added several grid-walks
added new helper methods/classes (e.g. for heading) new test cases optimize the dijkstra cleanups/refactoring added timed-benchmarks to the log many more...
This commit is contained in:
@@ -5,9 +5,11 @@
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <unordered_set>
|
||||
#include <list>
|
||||
|
||||
#include "DijkstraStructs.h"
|
||||
#include "../../misc/Debug.h"
|
||||
#include "../../misc/Time.h"
|
||||
|
||||
#include <KLib/Assertions.h>
|
||||
|
||||
@@ -19,26 +21,11 @@ template <typename T> class Dijkstra {
|
||||
/** all already processed edges */
|
||||
std::unordered_set<DijkstraEdge<T>> usedEdges;
|
||||
|
||||
/** to-be-processed nodes (USE LINKED LIST INSTEAD?!) */
|
||||
/** to-be-processed nodes (NOTE: using std::list here was SLOWER!) */
|
||||
std::vector<DijkstraNode<T>*> toBeProcessedNodes;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
/** get (or create) a new node for the given user-node */
|
||||
DijkstraNode<T>* getNode(const T* userNode) {
|
||||
if (nodes.find(userNode) == nodes.end()) {
|
||||
DijkstraNode<T>* dn = new DijkstraNode<T>(userNode);
|
||||
nodes[userNode] = dn;
|
||||
}
|
||||
return nodes[userNode];
|
||||
}
|
||||
|
||||
/** get the edge (bi-directional) between the two given nodes */
|
||||
DijkstraEdge<T> getEdge(const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) {
|
||||
return DijkstraEdge<T>(n1, n2);
|
||||
}
|
||||
|
||||
/** get the dijkstra-pendant for the given user-node */
|
||||
DijkstraNode<T>* getNode(const T& userNode) {
|
||||
return nodes[&userNode];
|
||||
@@ -50,7 +37,10 @@ public:
|
||||
// NOTE: end is currently ignored!
|
||||
// runs until all nodes were evaluated
|
||||
|
||||
Log::add("Dijkstra", "calculating dijkstra from " + (std::string)start);
|
||||
// compare two nodes by their distance from the start
|
||||
static auto comp = [] (const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) {return n1->cumWeight < n2->cumWeight;};
|
||||
|
||||
Log::add("Dijkstra", "calculating dijkstra from " + (std::string)start + " to ALL OTHER nodes");
|
||||
|
||||
// cleanup
|
||||
toBeProcessedNodes.clear();
|
||||
@@ -71,10 +61,14 @@ public:
|
||||
while(!toBeProcessedNodes.empty()) {
|
||||
|
||||
// get the next to-be-processed node
|
||||
DijkstraNode<T>* dnSrc = toBeProcessedNodes[0];
|
||||
const auto min = std::min_element(toBeProcessedNodes.begin(), toBeProcessedNodes.end(), comp);
|
||||
DijkstraNode<T>* dnSrc = *min;
|
||||
|
||||
// stop when end was reached??
|
||||
//if (dnSrc->element == &end) {break;}
|
||||
|
||||
// and remove him from the list
|
||||
toBeProcessedNodes.erase(toBeProcessedNodes.begin());
|
||||
toBeProcessedNodes.erase(min);
|
||||
|
||||
// process each neighbor of the current element
|
||||
for (int i = 0; i < acc.getNumNeighbors(*dnSrc->element); ++i) {
|
||||
@@ -90,7 +84,7 @@ public:
|
||||
DijkstraNode<T>* dnDst = getNode(dst);
|
||||
|
||||
// get-or-create the edge describing the connection
|
||||
DijkstraEdge<T> edge = getEdge(dnSrc, dnDst);
|
||||
const DijkstraEdge<T> edge = getEdge(dnSrc, dnDst);
|
||||
|
||||
// was this edge already processed? -> skip it
|
||||
if (usedEdges.find(edge) != usedEdges.end()) {continue;}
|
||||
@@ -98,6 +92,8 @@ public:
|
||||
// otherwise: remember it
|
||||
usedEdges.insert(edge);
|
||||
|
||||
|
||||
|
||||
// and add the node for later processing
|
||||
toBeProcessedNodes.push_back(dnDst);
|
||||
|
||||
@@ -110,18 +106,30 @@ public:
|
||||
|
||||
}
|
||||
|
||||
// sort the nodes by distance-from-start (shortest first)
|
||||
auto comp = [] (const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) {return n1->cumWeight < n2->cumWeight;};
|
||||
std::sort(toBeProcessedNodes.begin(), toBeProcessedNodes.end(), comp);
|
||||
|
||||
}
|
||||
|
||||
Log::add("Dijkstra", "processed " + std::to_string(nodes.size()) + " nodes");
|
||||
|
||||
// cleanup
|
||||
// reclaim temporal memory
|
||||
toBeProcessedNodes.clear();
|
||||
usedEdges.clear();
|
||||
|
||||
Log::add("Dijkstra", "processed " + std::to_string(nodes.size()) + " nodes");
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/** get (or create) a new node for the given user-node */
|
||||
inline DijkstraNode<T>* getNode(const T* userNode) {
|
||||
if (nodes.find(userNode) == nodes.end()) {
|
||||
DijkstraNode<T>* dn = new DijkstraNode<T>(userNode);
|
||||
nodes[userNode] = dn;
|
||||
}
|
||||
return nodes[userNode];
|
||||
}
|
||||
|
||||
/** get the edge (bi-directional) between the two given nodes */
|
||||
inline DijkstraEdge<T> getEdge(const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) const {
|
||||
return DijkstraEdge<T>(n1, n2);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
58
nav/dijkstra/DijkstraPath.h
Normal file
58
nav/dijkstra/DijkstraPath.h
Normal file
@@ -0,0 +1,58 @@
|
||||
#ifndef DIJKSTRAPATH_H
|
||||
#define DIJKSTRAPATH_H
|
||||
|
||||
#include "DijkstraStructs.h"
|
||||
|
||||
/**
|
||||
* describes a dijkstra-generated path between end and start.
