added introduction to tex

This commit is contained in:
toni
2016-04-14 13:03:16 +02:00
parent de8783b9ca
commit 00fca03a73
14 changed files with 1913 additions and 38 deletions

View File

@@ -64,7 +64,7 @@ ADD_DEFINITIONS(
-fstack-protector-all
-g
-O0
-O2
-DWITH_TESTS
-DWITH_ASSERTIONS

View File

@@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE QtCreatorProject>
<!-- Written by QtCreator 3.6.0, 2016-04-11T10:29:08. -->
<!-- Written by QtCreator 3.6.0, 2016-04-14T12:59:26. -->
<qtcreator>
<data>
<variable>EnvironmentId</variable>

View File

@@ -28,7 +28,9 @@ public:
const std::vector<MyGridNode>& getAllNodes() const {return grid.getNodes();}
decltype(grid.neighbors(MyGridNode())) getNeighbors(const MyGridNode& node) const {return grid.neighbors(node);}
float getHeuristic(const MyGridNode& n1, const MyGridNode& n2) const {return std::abs(n1.x_cm - n2.x_cm) + std::abs(n1.y_cm - n2.y_cm);}
float getHeuristic(const MyGridNode& n1, const MyGridNode& n2) const {return ((Point3)n1 - (Point3)n2).length(2) ;}
//std::abs(n1.x_cm - n2.x_cm) + std::abs(n1.y_cm - n2.y_cm)
};
/**

View File

@@ -111,7 +111,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverageWithAngle<MyState>>(new K::ParticleFilterEstimationWeightedAverageWithAngle<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental) );
}
// ============================================================ Dijkstra ============================================== //
@@ -174,7 +174,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path1_nexus_simple() {
@@ -242,7 +242,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path2_nexus_simple() {
@@ -311,7 +311,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path3_nexus_simple() {
@@ -379,7 +379,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path4_nexus_simple() {
@@ -448,7 +448,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path1_galaxy_simple() {
@@ -499,7 +499,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path2_galaxy_simple() {
@@ -550,7 +550,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path3_galaxy_simple() {
@@ -603,7 +603,7 @@ public:
bf->setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
if(smoothing_resample)
bf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
bf->setTransition(std::unique_ptr<MySmoothingTransitionExperimental>( new MySmoothingTransitionExperimental()) );
bf->setTransition(std::unique_ptr<MySmoothingTransition>( new MySmoothingTransition(&grid)) );
}
void bergwerk_path4_galaxy_simple() {

View File

@@ -1,5 +1,5 @@
#!/bin/bash
FILES=$(find ../../measurements/bergwerk/path*/{galaxy,nexus}/ -name "*.csv")
FILES=$(find ../../measurements/bergwerk/ -name "*.csv")
for f in $FILES
do

View File

@@ -89,7 +89,7 @@ int main(void) {
// testModelWalk();
SmoothingEval1 eval;
eval.fixedIntervallDijkstraTransPath4();
eval.fixedIntervallSimpleTransPath4();
eval.run();
//Eval1 eval;

View File

@@ -17,6 +17,7 @@
#include "../../toni/barometric.h"
#include <map>
#include <omp.h>
static double smoothing_walk_mu = 0.7;
static double smoothing_walk_sigma = 0.5;
@@ -79,14 +80,21 @@ public:
// p(q_490(1)|q_489(1)); p(q_490(2)|q_489(1)) ... p(q_490(M)|q_489(1))
std::vector<std::vector<double>> predictionProbabilities;
std::map<my_key_type, double> shortestPathMap;
AStar<MyGridNode> aStar;
DijkstraMapper dm(*grid);
auto p1 = particles_old.begin();
auto p2 = particles_new.begin();
omp_set_dynamic(0); // Explicitly disable dynamic teams
omp_set_num_threads(7);
#pragma omp parallel for shared(predictionProbabilities)
for (int i = 0; i < particles_old.size(); ++i) {
#pragma omp parallel for private(p2) shared(predictionProbabilities)
for (p1 = particles_old.begin(); p1 < particles_old.end(); ++p1) {
std::vector<double> innerVector;
for(p2 = particles_new.begin(); p2 < particles_new.end(); ++p2){
auto p1 = &particles_old[i];
const MyGridNode* dst = grid->getNodePtrFor(GridPoint(p1->state.pCur.x, p1->state.pCur.y, p1->state.pCur.z));
for(int j = 0; j < particles_new.size(); ++j){
auto p2 = &particles_new[j];
// find the node (square) the particle is within
// just to be safe, we round z to the nearest floor
@@ -95,7 +103,6 @@ public:
//const Node3* dst = graph->getNearestNode(p1->state.x_cm, p1->state.y_cm, std::round(p1->state.z_nr));
//const Node3* src = graph->getNearestNode(p2->state.x_cm, p2->state.y_cm, std::round(p2->state.z_nr));
const MyGridNode* dst = grid->getNodePtrFor(GridPoint(p1->state.pCur.x, p1->state.pCur.y, p1->state.pCur.z));
const MyGridNode* src = grid->getNodePtrFor(GridPoint(p2->state.pCur.x, p2->state.pCur.y, p2->state.pCur.z));
// Dijkstra<MyGridNode> dijkstra;
@@ -103,10 +110,8 @@ public:
// double distDijkstra_m = dijkstra.getNode(*src)->cumWeight;
AStar<MyGridNode> aStar;
DijkstraMapper dm(*grid);
double distDijkstra_m = 0;
std::vector<const MyGridNode*> shortestPath;
//std::vector<const MyGridNode*> shortestPath;
// check if this shortestPath was already calculated
std::map<my_key_type, double>::iterator it;
@@ -117,12 +122,14 @@ public:
else{
//Dijkstra/A* for shortest path
shortestPath = aStar.get(src, dst, dm);
//shortestPath = aStar.get(src, dst, dm);
distDijkstra_m = aStar.get(src, dst, dm);
//get distance walked and getProb using the walking model
for(int i = 0; i < shortestPath.size() - 1; ++i){
distDijkstra_m += dm.getWeightBetween(*shortestPath[i], *shortestPath[i+1]);
}
// for(int i = 0; i < shortestPath.size() - 1; ++i){
// distDijkstra_m += dm.getWeightBetween(*shortestPath[i], *shortestPath[i+1]);
// }
if(distDijkstra_m != distDijkstra_m) {throw "detected NaN";}

