huge commit

- worked on about everything
- grid walker using plugable modules
- wifi models
- new distributions
- worked on geometric data-structures
- added typesafe timestamps
- worked on grid-building
- added sensor-classes
- added sensor analysis (step-detection, turn-detection)
- offline data reader
- many test-cases
This commit is contained in:
2016-08-29 08:18:44 +02:00
parent 99ee95ce7b
commit a2c9e575a2
94 changed files with 8298 additions and 257 deletions

View File

@@ -0,0 +1,39 @@
#ifdef WITH_TESTS
#include "../../Tests.h"
#include "../../../sensors/radio/model/WiFiModelLogDistCeiling.h"
TEST(LogDistanceCeilingModel, calc) {
Floorplan::Floor* f0 = new Floorplan::Floor(); f0->atHeight = 0;
Floorplan::Floor* f1 = new Floorplan::Floor(); f1->atHeight = 3;
Floorplan::Floor* f2 = new Floorplan::Floor(); f2->atHeight = 7;
Floorplan::IndoorMap map;
map.floors.push_back(f0);
map.floors.push_back(f1);
map.floors.push_back(f2);
LocatedAccessPoint ap0("00:00:00:00:00:00", Point3(0,0,0));
LocatedAccessPoint ap25("00:00:00:00:00:00", Point3(0,0,2.5));
WiFiModelLogDistCeiling model(-40, 1.0, -8.0, &map);
ASSERT_EQ(-40, model.getRSSI(ap0, Point3(1,0,0)));
ASSERT_EQ(-40, model.getRSSI(ap0, Point3(0,1,0)));
ASSERT_EQ(-40, model.getRSSI(ap0, Point3(0,0,1)));
ASSERT_EQ(-40, model.getRSSI(ap25, Point3(1,0,2.5)));
ASSERT_EQ(-40, model.getRSSI(ap25, Point3(0,1,2.5)));
ASSERT_EQ(-40-8, model.getRSSI(ap25, Point3(0,0,3.5))); // one floor within
ASSERT_EQ(model.getRSSI(ap0, Point3(8,0,0)), model.getRSSI(ap0, Point3(0,8,0)));
ASSERT_EQ(model.getRSSI(ap0, Point3(8,0,0)), model.getRSSI(ap0, Point3(0,0,8))+8+8); // two ceilings within
}
#endif

