#39 #40 git add for last commit

This commit is contained in:
toni
2017-11-15 17:46:06 +01:00
parent c8063bc862
commit 95a5c8f34f
49 changed files with 4661 additions and 0 deletions

169
math/random/DrawList.h Normal file
View File

@@ -0,0 +1,169 @@
#ifndef K_MATH_RANDOM_DRAWLIST_H
#define K_MATH_RANDOM_DRAWLIST_H
#include <vector>
/**
* add entries to a list and be able to draw from them depending oh their probability
*/
namespace Random {
/**
* this class represents one entry within a DrawList.
* such an entry consists of userData denoted by the template argument
* and a probability.
*/
template <typename Entry> struct DrawListEntry {
template <typename> friend class DrawList;
friend class DrawList_Cumulative_Test;
public:
/** the user data behind this entry */
Entry entry;
/** this entry's probability */
double probability;
private:
/** the cumulative probability, tracked among all entries within the DrawList */
double cumulativeProbability;
public:
/** empty ctor */
DrawListEntry() :
entry(), probability(0), cumulativeProbability(0) {;}
/** ctor */
DrawListEntry(const Entry& entry, double probability) :
entry(entry), probability(probability), cumulativeProbability(0) {;}
/** compare this entrie's summed probability with the given probability */
bool operator < (double probability) const {return cumulativeProbability < probability;}
private:
/** ctor */
DrawListEntry(Entry& e, double probability, double summedProbability) :
entry(entry), probability(probability), cumulativeProbability(summedProbability) {;}
};
/**
* a DrawList is a data-structure containing entries that have a
* probability assigned to them.
* using the draw() function one may draw from these entries according
* to their assigned probability in O(log(n))
*/
template <typename Entry> class DrawList {
friend class DrawList_Cumulative_Test;
public:
/** ctor */
DrawList() : sumValid(false) {;}
/** append a new entry to the end of the list */
void push_back(const Entry& entry, const double probability) {
const DrawListEntry<Entry> dle(entry, probability);
entries.push_back(dle);
sumValid = false;
}
/** change the entry at the given position. ensure the vector is resized()! */
void set(const uint32_t idx, const Entry& entry, const double probability) {
entries[idx].entry = entry;
entries[idx].probability = probability;
sumValid = false;
}
/** resize the underlying vector to hold the given number of entries */
void resize(const uint32_t numEntries) {entries.resize(numEntries);}
/** clear all currently inserted entries */
void clear() {entries.clear();}
/** does the underlying vector contain any entries? */
bool empty() const {return entries.empty();}
/** the number of entries */
uint32_t size() const {return entries.size();}
/** draw a random entry from the draw list */
Entry& draw() {
// random value between [0, 1]
double rand01 = double(rand()) / double(RAND_MAX);
return draw(rand01);
}
/** draw an entry according to the given probability [0,1] */
Entry& draw(double rand01) {
// sanity check
assert(!entries.empty());
ensureCumulativeProbability();
// random value between [0, summedProbability]
// (this prevents us from norming the list to [0, 1])
double rand = rand01 * entries[entries.size()-1].cumulativeProbability;
// binary search for the matching entry O(log(n))
auto tmp = std::lower_bound(entries.begin(), entries.end(), rand);
return (*tmp).entry;
// // O(n)
// for (DrawListEntry<Entry>& dle : entries) {
// if (dle.cumulativeProbability > rand) {return dle.entry;}
// }
// return entries[this->size()-1].entry;
}
private:
/** ensure the cumulative probability is valid. if not -> calculate it */
void ensureCumulativeProbability() {
// already valid?
if (sumValid) {return;}
// calculate the cumulative probability
double sum = 0;
for (DrawListEntry<Entry>& dle : entries) {
sum += dle.probability;
dle.cumulativeProbability = sum;
}
// the sum is now valid
sumValid = true;
}
private:
/** all entries within the DrawList */
std::vector<DrawListEntry<Entry>> entries;
/** track wether the summedProbability is valid or not */
bool sumValid;
};
}
#endif // K_MATH_RANDOM_DRAWLIST_H