View File

@@ -65,19 +65,21 @@ public:
// p(q_490(1)|q_489(1)); p(q_490(2)|q_489(1)) ... p(q_490(M)|q_489(1))
std::vector<std::vector<double>> predictionProbabilities;
auto p1 = particles_old.begin(); //smoothed / backward filter p_t+1
auto p2 = particles_new.begin(); //forward filter p_t
#pragma omp parallel for private(p2) shared(predictionProbabilities)
for (p1 = particles_old.begin(); p1 < particles_old.end(); ++p1) {
omp_set_dynamic(0); // Explicitly disable dynamic teams
omp_set_num_threads(4);
#pragma omp parallel for shared(predictionProbabilities)
for (int i = 0; i < particles_old.size(); ++i) {
std::vector<double> innerVector;
for(p2 = particles_new.begin(); p2 < particles_new.end(); ++p2){
auto p1 = &particles_old[i];
for(int j = 0; j < particles_new.size(); ++j){
auto p2 = &particles_new[j];
//!!!distance kann hier zu groß werden!!!
const double distance_m = p2->state.pCur.getDistance(p1->state.pCur) / 100.0;
//get distance walked and getProb using the walking model
//double distDijkstra_m = ((GRID_DISTANCE_CM / 100.0) * (8 - 1));
const double distProb = distWalk.getProbability(distance_m);

Binary file not shown.

View File

@@ -1,10 +1,68 @@
\section{Introduction}
Es gibt viele unterschiedliche Indoor Lösungen die auf blabalbal und blabal aufbauen. particle filter ist etabliert und fast alle nutzen einen. gibt solche und solche methoden. aber alle haben mehr oder wenig ähnliche probleme und herrausforderungen. eine generelle lösunge solceh herrausforderungen zu meistern sind smoothiner methoden.
probleme: multimodalitäten. zeitlicher verzug. falsche messungen. etc etc. all das kann mit wissen aus zukünftigen messungen behoben werden.
%It is well known, that signals given by Global Navigation Satellite Systems (GNSS) like the Global Positioning System (GPS) do not move easily through solid objects. Therefore, they work best in outdoor environments, when the device has a clear line of sight to the sky.
%Obviously, GNSS are of no practical use in the context of indoor localisation.
Determining a position indoors is a challenging task.
Besides the complex architecture of many buildings, a high accuracy needs to be achieved, especially for buildings with many small separated areas like shopping malls or office blocks.
In recent years, many different systems were presented to meet those requirements.
Especially Wi-Fi positioning and pedestrian dead reckoning (PDR) are very popular solutions.
Approaches based on PDR try to estimate the current position given the previous position and thus require an initial state.
However, this allows for cumulative errors and leads to an erroneous position estimation within a very short period.
By incorporating the absolute position information of Wi-Fi this drift can be corrected.
Additional improvements can be achieved by using environmental information about walls and obstacles provided by a floor map.
In most cases, probabilistic methods are used to incorporate those highly different sensor types.
Here, a probability distribution describes the pedestrian's possible whereabouts and therefore the uncertainty of the system.
Drawing from a probability distribution and finding an analytical solution for densities is in most cases a difficult task, especially in case of time sequential, non-linear and non-Gaussian models.
Due to the high complexity of the human movement, we consider indoor localisation as such.
A broad class to obtain numerical results instead are the Monte Carlo methods.
Here, a set of weighted random samples is used to solve any problem having a probabilistic interpretation.
By applying the time sequential hidden Markov process of Bayes filtering, one of the most important Monte Carlo techniques results: particle filtering.
A particle filter updates the state estimation recursively in time with every new incoming measurement using the state transition and state evaluation step.
Based on this general methodology, many different approaches for estimating a position in indoor environments have been developed.
All these approaches differ mainly in how the dynamics are modelled in the transition step and how a specific sensor measurement can be used for evaluation.
For example, recent approaches are using a graph-based structure to consider environmental restrictions (walking through walls) and the characteristics of human movement (walking speed) within the transition model \cite{Ebner-15}.
The evaluation model is mostly separated into any number of sensor models, each representing the probability for a noisy measurement in regard to the current position.
For example, a barometer can be used to determine the probability of being on a certain floor \cite{Binghao13-UBI}.
%Another example that demonstrates the big differences between single approaches is the large number of sensor models using Wi-Fi signal strengths. There are fingerprinting methods, which require an extensive offline calibration phase, signal strength prediction models like the log-distance model or wall-attenuation-factor model and many others \cite{Ville09, Fang09, Ebner:Thesis:2013}.
Despite the many advances made in the last years, nearly all systems suffer from more or less the same problems.
Of course, every sensor model brings its very own weaknesses.
Like mentioned before, PDR suffers from an accumulating bias, the signal of Wi-Fi gets attenuated by walls and the barometric pressure is highly affected by weather patterns and humidity \cite{Binghao13-UBI}.
That is the reason for the use of statistical methods in the first place. Nevertheless, there are even more profound problems regarding the whole position estimation procedure.
Current transition models, which aim to approximate the movement, are still very restrictive and unable to handle unforeseen events.
Faulty sensor measurements, like a falsely detected turn, can cause the estimation to lose track.
For example by taking a turn too soon and walking into a room instead of another big hallway \cite{Ebner-15}.
Due to this, the filter needs some time to recover, which again takes a while because of the restrictive model (e.g. no walking through walls and only realistic walking speed).
This temporal delay worsens the estimate immensely.
A solution to recover from such filter divergences faster, is using methods for re-initializing the filtering procedure \cite{Nurminen14-MMF}.
However, even this can not completely prevent delays.
Another reason for possible time delays are slow sensor updates.
For example, most mobile devices restrict the Wi-Fi module to update only every few seconds, to save on battery.
\begin{figure}[t]
\centering
\def\svgwidth{0.9\columnwidth}
\input{gfx/multimodalpath.eps_tex}
\caption[An example of the occurrence of a multimodal distribution.]{An example of the occurrence of a multimodal distribution. At time $t-1$ the floor gets separated by a wall and the mode of the distribution (colored circle), representing the current position, splits apart. The most likely position (green line) is estimated somewhere in-between. After a right turn, the distribution slowly starts to recover its unimodality.}
\label{fig:multimodalPath}
\end{figure}
Further critical problems arise from multimodal distributions.
Those are caused by multiple possible position estimates.
Fig. \ref{fig:multimodalPath} illustrates an example where a floor gets separated by a wall.
Due to inaccurate measurements and a PDR approach for evaluating the movement, the distribution splits apart.
Therefore, the most likely position is somewhere in-between.
Only after the pedestrian turns right, the distribution is again unimodal, since moving through walls is prohibited.
As one can imagine, this can lead to serious problems in big indoor environments.
Such a situation can be improved by incorporating future measurements (e.g. the right turn) or predictive information (e.g. the most likely path) to the filtering procedure \cite{Ebner-16}.
However, standard filtering methods are not able to use any future information and the possibilities to make a distant forecast are also limited \cite{robotics, Doucet11:ATO, chen2003bayesian}.
One very promising way to deal with these problems is smoothing.
Within this work, we try to address those problems