View File

@@ -0,0 +1,96 @@
#ifdef WITH_TESTS
#include "../../Tests.h"
#include "../../../sensors/radio/VAPGrouper.h"
/** test the RSSI storage. [we use only a single byte due to memory constraints, but allow 0.25 dB steps!] */
TEST(WiFiVAPGrouper, baseMAC) {
VAPGrouper vg(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::AVERAGE);
// first VAP group
const MACAddress ap1B("aa:bb:cc:dd:ee:f0"); // base-mac (last digit zero)
const MACAddress ap10("aa:bb:cc:dd:ee:f3"); // vap 1
const MACAddress ap11("aa:bb:cc:dd:ee:f7"); // vap 2
const MACAddress ap12("aa:bb:cc:dd:ee:ff"); // vap 3
// second VAP group
const MACAddress ap2B("ff:ee:dd:cc:bb:a0"); // base-mac (last digit zero)
const MACAddress ap20("ff:ee:dd:cc:bb:a9"); // vap 1
const MACAddress ap21("ff:ee:dd:cc:bb:a8"); // vap 2
const MACAddress ap22("ff:ee:dd:cc:bb:ae"); // vap 3
// all in first group must equal
ASSERT_EQ( ap1B, vg.getBaseMAC(ap10) );
ASSERT_EQ( vg.getBaseMAC(ap10), vg.getBaseMAC(ap11) );
ASSERT_EQ( vg.getBaseMAC(ap11), vg.getBaseMAC(ap12) );
// all in second group must equal
ASSERT_EQ( ap2B, vg.getBaseMAC(ap20) );
ASSERT_EQ( vg.getBaseMAC(ap20), vg.getBaseMAC(ap21) );
ASSERT_EQ( vg.getBaseMAC(ap21), vg.getBaseMAC(ap22) );
// first and second must be different
ASSERT_NE( vg.getBaseMAC(ap10), vg.getBaseMAC(ap20) );
}
TEST(WiFiVAPGrouper, aggregation) {
VAPGrouper vgAvg(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::AVERAGE);
VAPGrouper vgMedian(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MEDIAN);
VAPGrouper vgMax(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MAXIMUM);
WiFiMeasurements scan;
const AccessPoint vap10("aa:bb:cc:dd:ee:f3");
const AccessPoint vap11("aa:bb:cc:dd:ee:f5");
const AccessPoint vap12("aa:bb:cc:dd:ee:fe");
const AccessPoint vap20("01:bb:cc:dd:11:a3");
const AccessPoint vap21("01:bb:cc:dd:11:a5");
const AccessPoint vap22("01:bb:cc:dd:11:ae");
const AccessPoint vap23("01:bb:cc:dd:11:ae");
scan.entries.push_back(WiFiMeasurement(vap10, -75, Timestamp::fromMS(11)));
scan.entries.push_back(WiFiMeasurement(vap11, -70, Timestamp::fromMS(12)));
scan.entries.push_back(WiFiMeasurement(vap12, -71, Timestamp::fromMS(13)));
scan.entries.push_back(WiFiMeasurement(vap20, -69, Timestamp::fromMS(22)));
scan.entries.push_back(WiFiMeasurement(vap21, -61, Timestamp::fromMS(25)));
scan.entries.push_back(WiFiMeasurement(vap22, -62, Timestamp::fromMS(23)));
scan.entries.push_back(WiFiMeasurement(vap23, -60, Timestamp::fromMS(20)));
const WiFiMeasurements gAvg = vgAvg.group(scan);
const WiFiMeasurements gMedian = vgMedian.group(scan);
const WiFiMeasurements gMax = vgMax.group(scan);
// correct number of grouped entries?
ASSERT_EQ(2, gAvg.entries.size());
ASSERT_EQ(2, gMedian.entries.size());
ASSERT_EQ(2, gMax.entries.size());
// correct average values?
ASSERT_EQ(-72, gAvg.entries.back().getRSSI());
ASSERT_EQ(-63, gAvg.entries.front().getRSSI());
ASSERT_EQ(Timestamp::fromMS(11), gAvg.entries.back().getTimestamp());
ASSERT_EQ(Timestamp::fromMS(22), gAvg.entries.front().getTimestamp());
// correct median values?
ASSERT_EQ(-71, gMedian.entries.back().getRSSI());
ASSERT_EQ(-61.5, gMedian.entries.front().getRSSI());
ASSERT_EQ(Timestamp::fromMS(11), gMedian.entries.back().getTimestamp());
ASSERT_EQ(Timestamp::fromMS(22), gMedian.entries.front().getTimestamp());
// correct max values?
ASSERT_EQ(-70, gMax.entries.back().getRSSI());
ASSERT_EQ(-60, gMax.entries.front().getRSSI());
ASSERT_EQ(Timestamp::fromMS(11), gMax.entries.back().getTimestamp());
ASSERT_EQ(Timestamp::fromMS(22), gMax.entries.front().getTimestamp());
}
#endif