|
||||
* allows KNN searches for points within this path.
|
||||
*
|
||||
*/
|
||||
template <typename T> class DijkstraPath {
|
||||
|
||||
private:
|
||||
|
||||
/** the constructed path */
|
||||
std::vector<DijkstraNode<T>*> path;
|
||||
|
||||
public:
|
||||
|
||||
/** ctor from end- to start-node */
|
||||
DijkstraPath(DijkstraNode<T>* end, DijkstraNode<T>* start) {
|
||||
|
||||
// follow the path from the end to the start
|
||||
DijkstraNode<T>* curNode = end;
|
||||
while (curNode != start) {
|
||||
path.push_back(curNode);
|
||||
curNode = curNode->previous;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** NANOFLANN: number of elements in the path */
|
||||
inline int kdtree_get_point_count() const {
|
||||
return path.size();
|
||||
}
|
||||
|
||||
/** NANOFLANN: use default bbox */
|
||||
template <class BBOX> inline bool kdtree_get_bbox(BBOX& bb) const {
|
||||
(void) bb; return false;
|
||||
}
|
||||
|
||||
/** NANOFLANN: get the idx-th elements dim-th dimension */
|
||||
inline float kdtree_get_pt(const size_t idx, const int dim) const {
|
||||
return (*(path[idx]->element))[dim];
|
||||
}
|
||||
|
||||
/** NANOFLANN: get the distance between the given point and the idx-th element */
|
||||
inline float kdtree_distance(const float* p1, const size_t idx_p2, size_t) const {
|
||||
const DijkstraNode<T>* n = path[idx_p2];
|
||||
const float d0 = p1[0] - (*(n->element))[0];
|
||||
const float d1 = p1[1] - (*(n->element))[1];
|
||||
const float d2 = p1[2] - (*(n->element))[2];
|
||||
return (d0*d0) + (d1*d1) + (d2*d2);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // DIJKSTRAPATH_H
|
||||
@@ -20,23 +20,20 @@ template <typename T> struct DijkstraNode {
|
||||
float cumWeight;
|
||||
|
||||
|
||||
// /** ctor */
|
||||
// DijkstraNode() : element(nullptr), previous(), cumWeight(INF) {;}
|
||||
|
||||
/** ctor */
|
||||
DijkstraNode(const T* element) : element(element), previous(), cumWeight(INF) {;}
|
||||
|
||||
|
||||
/** equal? (bi-dir) */
|
||||
bool operator == (const DijkstraNode<T>& other) {
|
||||
return element == other.element;
|
||||
}
|
||||
// /** equal? (bi-dir) */
|
||||
// bool operator == (const DijkstraNode<T>& other) const {
|
||||
// return element == other.element;
|
||||
// }
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* data structure describing the connection between two nodes
|
||||
* only used to track already processed connections!
|
||||
* data structure describing the connection between two nodes.
|
||||
* NOTE: only used to track already processed connections!
|
||||
*/
|
||||
template <typename T> struct DijkstraEdge {
|
||||
|
||||
@@ -49,7 +46,7 @@ template <typename T> struct DijkstraEdge {
|
||||
/** ctor */
|
||||
DijkstraEdge(const DijkstraNode<T>* src, const DijkstraNode<T>* dst) : src(src), dst(dst) {;}
|
||||
|
||||
/** equal? (bi-dir) */
|
||||
/** equal? (bi-directional! edge direction does NOT matter) */
|
||||
bool operator == (const DijkstraEdge& other) const {
|
||||
return ((dst == other.dst) && (src == other.src)) ||
|
||||
((src == other.dst) && (dst == other.src));
|
||||
@@ -57,15 +54,7 @@ template <typename T> struct DijkstraEdge {
|
||||
|
||||
};
|
||||
|
||||
//template <typename T> struct DijkstraEdgeWeighted : public DijkstraEdge<T> {
|
||||
|
||||
// /** the edge's weight */
|
||||
// float weight;
|
||||
|
||||
// DijkstraEdgeWeighted(const DijkstraNode<T>* src, const DijkstraNode<T>* dst, const float weight) : DijkstraEdge<T>(src,dst), weight(weight) {;}
|
||||
|
||||
//};
|
||||
|
||||
/** allows adding DijkstraEdge<T> to hash-maps */
|
||||
namespace std {
|
||||
template <typename T> struct hash<DijkstraEdge<T>>{
|
||||
size_t operator()(const DijkstraEdge<T>& e) const {
|
||||
|
||||
Reference in New Issue
Block a user