diff --git a/tex/chapters/relatedwork.tex b/tex/chapters/relatedwork.tex index e164063..19bbfa1 100644 --- a/tex/chapters/relatedwork.tex +++ b/tex/chapters/relatedwork.tex @@ -71,22 +71,8 @@ Finally, as the name recursive state estimation says, it requires to find the mo In the discrete manner of a particle representation this is often done by providing a single value, also known as sample statistic, to serve as a best guess \cite{Bullmann-18}. Examples are the weighted-average over all particles or the particle with the highest weight. However in complex scenarios like a multimodal representation of the posterior, such methods fail to provide an accurate statement about the most probable state. -Thus, in \cite{} we present a rapid computation scheme - -A well known solution is KDE. -For example \cite{} used a ... in .... However it is obvious that this method has a massive computation time and is thus not practicle for smartphone-based solutions. - -Within this paper we use a rapid bla und blub, what was recently presented in \cite{}. - -\todo{umschreiben mit entsprechenden cites und auf particles } - -\todo{mal die letzten beiden IPIN Jahre durchstöbern und deren system raussuchen. \\ -dabei vor allem mit dem fokus, nicht sehr flexibel, braucht fertige ap positionen etc draufschauen \\ -danach ein wenig schaun, ob es andere gibt die einzelne verfahren, wie wir sie haben ähnlich machen \\ -nicht verbergen das wir hier viel aus unseren eigenen paper zehren, also ruhig citen.} - -1/2 bis 3/4 Seite - +Thus, in \cite{Bullmann-18} we present a rapid computation scheme of kernel density estimates (KDE). +Recovering the probability density function using an efficient KDE algorithm yields a promising approach to solve the state estimation problem in a more profound way. diff --git a/tex/egbib.bib b/tex/egbib.bib index dc9870c..884441a 100644 --- a/tex/egbib.bib +++ b/tex/egbib.bib @@ -2905,3 +2905,14 @@ address = {{Rothenburg, Germany}}, publisher={Hindawi} } +@inproceedings{Bullmann-18, + author={Bullmann, Markus and Fetzer, Toni and Ebner, Frank and Grzegorzek, Marcin and Deinzer, Frank}, + booktitle={21th Int. Conf. on Information Fusion (FUSION)}, + title={{Fast Kernel Density Estimation using Gaussian Filter Approximation}}, + year={2018}, + IGNOREmonth={October}, + pages={1-8}, + note={under review} +} + +