View File

@@ -0,0 +1,427 @@
#ifdef WITH_TESTS
#include "../../Tests.h"
#include "../../../sensors/offline/OfflineAndroid.h"
#include "../../../sensors/radio/WiFiProbabilityFree.h"
#include "../../../sensors/radio/model/WiFiModelLogDist.h"
#include "../../../sensors/radio/model/WiFiModelLogDistCeiling.h"
#include "../../../sensors/radio/VAPGrouper.h"
#include "../../../geo/Point3.h"
#include "../../../math/Interpolator.h"
#include "../../../floorplan/v2/FloorplanReader.h"
#include <KLib/math/statistics/Statistics.h>
#include <KLib/math/optimization/NumOptAlgoDownhillSimplex.h>
std::vector<std::string> getTrainingFiles() {
// all training files
return {
// "train/walks/path4_galaxy_forward.dat",
// "train/walks/path4_galaxy_backward.dat",
// "train/walks/path3_galaxy_forward.dat",
// "train/walks/path3_galaxy_backward.dat",
// "train/walks/path2_galaxy_forward.dat",
// "train/walks/path2_galaxy_backward.dat",
// "train/walks/path1_galaxy_forward.dat",
// "train/walks/path1_galaxy_backward.dat",
"train/walks/path4_nexus_forward.dat",
"train/walks/path4_nexus_backward.dat",
"train/walks/path3_nexus_forward.dat",
"train/walks/path3_nexus_backward.dat",
"train/walks/path2_nexus_forward.dat",
"train/walks/path2_nexus_backward.dat",
"train/walks/path1_nexus_forward.dat",
"train/walks/path1_nexus_backward.dat",
};
}
struct APParams {
float txp;
float exp;
float waf;
float offset;
};
/*
WiFiObservation groupVAP(const WiFiObservation& inp) {
struct Debug {
std::string mac;
float rssi;
Debug(const std::string& mac, const float rssi) : mac(mac), rssi(rssi) {;}
};
struct Params{
float rssiSum = 0;
int cnt = 0;
std::vector<Debug> single;
};
std::unordered_map<MACAddress, Params> map;
WiFiObservation out;
for (const WiFiObservationEntry& e : inp.entries) {
std::string mac = e.mac.asString();
mac[mac.size()-1] = '9';
map[mac].rssiSum += e.rssi;
map[mac].cnt += 1;
map[mac].single.push_back(Debug(e.mac.asString(), e.rssi));
}
for (auto it : map) {
const Params& params = it.second;
WiFiObservationEntry entry(it.first, params.rssiSum / params.cnt);
out.entries.push_back(entry);
}
return out;
}
*/
struct WiFiEvalTestBase {
// all training files
std::vector<std::string> files = getTrainingFiles();
// parser for each file
std::vector<OfflineAndroid> parsers;
// load the floorplan
Floorplan::IndoorMap* im = Floorplan::Reader::readFromFile(getDataFile("SHL.xml"));
// all access points within the floorplan
std::vector<LocatedAccessPoint> aps;
std::unordered_map<MACAddress, LocatedAccessPoint> apsMap;
WiFiEvalTestBase() {
for (Floorplan::Floor* f : im->floors) {
for (Floorplan::AccessPoint* ap : f->accesspoints) {
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:A4:A9") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:77:EB:99") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:82:79") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:6E:F9") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:46:09") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:64:99") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:3A:A9") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:DB:69") {continue;}
aps.push_back(LocatedAccessPoint(*ap));
apsMap.insert(std::pair<MACAddress, LocatedAccessPoint>(ap->mac, LocatedAccessPoint(*ap)));
}
}
for (const std::string& file : files) {
parsers.push_back(OfflineAndroid(getDataFile(file)));
}
}
double getError(APParams params) {
if (params.waf > 0) {return 99999;}
// params.txp = -40;
// params.offset = -6;
double dB_err = 0;
int cnt = 0;
// model
WiFiModelLogDistCeiling model(params.txp, params.exp, params.waf, im);
VAPGrouper vg(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::AVERAGE);
// evaluate each training file
for (const OfflineAndroid& parser : parsers) {
// ground-truth interpolator
Interpolator<Timestamp, Point3> interpol = parser.getWalkedPathInterpolatorCM();
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& _obs : parser.getWiFi()) {
WiFiMeasurements obs = vg.group(_obs.data);
// ground-truth at the time of measurement
const Point3 pos = interpol.get(_obs.ts) / 100;
// dB diff
for (const WiFiMeasurement& wifiObs : obs.entries) {
// only use configured APs
auto it = apsMap.find(wifiObs.getAP().getMAC());
if (it == apsMap.end()) {continue;}
// get model RSSI
const float mdlRSSI = model.getRSSI(it->second, pos) + params.offset;
// difference to scan RSSI
const float diff = std::abs(mdlRSSI - wifiObs.getRSSI());
//stats[wifiObs.mac].add(diff);
dB_err += diff;
++cnt;
}
}
}
return dB_err / cnt;
}
std::unordered_map<MACAddress, K::Statistics<float>> getStats(APParams params) {
std::unordered_map<MACAddress, K::Statistics<float>> stats;
// model
WiFiModelLogDistCeiling model(params.txp, params.exp, params.waf, im);
// evaluate each training file
for (const OfflineAndroid& parser : parsers) {
