first draf related work finished
This commit is contained in:
@@ -71,22 +71,8 @@ Finally, as the name recursive state estimation says, it requires to find the mo
|
||||
In the discrete manner of a particle representation this is often done by providing a single value, also known as sample statistic, to serve as a best guess \cite{Bullmann-18}.
|
||||
Examples are the weighted-average over all particles or the particle with the highest weight.
|
||||
However in complex scenarios like a multimodal representation of the posterior, such methods fail to provide an accurate statement about the most probable state.
|
||||
Thus, in \cite{} we present a rapid computation scheme
|
||||
|
||||
A well known solution is KDE.
|
||||
For example \cite{} used a ... in .... However it is obvious that this method has a massive computation time and is thus not practicle for smartphone-based solutions.
|
||||
|
||||
Within this paper we use a rapid bla und blub, what was recently presented in \cite{}.
|
||||
|
||||
\todo{umschreiben mit entsprechenden cites und auf particles }
|
||||
|
||||
\todo{mal die letzten beiden IPIN Jahre durchstöbern und deren system raussuchen. \\
|
||||
dabei vor allem mit dem fokus, nicht sehr flexibel, braucht fertige ap positionen etc draufschauen \\
|
||||
danach ein wenig schaun, ob es andere gibt die einzelne verfahren, wie wir sie haben ähnlich machen \\
|
||||
nicht verbergen das wir hier viel aus unseren eigenen paper zehren, also ruhig citen.}
|
||||
|
||||
1/2 bis 3/4 Seite
|
||||
|
||||
Thus, in \cite{Bullmann-18} we present a rapid computation scheme of kernel density estimates (KDE).
|
||||
Recovering the probability density function using an efficient KDE algorithm yields a promising approach to solve the state estimation problem in a more profound way.
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -2905,3 +2905,14 @@ address = {{Rothenburg, Germany}},
|
||||
publisher={Hindawi}
|
||||
}
|
||||
|
||||
@inproceedings{Bullmann-18,
|
||||
author={Bullmann, Markus and Fetzer, Toni and Ebner, Frank and Grzegorzek, Marcin and Deinzer, Frank},
|
||||
booktitle={21th Int. Conf. on Information Fusion (FUSION)},
|
||||
title={{Fast Kernel Density Estimation using Gaussian Filter Approximation}},
|
||||
year={2018},
|
||||
IGNOREmonth={October},
|
||||
pages={1-8},
|
||||
note={under review}
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user