This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/nav/dijkstra/Dijkstra.h
kazu 9947dced15 added several grid-walks
added new helper methods/classes (e.g. for heading)
new test cases
optimize the dijkstra
cleanups/refactoring
added timed-benchmarks to the log
many more...
2016-01-24 18:59:06 +01:00

138 lines
3.7 KiB
C++

#ifndef DIJKSTRA_H
#define DIJKSTRA_H
#include <vector>
#include <algorithm>
#include <unordered_set>
#include <list>
#include "DijkstraStructs.h"
#include "../../misc/Debug.h"
#include "../../misc/Time.h"
#include <KLib/Assertions.h>
template <typename T> class Dijkstra {
/** all allocated nodes for the user-data inputs */
std::unordered_map<const T*, DijkstraNode<T>*> nodes;
/** all already processed edges */
std::unordered_set<DijkstraEdge<T>> usedEdges;
/** to-be-processed nodes (NOTE: using std::list here was SLOWER!) */
std::vector<DijkstraNode<T>*> toBeProcessedNodes;
public:
/** get the dijkstra-pendant for the given user-node */
DijkstraNode<T>* getNode(const T& userNode) {
return nodes[&userNode];
}
/** build shortest path from start to end using the provided wrapper-class */
template <typename Access> void build(const T& start, const T& end, const Access& acc) {
// NOTE: end is currently ignored!
// runs until all nodes were evaluated
// compare two nodes by their distance from the start
static auto comp = [] (const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) {return n1->cumWeight < n2->cumWeight;};
Log::add("Dijkstra", "calculating dijkstra from " + (std::string)start + " to ALL OTHER nodes");
// cleanup
toBeProcessedNodes.clear();
usedEdges.clear();
nodes.clear();
// run from start
const T* cur = &start;
// create a node for the start element
DijkstraNode<T>* dnStart = getNode(cur);
dnStart->cumWeight = 0;
// add this node to the processing list
toBeProcessedNodes.push_back(dnStart);
// until we are done
while(!toBeProcessedNodes.empty()) {
// get the next to-be-processed node
const auto min = std::min_element(toBeProcessedNodes.begin(), toBeProcessedNodes.end(), comp);
DijkstraNode<T>* dnSrc = *min;
// stop when end was reached??
//if (dnSrc->element == &end) {break;}
// and remove him from the list
toBeProcessedNodes.erase(min);
// process each neighbor of the current element
for (int i = 0; i < acc.getNumNeighbors(*dnSrc->element); ++i) {
// get the neighbor itself
const T* dst = acc.getNeighbor(*dnSrc->element, i);
// get the distance-weight to the neighbor
const float weight = acc.getWeightBetween(*dnSrc->element, *dst);
_assertTrue(weight >= 0, "edge-weight must not be negative!");
// get-or-create a node for the neighbor
DijkstraNode<T>* dnDst = getNode(dst);
// get-or-create the edge describing the connection
const DijkstraEdge<T> edge = getEdge(dnSrc, dnDst);
// was this edge already processed? -> skip it
if (usedEdges.find(edge) != usedEdges.end()) {continue;}
// otherwise: remember it
usedEdges.insert(edge);
// and add the node for later processing
toBeProcessedNodes.push_back(dnDst);
// update the weight to the destination?
const float potentialWeight = dnSrc->cumWeight + weight;
if (potentialWeight < dnDst->cumWeight) {
dnDst->cumWeight = potentialWeight;
dnDst->previous = dnSrc;
}
}
}
// reclaim temporal memory
toBeProcessedNodes.clear();
usedEdges.clear();
Log::add("Dijkstra", "processed " + std::to_string(nodes.size()) + " nodes");
}
private:
/** get (or create) a new node for the given user-node */
inline DijkstraNode<T>* getNode(const T* userNode) {
if (nodes.find(userNode) == nodes.end()) {
DijkstraNode<T>* dn = new DijkstraNode<T>(userNode);
nodes[userNode] = dn;
}
return nodes[userNode];
}
/** get the edge (bi-directional) between the two given nodes */
inline DijkstraEdge<T> getEdge(const DijkstraNode<T>* n1, const DijkstraNode<T>* n2) const {
return DijkstraEdge<T>(n1, n2);
}
};
#endif // DIJKSTRA_H