View File

@@ -1746,6 +1746,16 @@ doi={10.1109/PLANS.2008.4570051},}
pages={1-10},
}
@inproceedings{Ebner-16,
author={Ebner, Frank and Fetzer, Toni and Grzegorzek, Marcin and Deinzer, Frank},
booktitle={On Review},
title={{On Prior Navigation Knowledge in Multi Sensor
Indoor Localisation}},
year={2016},
IGNOREmonth={October},
pages={1-8},
}
@book{condon1967handbook,
title={Handbook of physics},
author={Condon, E.U. and Odishaw, H.},
@@ -2707,3 +2717,5 @@ volume = {13},
year = {1967}
}

1082
tex/gfx/multimodalPath.svg Normal file

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 50 KiB

653
tex/gfx/multimodalpath.eps Normal file
View File

@@ -0,0 +1,653 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.14.2 (http://cairographics.org)
%%CreationDate: Thu Nov 5 19:12:03 2015
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 3
%%BoundingBox: 0 -1 310 147
%%EndComments
%%BeginProlog
save
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/pdfmark where { pop globaldict /?pdfmark /exec load put }
{ globaldict begin /?pdfmark /pop load def /pdfmark
/cleartomark load def end } ifelse
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 -1 310 147
%%EndPageSetup
q 0 -1 310 148 rectclip q
1 g
0.8 w
0 J
0 j
[] 0.0 d
4 M q 1 0 0 -1 0 146.399994 cm
0.398 0.398 308.801 145.602 re S Q
q
87.602 110.002 m 87.602 100.279 79.719 92.4 70 92.4 c 60.281 92.4 52.398
100.279 52.398 110.002 c 52.398 119.72 60.281 127.599 70 127.599 c 79.719
127.599 87.602 119.72 87.602 110.002 c h
87.602 110.002 m W n
[0.517647 0 0 -0.517647 248.828584 208.611763] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
q
77.199 85.201 m 77.199 80.56 73.438 76.798 68.801 76.798 c 64.16 76.798
60.398 80.56 60.398 85.201 c 60.398 89.837 64.16 93.599 68.801 93.599 c
73.438 93.599 77.199 89.837 77.199 85.201 c h
77.199 85.201 m W n
[0.247059 0 0 -0.247059 154.15 132.264701] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
q
138 82.002 m 138 75.373 132.629 70.002 126 70.002 c 119.371 70.002 114
75.373 114 82.002 c 114 88.627 119.371 94.002 126 94.002 c 132.629 94.002
138 88.627 138 82.002 c h
138 82.002 m W n
[0.352941 0 0 -0.352941 247.928536 149.235269] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
q
138 99.599 m 138 92.974 132.629 87.599 126 87.599 c 119.371 87.599 114
92.974 114 99.599 c 114 106.228 119.371 111.599 126 111.599 c 132.629 111.599
138 106.228 138 99.599 c h
138 99.599 m W n
[0.352941 0 0 -0.352941 247.928536 166.835272] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
q
198 90.798 m 198 82.517 191.285 75.798 183 75.798 c 174.715 75.798 168
82.517 168 90.798 c 168 99.084 174.715 105.798 183 105.798 c 191.285 105.798
198 99.084 198 90.798 c h
198 90.798 m W n
[0.441176 0 0 -0.441176 335.410704 174.844106] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
48.398 96.4 90.402 -8.801 re f
50 89.201 11.199 -4.801 re f
106.801 114.002 32.801 -8 re f
106 75.599 32.801 -8.801 re f
0.643137 g
0.8 w
0 J
0 j
[] 0.0 d
4 M q 1 0 0 -1 0 146.399994 cm
8.246 50.062 m 8.246 91.59 l 8.27 116.676 l 84.242 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
61.266 116.648 m 61.266 74.215 l S Q
q 1 0 0 -1 0 146.399994 cm
61.266 68.324 m 61.266 58.801 l S Q
q 1 0 0 -1 0 146.399994 cm
8.246 61.844 m 61.266 61.844 l S Q
q 1 0 0 -1 0 146.399994 cm
61.199 50 m 4.398 50 l S Q
q 1 0 0 -1 0 146.399994 cm
31.809 50.062 m 31.809 47.707 l S Q
q 1 0 0 -1 0 146.399994 cm
36.523 40.637 m 24.738 40.637 l 24.738 18.836 l S Q
q 1 0 0 -1 0 146.399994 cm
