalkStateHeading(head, 0) {;}
};
@@ -64,7 +64,7 @@ TEST(GridWalk2, LIVE_error) {
} ctrl;
GridWalker<MyNode1239, MyState23452> walker;
WalkModuleHeadingControl<MyNode1239, MyState23452, Control> modHead(&ctrl);
WalkModuleHeadingControl<MyNode1239, MyState23452, Control> modHead(&ctrl, 3.0f);
walker.addModule(&modHead);
@@ -81,9 +81,9 @@ TEST(GridWalk2, LIVE_error) {
for (int j = 0; j < 100; ++j) {
state = walker.getDestination(grid, state, 0.4);
gp << "set label 1 at screen 0.5,0.5 '" << state.startHeading.getRAD() << "'\n";
gp << "set label 1 at screen 0.5,0.5 '" << state.heading.direction.getRAD() << "'\n";
lines.add(K::GnuplotPoint2(state.startPos.x_cm, state.startPos.y_cm));
lines.add(K::GnuplotPoint2(state.position.x_cm, state.position.y_cm));
gp.draw(plot);
gp.flush();
@@ -147,7 +147,7 @@ TEST(GgridWalk2, LIVE_walkHeading) {
for (int i = 0; i < points.size(); ++i) {
MyState23452 start(points[i], Heading(0.0));
MyState23452 next = walker.getDestination(grid, start, 2.0);
points[i] = next.startPos;
points[i] = next.position;
states.add(K::GnuplotPoint3(points[i].x_cm, points[i].y_cm, points[i].z_cm));
}