// ground-truth interpolator
Interpolator<Timestamp, Point3> interpol = parser.getWalkedPathInterpolatorCM();
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& obs : parser.getWiFi()) {
// ground-truth at the time of measurement
const Point3 pos = interpol.get(obs.ts) / 100;
// dB diff
for (const WiFiMeasurement& wifiObs : obs.data.entries) {
// only use configured APs
auto it = apsMap.find(wifiObs.getAP().getMAC());
if (it == apsMap.end()) {continue;}
// get model RSSI
const float mdlRSSI = model.getRSSI(it->second, pos) + params.offset;
// difference to scan RSSI
const float diff = std::abs(mdlRSSI - wifiObs.getRSSI());
stats[wifiObs.getAP().getMAC()].add(diff);
}
}
}
return stats;
}
};
TEST(WiFiEval, VAP) {
WiFiEvalTestBase base;
float errSum = 0;
int cnt = 0;
VAPGrouper vg(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::AVERAGE);
// evaluate each training file
for (const OfflineAndroid& parser : base.parsers) {
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& obs : parser.getWiFi()) {
WiFiMeasurements obsUngrouped = obs.data;
WiFiMeasurements obsGrouped = vg.group(obsUngrouped);
struct Comp {
float rssiUngrouped = 0;
float rssiGrouped = 0;
};
std::unordered_map<MACAddress, Comp> map;
for (const WiFiMeasurement& entryUngrouped : obsUngrouped.entries) {
map[entryUngrouped.getAP().getMAC()].rssiUngrouped = entryUngrouped.getRSSI();
}
for (const WiFiMeasurement& entryGrouped : obsGrouped.entries) {
map[entryGrouped.getAP().getMAC()].rssiGrouped = entryGrouped.getRSSI();
}
for (auto it : map) {
Comp c = it.second;
if (c.rssiUngrouped != 0 && c.rssiGrouped != 0) {
const float diff = std::abs(c.rssiGrouped - c.rssiUngrouped);
errSum += diff;
++cnt;
}
}
}
}
std::cout << "average diff is: " << (errSum/cnt) << std::endl;
}
TEST(WiFiEval, optimize) {
WiFiEvalTestBase base;
APParams params;
params.exp = 2;
params.txp = -40;
params.waf = -4;
params.offset = -4;
auto func = [&] (const float* data) {
APParams* params = (APParams*) data;
return base.getError(*params);
};
K::NumOptAlgoDownhillSimplex<float, 4> opt;
opt.setMaxIterations(100);
opt.setNumRestarts(3);
opt.calculateOptimum(func, (float*) &params);
std::cout << params.exp << ":" << params.txp << ":" << params.waf << ":" << params.offset << std::endl;
std::cout << base.getError(params) << std::endl;
for (auto it : base.getStats(params)) {
std::cout << it.first.asString() << ": " << it.second.asString() << std::endl;
}
}
TEST(aaiFiEval, getBestTXP_EXP) {
// load the floorplan
Floorplan::IndoorMap* im = Floorplan::Reader::readFromFile(getDataFile("SHL.xml"));
// all access points within the floorplan
std::vector<LocatedAccessPoint> aps;
std::unordered_map<MACAddress, LocatedAccessPoint> apsMap;
for (Floorplan::Floor* f : im->floors) {
for (Floorplan::AccessPoint* ap : f->accesspoints) {
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:A4:A9") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:64:99") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:82:79") {continue;}
aps.push_back(LocatedAccessPoint(*ap));
apsMap.insert(std::pair<MACAddress, LocatedAccessPoint>(ap->mac, LocatedAccessPoint(*ap)));
}
}
std::vector<std::string> files = getTrainingFiles();
// parser each file
std::vector<OfflineAndroid> parsers;
for (const std::string& file : files) {
parsers.push_back(OfflineAndroid(getDataFile(file)));
}
std::unordered_map<MACAddress, K::Statistics<float>> stats;
const float sigma = 8;
const float waf = -4;
const float txp = -40;
// eval using different parameters
for (float exp = 1.5; exp < 3.5; exp += 0.05) {
//){ float exp = 2.5;
double err = 0;
double sum = 0;
int cnt = 0;
int apCnt = 0;
// model
//WiFiModelLogDist model(-40, exp);
WiFiModelLogDistCeiling model(txp, exp, waf, im);
WiFiObserverFree observer(sigma, model, aps);
// evaluate each training file
for (const OfflineAndroid& parser : parsers) {
// ground-truth interpolator
Interpolator<Timestamp, Point3> interpol = parser.getWalkedPathInterpolatorCM();
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& obs : parser.getWiFi()) {
// ground-truth at the time of measurement
const Point3 pos = interpol.get(obs.ts) / 100;
// probability
sum += std::log(observer.getProbability(pos, obs.ts, obs.data, 0));
++cnt;
// dB diff
for (const WiFiMeasurement& wifiObs : obs.data.entries) {
auto it = apsMap.find(wifiObs.getAP().getMAC());
if (it == apsMap.end()) {continue;}
const float mdlRSSI = model.getRSSI(it->second, pos);
const float diff = std::abs(mdlRSSI - wifiObs.getRSSI());
//stats[wifiObs.mac].add(diff);
err += diff;
++apCnt;
}
}
}
std::cout << exp << ":" << (sum/cnt) << std::endl;
std::cout << exp << ":" << (err/apCnt) << std::endl;
std::cout << std::endl;
int i = 0; (void) i;
}
// for (auto it : stats) {
// std::cout << it.first.asString() << ": " << it.second.asString() << std::endl;
// }
}
#endif