43.004 40.637 m 52.43 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
45.949 18.836 m 45.949 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
58.91 40.637 m 65.391 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
64.211 18.836 m 64.211 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
24.738 12.355 m 24.738 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
45.949 12.355 m 45.949 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
64.211 12.355 m 64.211 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
4.121 5.285 m 4.121 50.062 l S Q
q 1 0 0 -1 0 146.399994 cm
84.242 116.633 m 305.156 116.785 l 305.172 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
305.172 5.285 m 4.121 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
73.051 40.637 m 81.887 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
89.547 40.637 m 96.027 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
74.816 27.086 m 74.816 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
74.816 27.086 m 103.684 27.086 l S Q
q 1 0 0 -1 0 146.399994 cm
89.547 40.637 m 89.547 27.086 l S Q
q 1 0 0 -1 0 146.399994 cm
103.684 5.285 m 103.684 40.637 l 139.621 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
139.621 40.637 m 139.621 15.301 l S Q
q 1 0 0 -1 0 146.399994 cm
139.621 8.82 m 139.621 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
151.406 5.285 m 151.406 40.637 l 166.133 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
172.023 40.637 m 180.273 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
175.559 40.637 m 175.559 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
186.754 40.637 m 192.055 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
189.699 40.637 m 189.699 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
198.535 40.637 m 209.141 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
204.43 40.637 m 204.43 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
215.621 40.637 m 226.816 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
218.566 40.637 m 218.566 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
233.297 40.637 m 244.488 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
236.832 40.637 m 236.832 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
250.969 40.637 m 259.219 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
254.504 40.637 m 254.504 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
265.699 40.637 m 273.945 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
280.426 40.637 m 286.316 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
268.645 40.637 m 268.645 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
292.797 40.637 m 305.172 40.637 l 305.172 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
61.199 58.801 m 138.801 58.801 l 138.801 50 l 61.199 50 l S Q
q 1 0 0 -1 0 146.399994 cm
73.641 70.68 m 73.641 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
87.188 70.68 m 84.242 70.68 l 84.242 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
93.668 70.68 m 153.762 70.68 l 153.762 78.34 l S Q
q 1 0 0 -1 0 146.399994 cm
153.762 84.82 m 153.762 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
153.762 70.68 m 180.273 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
186.754 70.68 m 193.824 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
189.699 70.68 m 189.699 78.34 l S Q
q 1 0 0 -1 0 146.399994 cm
189.699 84.23 m 189.699 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
200.305 70.68 m 207.961 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
