This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/tests/sensors/radio/TestWiFiEval.cpp
FrankE a2c9e575a2 huge commit
- worked on about everything
- grid walker using plugable modules
- wifi models
- new distributions
- worked on geometric data-structures
- added typesafe timestamps
- worked on grid-building
- added sensor-classes
- added sensor analysis (step-detection, turn-detection)
- offline data reader
- many test-cases
2016-08-29 08:18:44 +02:00

428 lines
10 KiB
C++

#ifdef WITH_TESTS
#include "../../Tests.h"
#include "../../../sensors/offline/OfflineAndroid.h"
#include "../../../sensors/radio/WiFiProbabilityFree.h"
#include "../../../sensors/radio/model/WiFiModelLogDist.h"
#include "../../../sensors/radio/model/WiFiModelLogDistCeiling.h"
#include "../../../sensors/radio/VAPGrouper.h"
#include "../../../geo/Point3.h"
#include "../../../math/Interpolator.h"
#include "../../../floorplan/v2/FloorplanReader.h"
#include <KLib/math/statistics/Statistics.h>
#include <KLib/math/optimization/NumOptAlgoDownhillSimplex.h>
std::vector<std::string> getTrainingFiles() {
// all training files
return {
// "train/walks/path4_galaxy_forward.dat",
// "train/walks/path4_galaxy_backward.dat",
// "train/walks/path3_galaxy_forward.dat",
// "train/walks/path3_galaxy_backward.dat",
// "train/walks/path2_galaxy_forward.dat",
// "train/walks/path2_galaxy_backward.dat",
// "train/walks/path1_galaxy_forward.dat",
// "train/walks/path1_galaxy_backward.dat",
"train/walks/path4_nexus_forward.dat",
"train/walks/path4_nexus_backward.dat",
"train/walks/path3_nexus_forward.dat",
"train/walks/path3_nexus_backward.dat",
"train/walks/path2_nexus_forward.dat",
"train/walks/path2_nexus_backward.dat",
"train/walks/path1_nexus_forward.dat",
"train/walks/path1_nexus_backward.dat",
};
}
struct APParams {
float txp;
float exp;
float waf;
float offset;
};
/*
WiFiObservation groupVAP(const WiFiObservation& inp) {
struct Debug {
std::string mac;
float rssi;
Debug(const std::string& mac, const float rssi) : mac(mac), rssi(rssi) {;}
};
struct Params{
float rssiSum = 0;
int cnt = 0;
std::vector<Debug> single;
};
std::unordered_map<MACAddress, Params> map;
WiFiObservation out;
for (const WiFiObservationEntry& e : inp.entries) {
std::string mac = e.mac.asString();
mac[mac.size()-1] = '9';
map[mac].rssiSum += e.rssi;
map[mac].cnt += 1;
map[mac].single.push_back(Debug(e.mac.asString(), e.rssi));
}
for (auto it : map) {
const Params& params = it.second;
WiFiObservationEntry entry(it.first, params.rssiSum / params.cnt);
out.entries.push_back(entry);
}
return out;
}
*/
struct WiFiEvalTestBase {
// all training files
std::vector<std::string> files = getTrainingFiles();
// parser for each file
std::vector<OfflineAndroid> parsers;
// load the floorplan
Floorplan::IndoorMap* im = Floorplan::Reader::readFromFile(getDataFile("SHL.xml"));
// all access points within the floorplan
std::vector<LocatedAccessPoint> aps;
std::unordered_map<MACAddress, LocatedAccessPoint> apsMap;
WiFiEvalTestBase() {
for (Floorplan::Floor* f : im->floors) {
for (Floorplan::AccessPoint* ap : f->accesspoints) {
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:A4:A9") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:77:EB:99") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:82:79") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:6E:F9") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:46:09") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:64:99") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:3A:A9") {continue;}
if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:DB:69") {continue;}
aps.push_back(LocatedAccessPoint(*ap));
apsMap.insert(std::pair<MACAddress, LocatedAccessPoint>(ap->mac, LocatedAccessPoint(*ap)));
}
}
for (const std::string& file : files) {
parsers.push_back(OfflineAndroid(getDataFile(file)));
}
}
double getError(APParams params) {
if (params.waf > 0) {return 99999;}
// params.txp = -40;
// params.offset = -6;
double dB_err = 0;
int cnt = 0;
// model
WiFiModelLogDistCeiling model(params.txp, params.exp, params.waf, im);
VAPGrouper vg(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::AVERAGE);
// evaluate each training file
for (const OfflineAndroid& parser : parsers) {
// ground-truth interpolator
Interpolator<Timestamp, Point3> interpol = parser.getWalkedPathInterpolatorCM();
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& _obs : parser.getWiFi()) {
WiFiMeasurements obs = vg.group(_obs.data);
// ground-truth at the time of measurement
const Point3 pos = interpol.get(_obs.ts) / 100;
// dB diff
for (const WiFiMeasurement& wifiObs : obs.entries) {
// only use configured APs
auto it = apsMap.find(wifiObs.getAP().getMAC());
if (it == apsMap.end()) {continue;}
// get model RSSI
const float mdlRSSI = model.getRSSI(it->second, pos) + params.offset;
// difference to scan RSSI
const float diff = std::abs(mdlRSSI - wifiObs.getRSSI());
//stats[wifiObs.mac].add(diff);
dB_err += diff;
++cnt;
}
}
}
return dB_err / cnt;
}
std::unordered_map<MACAddress, K::Statistics<float>> getStats(APParams params) {