View File

@@ -1,9 +1,13 @@
#ifdef WITH_TESTS
#include "../../Tests.h"
#include "../../../sensors/radio/WiFiGridEstimator.h"
#include "../../../sensors/radio/model/WiFiModelLogDist.h"
#include "../../../sensors/radio/WiFiObservation.h"
#include "../../../sensors/radio/WiFiGridEstimator.h"
#include "../../../sensors/radio/WiFiMeasurements.h"
#include "../../../sensors/radio/WiFiProbability.h"
#include "../../../sensors/radio/WiFiProbabilityFree.h"
#include "../../../sensors/radio/WiFiProbabilityGrid.h"
#include "../../../grid/Grid.h"
@@ -38,7 +42,7 @@ TEST(WiFiGridNodeAP, rssiLimits) {
/** gnuplot debug dumps */
TEST(WiFiGridModelLogDist, create) {
int gs = 20;
@@ -77,17 +81,19 @@ TEST(WiFiGridModelLogDist, create) {
WiFiGridEstimator::dump(grid, "00:00:00:00:00:03", "/tmp/ap3.gp");
WiFiGridEstimator::dump(grid, "00:00:00:00:00:04", "/tmp/ap4.gp");
WiFiObservation obs;
obs.entries.push_back(WiFiObservationEntry(MACAddress("00:00:00:00:00:01"), -55));
obs.entries.push_back(WiFiObservationEntry(MACAddress("00:00:00:00:00:02"), -55));
obs.entries.push_back(WiFiObservationEntry(MACAddress("00:00:00:00:00:03"), -55));
obs.entries.push_back(WiFiObservationEntry(MACAddress("00:00:00:00:00:04"), -55));
Timestamp ts = Timestamp::fromMS(10);
WiFiObserver observer(5.0f);
WiFiMeasurements obs;
obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:01"), -55, ts));
obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:02"), -55, ts));
obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:03"), -55, ts));
obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:04"), -55, ts));
WiFiObserverGrid observer(5.0f);
const MyNode& gn = grid.getNodeFor(GridPoint(1000,1000,0));
const float p = observer.getProbability(gn, obs, 0);
const float p = observer.getProbability(gn, ts, obs);
observer.dump(grid, obs, "/tmp/eval1.gp");
observer.dump(grid, ts, obs, "/tmp/eval1.gp");
int i = 0; (void) i;