214.441 70.68 m 221.512 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
218.566 70.68 m 218.566 78.34 l S Q
q 1 0 0 -1 0 146.399994 cm
204.43 70.68 m 204.43 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
218.566 84.23 m 218.566 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
228.582 70.68 m 257.449 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
254.504 70.68 m 254.504 116.633 l S Q
q 1 0 0 -1 0 146.399994 cm
254.504 97.781 m 258.629 97.781 l S Q
q 1 0 0 -1 0 146.399994 cm
265.699 116.633 m 265.699 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
263.93 70.68 m 268.645 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
275.715 70.68 m 305.164 70.68 l S Q
q 1 0 0 -1 0 146.399994 cm
283.371 5.285 m 283.371 40.637 l S Q
q 1 0 0 -1 0 146.399994 cm
91.312 16.48 m 74.227 16.48 l S Q
q 1 0 0 -1 0 146.399994 cm
74.227 16.48 m 74.227 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
287.496 50.062 m 254.504 50.062 l 254.504 61.254 l 287.496 61.254 l S Q
0.25098 g
q 1 0 0 -1 0 146.399994 cm
1.199 1.199 307.199 118.402 re S Q
0.211765 0.835294 0.411765 rg
q 1 0 0 -1 0 146.399994 cm
74.641 20.559 m 71.281 23.281 l 69.359 26.398 l 69.281 27.68 l 69.281 34.961
l 69.039 38.641 l 68.641 42.32 l 68.961 43.84 l 69.121 46.879 l 70 49.199
l 69.762 53.602 l 72.559 54.559 l 73.762 54.48 l 78 53.52 l 81.199 54.16
l 85.039 53.84 l 89.68 51.359 l 89.84 52.641 l 92.961 53.441 l 97.922 52.078
l 102.238 51.441 l 104 50.879 l 106.641 53.762 l 110.238 54.641 l 117.281
51.84 l 115.52 53.68 l 118.32 55.039 l 121.199 54.961 l 127.039 50.238
l 127.359 51.922 l 129.199 56.32 l 132.398 55.602 l 135.602 57.199 l 137.199
55.602 l 140.398 56.398 l 142.879 50.398 l 145.359 53.441 l 147.121 52.801
l 149.922 53.359 l 153.199 54.32 l 156.559 55.039 l 160.398 55.441 l 162.078
55.84 l 165.84 54.879 l 169.199 55.199 l 172.719 55.121 l 176.801 54.879
l 178.48 55.039 l 181.84 55.281 l 185.441 55.762 l 190 55.602 l 192.32
56 l 195.602 55.922 l 198.961 55.922 l 203.922 55.199 l 205.121 55.84 l
208.961 56 l 212.801 55.922 l 216.641 55.922 l 220.719 55.84 l 221.68 56.238
l 228.559 56.238 l 232.559 56.398 l 234.078 56.48 l 237.441 56.48 l 240.961
56.32 l 243.602 55.602 l 246.801 59.602 l 250 60.398 l 252.48 65.039 l
256.078 65.281 l 259.762 65.199 l 263.602 65.52 l 265.121 65.84 l 268.559
65.84 l 272.32 65.199 l 275.121 63.922 l 277.359 63.84 l 278.398 63.359
l 281.84 62.801 l 285.602 62 l 288.238 59.922 l 291.281 61.84 l 291.68
57.602 l 294.32 56.48 l 299.68 58.641 l 303.68 57.68 l 302.961 54.48 l 304.879
52.559 l S Q
0.643137 g
0.24 w
q 1 0 0 -1 0 146.399994 cm
90 26.801 m 90 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
88.398 26.801 m 88.398 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
86.801 26.801 m 86.801 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
85.199 26.801 m 85.199 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
83.602 26.801 m 83.602 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
82 26.801 m 82 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
80.398 26.801 m 80.398 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
78.801 26.801 m 78.801 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
77.199 26.801 m 77.199 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
75.602 26.801 m 75.602 5.285 l S Q
q 1 0 0 -1 0 146.399994 cm
284.398 61.254 m 284.398 50 l S Q
q 1 0 0 -1 0 146.399994 cm
284.398 61.254 m 284.398 50 l S Q
q 1 0 0 -1 0 146.399994 cm
282.801 61.254 m 282.801 50 l S Q