174
math/random/DrawWheel.h Normal file
View File

@@ -0,0 +1,174 @@
#ifndef K_MATH_RANDOM_DRAWLIST_H
#define K_MATH_RANDOM_DRAWLIST_H
#include <vector>
#include "../distribution/Uniform.h"
/**
* add entries to a list and be able to draw from them depending oh their probability
*
* souces:
* https://www.udacity.com/course/viewer#!/c-cs373/l-48704330/e-48748082/m-48740082
* https://www.youtube.com/watch?list=PLpUPoM7Rgzi_7YWn14Va2FODh7LzADBSm&feature=player_detailpage&v=kZhOJgooMxI#t=567
*/
namespace Random {
/**
* this class represents one entry within a DrawWheel.
* such an entry consists of userData denoted by the template argument
* and a probability.
*/
template <typename Entry> struct DrawWheelEntry {
template <typename> friend class DrawWheel;
public:
/** the user data behind this entry */
Entry entry;
/** this entry's probability */
double probability;
public:
/** empty ctor */
DrawWheelEntry() : entry(), probability(0) {;}
/** ctor */
DrawWheelEntry(const Entry& entry, double probability) : entry(entry), probability(probability) {;}
};
/**
* a DrawWheel is a data-structure containing entries that have a
* probability assigned to them.
* using the draw() function one may draw from these entries according
* to their assigned probability in ~O(n)
*/
template <typename Entry> class DrawWheel {
private:
/** all entries within the DrawWheel */
std::vector<DrawWheelEntry<Entry>> entries;
/** is the current maximum valid? */
bool maxValid = true;
/** the maximum weight among all entries */
double curMax = 0;
/** the current index within the wheel */
int curIdx = 0;
/** the current offset at the wheel's index */
double curOffset = 0;
/** draw random numbers for the offset */
K::UniformDistribution dist;
public:
/** ctor */
DrawWheel() {;}
/** append a new entry to the end of the list */
void push_back(const Entry& entry, const double probability) {
entries.push_back( DrawWheelEntry<Entry>(entry, probability) );
if (curMax < probability) {curMax = probability;}
}
/** change the entry at the given position. ensure the vector is resized()! */
void set(const uint32_t idx, const Entry& entry, const double probability) {
entries[idx].entry = entry;
entries[idx].probability = probability;
maxValid = false;
}
/** resize the underlying vector to hold the given number of entries */
void resize(const uint32_t numEntries) {entries.resize(numEntries);}
/** clear all currently inserted entries */
void clear() {entries.clear();}
/** does the underlying vector contain any entries? */
bool empty() const {return entries.empty();}
/** the number of entries */
uint32_t size() const {return entries.size();}
/** call this once before drawing anything */
void init() {
// ensure the maximum number is correct
ensureMaxProbability();
// setup the distribution to draw a new offset
dist.reset(0, 2 * curMax);
// draw starting values
curIdx = K::UniformDistribution::draw( (int)0, (int)entries.size() - 1);
curOffset = dist.draw();
}
/** draw a random entry from the wheel */
Entry& draw() {
while(true) {
// found a suitable particle? use it and draw the next random number
if (entries[curIdx].probability >= curOffset) {
// next offset
curOffset += dist.draw();
// return
return entries[curIdx].entry;
// weight to small, subtract the elements weight and move on to the next element
} else {
// remove the current entries probability
curOffset -= entries[curIdx].probability;
// resume with the next one along the wheel
curIdx = (curIdx + 1) % ((int)entries.size());
}
}
}
private:
/** ensure the max probability is valid. if not -> calculate it */
void ensureMaxProbability() {
// valid?
if (maxValid) {return;}
// comparisen
const auto lambda = [] (const DrawWheelEntry<Entry>& e1, const DrawWheelEntry<Entry>& e2) {return e1.probability < e2.probability;};
// find the largest entry
const DrawWheelEntry<Entry> max = *std::max_element(entries.begin(), entries.end(), lambda);
this->curMax = max.probability;
// the max is now valid
maxValid = true;
}
};
}
#endif // K_MATH_RANDOM_DRAWLIST_H

27
math/random/Normal.h Normal file
View File

@@ -0,0 +1,27 @@
#ifndef K_MATH_RND_NORMAL_H
#define K_MATH_RND_NORMAL_H
namespace Random {
/**
* provides some common functions
* for handling normal-distributed random numbers
*/
class Normal {
public:
/** get normal-distributed random number for given mu/sigma */
static double get(double mu, double sigma) {
static std::random_device rd;
static std::mt19937 gen(rd());
std::normal_distribution<> d(mu, sigma);
return d(gen);
}
};
}
#endif // K_MATH_RND_NORMAL_H

View File

@@ -0,0 +1,29 @@
#ifndef RANDOM_Random::RandomGenerator_H
#define RANDOM_Random::RandomGenerator_H
#include <random>
#include <chrono>
#ifdef USE_FIXED_SEED
#define RANDOM_SEED 1234
#else
#define RANDOM_SEED ( std::chrono::system_clock::now().time_since_epoch() / std::chrono::milliseconds(1) )
#endif
namespace Random {
class RandomGenerator : public std::minstd_rand {
public:
/** ctor with default seed */
RandomGenerator() : std::minstd_rand(RANDOM_SEED) {;}
/** ctor with custom seed */
RandomGenerator(result_type) : std::minstd_rand(RANDOM_SEED) {;}
};
}
#endif // K_MATH_RANDOM_Random::RandomGenerator_H