std::unordered_map<MACAddress, K::Statistics<float>> stats;
// model
WiFiModelLogDistCeiling model(params.txp, params.exp, params.waf, im);
// evaluate each training file
for (const OfflineAndroid& parser : parsers) {
// ground-truth interpolator
Interpolator<Timestamp, Point3> interpol = parser.getWalkedPathInterpolatorCM();
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& obs : parser.getWiFi()) {
// ground-truth at the time of measurement
const Point3 pos = interpol.get(obs.ts) / 100;
// dB diff
for (const WiFiMeasurement& wifiObs : obs.data.entries) {
// only use configured APs
auto it = apsMap.find(wifiObs.getAP().getMAC());
if (it == apsMap.end()) {continue;}
// get model RSSI
const float mdlRSSI = model.getRSSI(it->second, pos) + params.offset;
// difference to scan RSSI
const float diff = std::abs(mdlRSSI - wifiObs.getRSSI());
stats[wifiObs.getAP().getMAC()].add(diff);
}
}
}
return stats;
}
};
TEST(WiFiEval, VAP) {
WiFiEvalTestBase base;
float errSum = 0;
int cnt = 0;
VAPGrouper vg(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::AVERAGE);
// evaluate each training file
for (const OfflineAndroid& parser : base.parsers) {
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& obs : parser.getWiFi()) {
WiFiMeasurements obsUngrouped = obs.data;
WiFiMeasurements obsGrouped = vg.group(obsUngrouped);
struct Comp {
float rssiUngrouped = 0;
float rssiGrouped = 0;
};
std::unordered_map<MACAddress, Comp> map;
for (const WiFiMeasurement& entryUngrouped : obsUngrouped.entries) {
map[entryUngrouped.getAP().getMAC()].rssiUngrouped = entryUngrouped.getRSSI();
}
for (const WiFiMeasurement& entryGrouped : obsGrouped.entries) {
map[entryGrouped.getAP().getMAC()].rssiGrouped = entryGrouped.getRSSI();
}
for (auto it : map) {
Comp c = it.second;
if (c.rssiUngrouped != 0 && c.rssiGrouped != 0) {
const float diff = std::abs(c.rssiGrouped - c.rssiUngrouped);
errSum += diff;
++cnt;
}
}
}
}
std::cout << "average diff is: " << (errSum/cnt) << std::endl;
}
TEST(WiFiEval, optimize) {
WiFiEvalTestBase base;
APParams params;
params.exp = 2;
params.txp = -40;
params.waf = -4;
params.offset = -4;
auto func = [&] (const float* data) {
APParams* params = (APParams*) data;
return base.getError(*params);
};
K::NumOptAlgoDownhillSimplex<float, 4> opt;
opt.setMaxIterations(100);
opt.setNumRestarts(3);
opt.calculateOptimum(func, (float*) &params);
std::cout << params.exp << ":" << params.txp << ":" << params.waf << ":" << params.offset << std::endl;
std::cout << base.getError(params) << std::endl;
for (auto it : base.getStats(params)) {
std::cout << it.first.asString() << ": " << it.second.asString() << std::endl;
}
}
TEST(aaiFiEval, getBestTXP_EXP) {
// load the floorplan
Floorplan::IndoorMap* im = Floorplan::Reader::readFromFile(getDataFile("SHL.xml"));
// all access points within the floorplan
std::vector<LocatedAccessPoint> aps;
std::unordered_map<MACAddress, LocatedAccessPoint> apsMap;
for (Floorplan::Floor* f : im->floors) {
for (Floorplan::AccessPoint* ap : f->accesspoints) {
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6C:A4:A9") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:64:99") {continue;}
// if (Floorplan::toUpperCase(ap->mac) == "00:04:96:6B:82:79") {continue;}
aps.push_back(LocatedAccessPoint(*ap));
apsMap.insert(std::pair<MACAddress, LocatedAccessPoint>(ap->mac, LocatedAccessPoint(*ap)));
}
}
std::vector<std::string> files = getTrainingFiles();
// parser each file
std::vector<OfflineAndroid> parsers;
for (const std::string& file : files) {
parsers.push_back(OfflineAndroid(getDataFile(file)));
}
std::unordered_map<MACAddress, K::Statistics<float>> stats;
const float sigma = 8;
const float waf = -4;
const float txp = -40;
// eval using different parameters
for (float exp = 1.5; exp < 3.5; exp += 0.05) {
//){ float exp = 2.5;
double err = 0;
double sum = 0;
int cnt = 0;
int apCnt = 0;
// model
//WiFiModelLogDist model(-40, exp);
WiFiModelLogDistCeiling model(txp, exp, waf, im);
WiFiObserverFree observer(sigma, model, aps);
// evaluate each training file
for (const OfflineAndroid& parser : parsers) {
// ground-truth interpolator
Interpolator<Timestamp, Point3> interpol = parser.getWalkedPathInterpolatorCM();
// evaluate each WiFi reading
for (const OfflineEntry<WiFiMeasurements>& obs : parser.getWiFi()) {
// ground-truth at the time of measurement
const Point3 pos = interpol.get(obs.ts) / 100;
// probability
sum += std::log(observer.getProbability(pos, obs.ts, obs.data, 0));
++cnt;
// dB diff
for (const WiFiMeasurement& wifiObs : obs.data.entries) {
auto it = apsMap.find(wifiObs.getAP().getMAC());
if (it == apsMap.end()) {continue;}
const float mdlRSSI = model.getRSSI(it->second, pos);
const float diff = std::abs(mdlRSSI - wifiObs.getRSSI());
//stats[wifiObs.mac].add(diff);
err += diff;
++apCnt;
}
}
}
std::cout << exp << ":" << (sum/cnt) << std::endl;
std::cout << exp << ":" << (err/apCnt) << std::endl;
std::cout << std::endl;
int i = 0; (void) i;
}
// for (auto it : stats) {
// std::cout << it.first.asString() << ": " << it.second.asString() << std::endl;
// }
}
#endif