q 1 0 0 -1 0 146.399994 cm
281.199 61.254 m 281.199 50 l S Q
q 1 0 0 -1 0 146.399994 cm
279.602 61.254 m 279.602 50 l S Q
q 1 0 0 -1 0 146.399994 cm
278 61.254 m 278 50 l S Q
q 1 0 0 -1 0 146.399994 cm
276.398 61.254 m 276.398 50 l S Q
q 1 0 0 -1 0 146.399994 cm
274.801 61.254 m 274.801 50 l S Q
q 1 0 0 -1 0 146.399994 cm
273.199 61.254 m 273.199 50 l S Q
q 1 0 0 -1 0 146.399994 cm
271.602 61.254 m 271.602 50 l S Q
q 1 0 0 -1 0 146.399994 cm
270 61.254 m 270 50 l S Q
q 1 0 0 -1 0 146.399994 cm
268.398 61.254 m 268.398 50 l S Q
q 1 0 0 -1 0 146.399994 cm
266.801 61.254 m 266.801 50 l S Q
q 1 0 0 -1 0 146.399994 cm
265.199 61.254 m 265.199 50 l S Q
q 1 0 0 -1 0 146.399994 cm
263.602 61.254 m 263.602 50 l S Q
q 1 0 0 -1 0 146.399994 cm
262 61.254 m 262 50 l S Q
q 1 0 0 -1 0 146.399994 cm
260.398 61.254 m 260.398 50 l S Q
q 1 0 0 -1 0 146.399994 cm
258.801 61.254 m 258.801 50 l S Q
q 1 0 0 -1 0 146.399994 cm
262 61.254 m 262 50 l S Q
q 1 0 0 -1 0 146.399994 cm
260.398 61.254 m 260.398 50 l S Q
q 1 0 0 -1 0 146.399994 cm
258.801 61.254 m 258.801 50 l S Q
q 1 0 0 -1 0 146.399994 cm
257.199 61.254 m 257.199 50 l S Q
q 1 0 0 -1 0 146.399994 cm
255.602 61.254 m 255.602 50 l S Q
0 g
0.8 w
q 1 0 0 -1 0 146.399994 cm
305.199 126 m 74.801 126 l S Q
71.105 20.4 m 76.645 23.599 l 76.645 17.201 l h
71.105 20.4 m f*
0.8 w
q -1 0 0 1 0 146.399994 cm
-71.105 -126 m -76.645 -122.801 l -76.645 -129.199 l h
-71.105 -126 m S Q
Q q
68 128.4 1 -115 re W n
q
68 128.4 1 -115 re W n
% Fallback Image: x=68 y=18 w=1 h=115 res=300ppi size=7200
[ 0.24 0 0 0.24 68 13.199994 ] concat
/DeviceRGB setcolorspace
8 dict dup begin
/ImageType 1 def
/Width 5 def
/Height 480 def
/Interpolate false def
/BitsPerComponent 8 def
/Decode [ 0 1 0 1 0 1 ] def
/DataSource currentfile /ASCII85Decode filter /FlateDecode filter def
/ImageMatrix [ 1 0 0 -1 0 480 ] def
end
image
Gb"/fHVdXB*ln;oS!p'"0gUKr3:\oi9u7i@j<^`N$mN4POLHc5V:CH\7MLd=Ags2!$5!kH;+
@T1.VcDL<_8%$M!W\.&9cn'#fn6b'qb@b2aLZ=Z.%Ajp+cBgB/94NiVq+_?ZLYZgm"%f-q<
n&orh]8$4[PhB2hf.o<,3sX=Rr4dEr!geVg=Y$"FB>?9T<Vq<T8WroI(,p\/O^J(kA?p\2=
F1(Y-JFd(1fd6f5++9+,F^s>_1)`V$/kP=>t+Fd`WYq&XVZ0RhW:=nl+hmM!af67/0]uHs;
\"4)<0Jl"Bcif::1l`%#)!_F0!seP\m/>C:T_3'qPP\\l9#VFs!B=>ql,f"ZJPoZ,`u[3FP
5WkCg8&:GOWXB!VlM^?rql6+]gj1=<^6"4_Jo:th24_Y^qiOsjb,8ZBP/b]$';C04!IW<&P
AZFb8@q!42Am&ltQu/IM)VLDor'PR:;kT=?*(MBUQRZ^N@NUh76t+[tO!@Y10q!)7d.hUb-
5TD'QrQOk+Y"Xe-'3XrVCc1Yf:5rCl4qe'!;h%4d1&<r%)GM-[!9>r^sA5sr4?Iuii'B+'j
.7JZ,P_8_.RmZo'[.7!]PhneX%g.j26WEB5n?3l%"Fn(*=n-9EnJVLC[/&4XWQPU'8%NW&!
1@Xsa@*a.cU/)e\CLuoMY:c&r-]&hrZib[T-AUfSb@T[i[)3#SIu^),4Z,->MVN+_:qb])]
d*K)S]gsmB3aWLH$5KX7lmfDM/*\eNS;YaM*6R^8]!E!Bs9=CAmsP4TJ1:2=P7L+N@7&shM
t]>(2ZPBMJQa%)-g_[#:NN]OA]'a<t[>s8VjK6p`RH889:<RVEYEp"am!:+;m`4_P1lq>!O
OBR**]*\0cAVA"=I[V\C3dgUp7RbN/i6V;tsq)rY'.(F.0jAtUdg/g=s=&?B!S<A*5Y,<9=
\A6(I4(2ZJ@MA8hHR4NXg"XqfTNHI%@$e[d2-<W"I6[0Qe>ES'o9]]N4[h(AG`[VPVN:80i
.4-s-2@FS8!sL3BXDD"G,m>^VR=PL"j\^mp-E@;TAM?Ul`$tSJa_D:%T-0YX1cq)I=U;3#p
g^,AB<k,DB]JpB3.C6A-7^S^4d?'_d<9FZLJgO">7P-fRB0j#\tsd['YcP16n5)YS;_D2Wn
lr3C^S$N#Uc8iKlbA;Ug0`,8*S"GRdEjB9kVih'Kq.B8=f^#]/5.6,M(^F/mulum&1A"Uf8
PTb7Tb'.o.cE2Mn\YB_hJ#`$U[FE'0#j*)!SX0FJPu!D.:8YqjPVJo]Q_5jSngkAVi]U*)3
AJ$.4\PNQjElZ=s4Q%<m8C<h!VCLU?gpnf39Cp51c3.Atq>,4e<V6!fVQa.3NBIG1eZf#1u
AN/"M"iOTiS7JkKklP-/5H8I\iEj.tiG93W,MkCV%`014gpU17<J>KYQWjf;V1r-plr_Qa+
&!5@2-..qfaB.>[]pH$%o:L3:cnR&Ktb#onIAN?,1o^>>T8_3;9l^+K2'&mNKkpj8u0:8f?
7Ydc"7+JbsTRcKs`'Z8(L'E$Ua$Me%oFi3ggrRat&BM$/DIQB>^h5[jL'^W:$U>TbLX])Kd
*?F<@td4398q:`EieC)2`9V0Gbt`[*=ib&KNo+aM_B*R0OGW<Be<r;9/_@obGm+%(f9p_a;
