first draf related work finished

This commit is contained in:
toni
2018-04-03 11:54:41 +02:00
parent 9a87a6291a
commit 6df68c032e
2 changed files with 13 additions and 16 deletions

View File

@@ -71,22 +71,8 @@ Finally, as the name recursive state estimation says, it requires to find the mo
In the discrete manner of a particle representation this is often done by providing a single value, also known as sample statistic, to serve as a best guess \cite{Bullmann-18}.
Examples are the weighted-average over all particles or the particle with the highest weight.
However in complex scenarios like a multimodal representation of the posterior, such methods fail to provide an accurate statement about the most probable state.
Thus, in \cite{} we present a rapid computation scheme
A well known solution is KDE.
For example \cite{} used a ... in .... However it is obvious that this method has a massive computation time and is thus not practicle for smartphone-based solutions.
Within this paper we use a rapid bla und blub, what was recently presented in \cite{}.
\todo{umschreiben mit entsprechenden cites und auf particles }
\todo{mal die letzten beiden IPIN Jahre durchstöbern und deren system raussuchen. \\
dabei vor allem mit dem fokus, nicht sehr flexibel, braucht fertige ap positionen etc draufschauen \\
danach ein wenig schaun, ob es andere gibt die einzelne verfahren, wie wir sie haben ähnlich machen \\
nicht verbergen das wir hier viel aus unseren eigenen paper zehren, also ruhig citen.}
1/2 bis 3/4 Seite
Thus, in \cite{Bullmann-18} we present a rapid computation scheme of kernel density estimates (KDE).
Recovering the probability density function using an efficient KDE algorithm yields a promising approach to solve the state estimation problem in a more profound way.

View File

@@ -2905,3 +2905,14 @@ address = {{Rothenburg, Germany}},
publisher={Hindawi}
}
@inproceedings{Bullmann-18,
author={Bullmann, Markus and Fetzer, Toni and Ebner, Frank and Grzegorzek, Marcin and Deinzer, Frank},
booktitle={21th Int. Conf. on Information Fusion (FUSION)},
title={{Fast Kernel Density Estimation using Gaussian Filter Approximation}},
year={2018},
IGNOREmonth={October},
pages={1-8},
note={under review}
}