View File

@@ -0,0 +1,118 @@
#ifndef RANDOMITERATOR_H
#define RANDOMITERATOR_H
#include <vector>
#include <random>
#include "../../Assertions.h"
namespace Random {
template <typename Element> class RandomIterator {
private:
/** the user's data-vector to randomly iterate */
const std::vector<Element>& vec;
/** the number of random indices */
int cnt;
/** the random number generator */
std::minstd_rand gen;
bool isRandomized = false;
/** X random indices */
std::vector<int> indices;
public:
/** ctor */
RandomIterator(const std::vector<Element>& vec, const int cnt) : vec(vec), cnt(cnt) {
//const uint64_t ts = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
static int seed = 0; ++seed;
gen.seed(seed);
// sanity check
if ((int)vec.size() < cnt) {throw Exception("number of elements in list is smaller than the requested number to draw");}
if (cnt == 0) {throw Exception("number of elements in list must be at least 1");}
if (vec.empty()) {throw Exception("empty input vector given");}
indices.resize(cnt);
}
/** create random samples (vector-indicies) that are hereafter available for iteration */
void randomize() {
// random-number generator between [0:size-1]
std::uniform_int_distribution<int> dist(0, (int) vec.size()-1);
// ensure we use each vector-index only ONCE
bool used[vec.size()] = {false};
// draw X random samples
for (int i = 0; i < cnt; ) {
const int rnd = dist(gen);
if (used[rnd]) {continue;} // already used? try again!
used[rnd] = true; // mark as used
indices[i] = rnd; // add to the index
++i;
}
// the vector is setup correctly
isRandomized = true;
}
/** the iterator state */
struct Iterator {
/** the current position within "indicies" */
int pos;
/** the vector with the user-data to randomly iterate */
const std::vector<Element>& vec;
/** the vector containing the random indices */
const std::vector<int>& indices;
/** ctor */
Iterator(const int pos, const std::vector<Element>& vec, const std::vector<int>& indices) : pos(pos), vec(vec), indices(indices) {;}
/** end-of-iteration? */
bool operator != (const Iterator& o) const {return pos != o.pos;}
/** next value */
Iterator& operator ++ () {++pos; return *this;}
/** get the user-data */
Element operator * () {return vec[indices[pos]];}
};
//const Element& operator [] (const int idx) const {return vec[indices[idx]]; }
/** number of available random entries */
size_t size() const {return cnt;}
/** for-each access */
Iterator begin() const { ensureRandomized(); return Iterator(0, vec, indices); }
/** for-each access */
Iterator end() const { ensureRandomized(); return Iterator(cnt, vec, indices); }
private:
/** ensure the coder called randomize() before using the iterator */
void ensureRandomized() const {
Assert::isTrue(isRandomized, "call randomize() before using the iterator!");
}
};
}
#endif // RANDOMITERATOR_H

43
math/random/Uniform.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef K_MATH_RANDOM_UNIFORM_H
#define K_MATH_RANDOM_UNIFORM_H
#include "RandomGenerator.h"
namespace Random {
/**
* provides some common functions
* for handling normal-distributed random numbers
*/
template <typename T> class Uniform {
private:
Random::RandomGenerator gen;
/** depending on T, Dist is either a uniform_real or uniform_int distribution */
typedef typename std::conditional< std::is_floating_point<T>::value, std::uniform_real_distribution<T>, std::uniform_int_distribution<T> >::type Dist;
Dist dist;
public:
/** ctor */
Uniform(const T min, const T max) : gen(RANDOM_SEED), dist(min, max) {
}
/** get a uniformaly distributed random number */
T draw() {
return dist(gen);
}
/** set the seed to use */
void setSeed(const long seed) {
gen.seed(seed);
}
};
}
#endif // K_MATH_RANDOM_UNIFORM_H

26
math/random/Unique.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef K_MATH_RND_UNIQUE_H
#define K_MATH_RND_UNIQUE_H
namespace Random {
/**
* provides some common functions
* for handling uniquely distributed random numbers
*/
class Unique {
public:
/** get uniquely distributed random number between min and max */
static double getBetween(double min, double max) {
double rnd = (double) rand() / (double) RAND_MAX;
rnd *= (max-min);
rnd += min;
return rnd;
}
};
}
#endif // K_MATH_RND_UNIQUE_H