tNdqf9hSuY&\B7$T<bD_t=j\dH-KX=XJ[$snJ[YTLbIEN@R4S*%(a:hmon)S3GO);rgqDW`
.+NOhVsg?=^?BE97DHjW?Selm,Fa$ANSM-b7_"Bn0&sP1$NW?8N?`J4"=u/J5OWmc>`k41O
LLcSlq<%VEOIrJrD7/qHg5!K,.-IJ`oVh3iqKi+&*[+[diQr6!aWC%p+m"6:W3A7BLj.Yb4
,-<Lg>8@_8:oD/YDfbfna9D!YmfY,<)t-^$WbTl!iVY$>&;>Xj)@/['%)k/b"C9Zi9[l0!2
-H]=U_JX%QY*<;f_Zl06<K$47-U$ACfN7[][4?ipK5h&%.mEb'!&/2]:BRZV%9s%Q,]GKpW
c<DQCd(F-V"s/VFBZG!rbh2Dd:^0bg'lM["J(UN]%n8N!(T:`=;C>\kB'GhQ%0iG(&@-^GV
l:To@BO?"T&[LF"EKl$EL,`u$CCH172@fD-*jj;G]7rA.LXT)$URBo'/[o.i#>HG&4c-O`*
5`?2>VAH($K39:8!>8q4sLUK7lV.#+L<aPG1^n[[J)M^1.rC!)>%H3mDX]B,HZD%fgO>2Gu
.*jO/qp7^o#QlDG:=ehS''-"H:,CR#1<)L/k0$9qY5CCQnOa)7F&^j#a>Gc@Z;CCg$Be$;a
7^?rN@7(-S2ie58?\_40$aFJ&)Sc7QKOI`Vm^q(l!kG`#m*-$#8**2#T+NP@m$_hei!:?UU
7Libsf$;dqc_=8j1^eF18#-'UU_po$BL%#CZBRo1'N4nb;`R&g8I/gkCr]-EdSrR)a.@5)9
;N#$HK`.88`r"<)Z<YemPsrn/EO*Z"Ed=8&i&AF.\(/6<UE@j-F:#=O2^_B*rU"Iup9"2b>
QZ!rg"_$2#PbPas5CFU!HVNlZY^tj2H?dL8"JoF^Y+c182A6Rd,$<549nJI'&"Bd>dE=d+3
o&<T"*6K!t9;'O7cd'8,&^cf/t/BJYW59dI-0.]A^*U^tt6f76l4c[22X8K7X0\h;*Tk`t#
up`W*b1B^/ZrX@ucbZ8-!&b0#s6.4\=tVQBbiZL[Y[SAhG2Ycst#jfS9n[rh>1qG1\alg*l
Z8>T5#1<n(g5@amM\PfEVdF$@5O[LCU^8%9DAGTT"Sj?:U^T)ba9"o`X~>
Q
Q q
125 128.4 2 -115 re W n
q
125 128.4 2 -115 re W n
% Fallback Image: x=125 y=18 w=2 h=115 res=300ppi size=12960
[ 0.24 0 0 0.24 125 13.199994 ] concat
/DeviceRGB setcolorspace
8 dict dup begin
/ImageType 1 def
/Width 9 def
/Height 480 def
/Interpolate false def
/BitsPerComponent 8 def
/Decode [ 0 1 0 1 0 1 ] def
/DataSource currentfile /ASCII85Decode filter /FlateDecode filter def
/ImageMatrix [ 1 0 0 -1 0 480 ] def
end
image
Gb"/(>AR8-)#!L4/.YudoWW:Vq'@JH^qg`G5mkUG8>$,Y$S<sD5mo8]\J@dd/PrTf;(7i8Mq
Af]*o>*fID?XDP&6.40b"D1]c^a20e,&<''oJq^U$"=ks]7elM:!^F68s5p7KWXB>3'+V[%
5'b*=f;T&-u!l-_,:iHKEeFYtZ@N!-`(]=SbHA;#SWa]`,,&K1KhZghuZPj>_T@73RE#[D<
?WTAFnYN:'tYN:'tYN:'tYN:'tYN:'tYP!shnbp7:-.LJqjX[_3`m1,:r<gI,\pYaipA)3/
pHFp#B,"9&OVd#q3=r=kG`MP?nSE,9V&;Z7nK!UjS,r.<L^"-NqiY:V0P(nHoogLnJ5]q2Q
GJe['IDW<nKp4aVEN%/asN"d6.@&F'ilI-b@F$]"*#$n&J0^T*[+/S+G^-<=s@<HnIUM)+S
J.3dN@1RKuttB.@VaR#>kq>%lfuSD&Q)FKaR+1+Ei="DVEDT9\DgR2i&Isb/%4pg<UU0fgK
g-Li"9C6FatkO_5j//[5HoYoUb0&7ltVM'_ds7cJ#p(5"$`.%;1?Sdcgn6R^atbk3_[+c5c
E!YB.`=_-7H%&DL:9bc33a9Rh8:82H`23?i,OTQd<`&b\l2%X$V9=?t)P<AD7A:_h!hDHEV
K3/:d,uIuZ!;=Q*1-q^g8-=u@9VpUrl4J=5$4oir,_K2o[q3LhK(FC^'0Jj`7t/IhkR3pad
iN?K`u)'7U^*IdVA,H'@F3q"9<H!GDd\l4I`;RfIkk@%2e5;B:Sruc)tMLLd>=U^%HmUUX"
7k!H>-6H,h%4r@)`t9QI8oJg>`WSCamI+c3hf8;$2ns_OLKE"Vrn/S'D+maBFS)*)(0s&C-
k_cMk>bs1ZnM_3lSigZ(BIpXpN5^0o4_U/^E@pB^0RmIB`:0Jh#Gics$#H)LN"e'$4(kDWP
#=]4_bnc%@]YNqq*m*6&#iPY6Gg2Gk#\\9So^Nsbgjh"lKf):lHIcY<Y<):21oBj45jS/Rm
s4:DE)d&&GJ(^(*1RG#:6o-.bHDT-Q%:p@Mp"=]8D`,bP>5$@iTD.6/gOJLuq>9QN#A)%"J
,MBtrHTMJadFn0h"-8\a*ukN&aJ]JV^d?6L(*pUVP[i1;)-_7+5*Bn2+$gcV=PQVWL6Y&`,
lL>>(J4X'>qDDGRE]"C6<q-`7#FFa2'4U,+B9D&)n$lk?t8BH%q*2@==+,f.!8OC.Wi<_uN
6t_1"L7Z!L)f]WX9gP?rn+*6e"#:%^1pXD9NL0q'W/ajAJ+o3,aP"`CX`g!MY>]WRouGoMF
f>(K'p'DM"`\6%^>cD_g1Dt7+4Li9)b-rtV!6MD1(JmbIO>K@3\"/Ufk.)\6baS$NGN$hAj
[?s\6!gVn'Z?%Ip$6m%C]Va,)XFUD=6bV0?Uu=.[a'oFe`/8)=/gVi7p'P7I7<U"@_C7.WA
X(mtI3Uh\cjJ"d#,Z_L[^T=KY6&@>MX8^pk!"!#iIs'`MsPOc.iWhf$[d3O+@c!.b2OE6Ga
:th>agOm.^*n.3OK5D[:pOhj='1//qW#%?d`Hq1NJ^0M&a4!V-7DrW!2"7C[.^/?#ke2:m@
<A'7+qVNNiQrLMWtsXIpeI'tK@[(i^[fE"BLd#/\"MTi-ddZ0o?Ig""2!m0NtQG*Ji0Y*3e
X5(a_7r<Db.EXGKeU;;f$>]k;,Q7lY@Lqf_56LM;OIH4o3$$pIS,;43#/ZpK"2"?f"<Z3/0
s3Ld`he6!("jZ,IibUF<k7&d+1].VIrk<%HB8:3u%AmqcV1'I'h!7U^fu%>h>_$&(1h<(F<
\@-oi/)-7W33:pXUl69&DGjlCkXqX:O]0'8san]kYpe3G2@J.0%V%jC:W3JCUr<KCUr<KCU
r<KCUr<KCUr<KCUr<KCUr<KCUr<KCUr<KCUr<KCUr<KCUr<KCUr<KC]/aqEJ)WngcS<iL;G
)5:Dj:P"(TF*pm6;Z(S[b&,s$h/eO^lSAX#MJDob.UMF,06nBJc,_79AsNlURI+\2;Qmi,8
[bfiaZTh=:CLI0e3(io,K2fq0*D`gXY]5KD&"p"$KYQ~>
Q
Q q
183 128.4 1 -115 re W n
q
183 128.4 1 -115 re W n
% Fallback Image: x=183 y=18 w=1 h=115 res=300ppi size=7200
[ 0.24 0 0 0.24 183 13.199994 ] concat
/DeviceRGB setcolorspace
8 dict dup begin
/ImageType 1 def
/Width 5 def
/Height 480 def
/Interpolate false def
/BitsPerComponent 8 def
/Decode [ 0 1 0 1 0 1 ] def
/DataSource currentfile /ASCII85Decode filter /FlateDecode filter def
/ImageMatrix [ 1 0 0 -1 0 480 ] def
end
image
Gb"0PCJ[uA(^KOoT%P;CF58(nhKZPVJ]"dh@V9,9+H&P5'be,,WG(/+FAfc;WN6F7!Q%-r9b
\bo/5!LP>:D(I8]48;@2F2$6pMFuJY%:4$Z/ARRAO\5s7?,lce6uqhXfWKG><'pDc0J21eg
D-7;m*_BP;'%9j(WP?cSn8U-+mug=kD=V66uh!_lm'gI#&VDnL>bif>p?55X9n\#Tb;N;#D
jk0Eoh;B/t&\oMoSkj%X'Wi%pXVmA$Vg2m.;W%K>l*Ipb+(O(']:R`7A4Y[<20AgjJ`[.+7
HIUb:DR]XV=,4@jcZHRd]rUPUXfEhH`^T-e_GL'"gs2chX[]GdpHcCufACC(W9%#oc5Z0)[
e=>3rW;->m'HrLBa[]V&itKt97>Uc)qoMrkM:<Xkk\)P1Z*#J3OfAQS//87a:AUJ%e*Jk*U
h9k5G&ZGatmG8%.2-+IdN(;A>HhP\.lVp9PcfhG3p*(:OSgTlLVu]/1Xr>:Mp&Z"_p,Q<jn
TEK3CSnD5j,!ZT9XI\LqB;BOt?E<QiVE5ZcKtJZ*6LGk7%cNI$]$cN$r>Njec<=(3D=;*$/
[PHMT.Nj9UR`B9jY^mLu$02XA]*IPEf95W]j84SA?XpCKeU1C@fRB`1]V&P.qr_1:P:NE%f
UM[!WnEEd+mg79,KF6S#OcR>g:h#eJcnIt!c;p#;iNA6?1:n'q&u`s9<uPY8R5/Q?Oq\!_<
5c=%86EqG'C\@WS<Ap(=]/oTQ&ID`,m@,Y;/Y&06e6'"ab)h>"3KdP(J#;Yj!BEs0f#Y!8I
"[U,#69'+c.M7JbQC0;d#7f0nIV[I@X3V$lAIEOS*c9J@l'HD7apU<WcK7[hd$lLuFjKLH(
ujGSdXoG_Lrp@?@-pa\q'Y,&Rr4a0T;2(giFC_Sq6G`TC6uA.dJ,%O;5I/M`r%!+[7d4pS)
#jH]8@aon,TQBKGnI^"VIa<4n"94e1m.cSBg$ti-En1Jes1I;pO&tsWGgnL-<U1MmY-&D_n
GeiWU)NYdcep_0C(e7+*JRZN<@e3^dMS]WPO/Lf>S\3Xrh[O^.T2'PNl2&?&JI']AE#^RJX
8a"qjI%*P:d-o;a>CPS#FPQ[%mNk[[*8-r]4rUJ[Ok6$".;J70H"?TS0Ok*OYWht(L1n]4=
fE_@CQ>s&AjS5i!5,.[;FEu\5+>&0oQkmo0b$q%Q6+nbQP#!,ZFJI2NZO,WoE-*EAFW=R]I
e+J:CV<8Ji^@Yh1<V'lbdWKLcm5k%/WS`!GC*Z371?aXtUib:K(SFX;;HCmIrAJY_#6ik&4
m=Tuh8&jrH3RHI34!:XkMDD6]r(`&/;&,%`D,oc;9=.A,DRt7C0OT?`6O";F,&2VHh;WWR(
k.-SU^jCu!3J2uqQ3_S30M%SUP3lYI/hnW/%9(7.F].cOgh!4'fG.>sTINlHR3BJ?Ts[]g8
qA':ida<]$;:*>d@ES?)_BYM]It9g(h"lJn;6nEmI!IPi+R]=Kef9TEj"B-48eVUiq!'\e4
?'d;2noeB.`Z-]Z:b7]C!/+YJW5trr-5"U$\nkVF-IaQ.Y!++"CM7GibFYfEap1mTK1uQJg
oCEE'TqObBd$l#njZ9@Y"sDG)jUf5`u"DVVIp0Mh=<:3>gDA\fT*WhD&dZq9.UZR0pMRqe<
@12WG,X`iaUooh/_9ZUJ6YM,>kIP-7.g76K*[r/Us6e?f=4C^;!*([+jR+>)tGN7[XmH@sZ
IVu)DG>ZC6+)4=C#5Ga(SU!jh/sU4Ek5mV=Znjr>B#E4b*8>W0k`2u>M]4<sg=c6AFkESUn
?(h_I2q]j3P@"W?#IZ^gl0d]/Gm#]=`klRC6^G%GsD3"NF-h^kLBT^BQnH&pW^]lM,U,rN^
N]ebBgb&p!MXFI1,_BSh?N4r%iucq9%*MUFSi9Nij@-3P'6Qjljk7eY@4d?XM.N]H<+U#UY
`a4["3L9n%Q*l%/*clmsP5aItV>o&N$d(#E"g:sa0MXK3t47anPJ^F*`CI!fo*o()@E;6/6
9HW,-,*iZ3TNfJ2Ra&8n9W="?rKgr8t5PDm;hjaXM<t?>OL$.`F#f(bd~>
Q
Q Q
showpage
%%Trailer
end restore
%%EOF

View File

@@ -0,0 +1,59 @@
%% Creator: Inkscape inkscape 0.91, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'multimodalpath.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{309.60002441bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.47286818)%
\put(0,0){\includegraphics[width=\unitlength]{multimodalpath.eps}}%
\put(2.50516776,0.17958655){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{}}}%
\put(0.10,0.050){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{Time}}}%
\put(0.209,0.01421189){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$t$}}}%
\put(0.37,0.01421189){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$t-1$}}}%
\put(0.56,0.01421189){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$t-2$}}}%
\end{picture}%
\endgroup%