closes #17 testumgebung für mathe methoden

This commit is contained in:
toni
2017-12-05 12:39:52 +01:00
parent 12c5cae253
commit 366fb034a4
6 changed files with 1363 additions and 4 deletions

View File

@@ -6,12 +6,8 @@ import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Handler;
import android.util.Log;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.ThreadLocalRandom;
import de.tonifetzer.conductorswatch.utilities.Utils;

9
java/.gitignore vendored Normal file
View File

@@ -0,0 +1,9 @@
*.iml
.gradle
/local.properties
/.idea/workspace.xml
/.idea/libraries
.DS_Store
/build
/captures
.externalNativeBuild

20
java/pom.xml Normal file
View File

@@ -0,0 +1,20 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>de.toni.bpm</groupId>
<artifactId>bpm</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>com.github.wendykierp</groupId>
<artifactId>JTransforms</artifactId>
<version>3.1</version>
<classifier>with-dependencies</classifier>
</dependency>
</dependencies>
</project>

View File

@@ -0,0 +1,97 @@
import java.awt.*;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.stream.IntStream;
/**
* Created by toni on 04/12/17.
*/
public class Main {
public static void main(String [ ] args) {
File folder = new File("/home/toni/Documents/programme/dirigent/measurements/wearR");
File[] listOfFiles = folder.listFiles();
Utils.ShowPNG windowRaw = new Utils.ShowPNG();
Utils.ShowPNG windowAuto = new Utils.ShowPNG();
// iterate trough files in measurements folder
for (File file : listOfFiles) {
if (file.isFile() && file.getName().contains(".csv")) {
Utils.AccelerometerWindowBuffer accWindowBuffer = new Utils.AccelerometerWindowBuffer(4096, 256);
//read the file line by line
try (BufferedReader br = new BufferedReader(new FileReader(file))) {
for (String line; (line = br.readLine()) != null; ) {
// process the line.
String[] measurement = line.split(";");
//if linear acc
if(measurement[1].equals("2")){
long ts = Long.parseLong(measurement[0]);
float x = Float.parseFloat(measurement[2]);
float y = Float.parseFloat(measurement[3]);
float z = Float.parseFloat(measurement[4]);
accWindowBuffer.add(new Utils.AccelerometerData(ts, x, y, z));
}
//do calculation stuff
if(accWindowBuffer.isNextWindowReady()){
//print raw x,y,z
double[] dTs = IntStream.range(0, accWindowBuffer.getTs().length).mapToDouble(i -> accWindowBuffer.getTs()[i]).toArray();
double[] dX = IntStream.range(0, accWindowBuffer.getX().length).mapToDouble(i -> accWindowBuffer.getX()[i]).toArray();
double[] dY = IntStream.range(0, accWindowBuffer.getY().length).mapToDouble(i -> accWindowBuffer.getY()[i]).toArray();
double[] dZ = IntStream.range(0, accWindowBuffer.getZ().length).mapToDouble(i -> accWindowBuffer.getZ()[i]).toArray();
Plot plotRaw = Plot.plot(Plot.plotOpts().
title("Raw Acc Data").
legend(Plot.LegendFormat.BOTTOM)).
series("x", Plot.data().xy(dTs, dX), Plot.seriesOpts().color(Color.RED)).
series("y", Plot.data().xy(dTs, dY), Plot.seriesOpts().color(Color.BLUE)).
series("z", Plot.data().xy(dTs, dZ), Plot.seriesOpts().color(Color.GREEN));
windowRaw.set(plotRaw.draw());
//auto corr
float[] xAutoCorr = Utils.fftAutoCorrelation(accWindowBuffer.getX(), 1024);
float[] yAutoCorr = Utils.fftAutoCorrelation(accWindowBuffer.getY(), 1024);
float[] zAutoCorr = Utils.fftAutoCorrelation(accWindowBuffer.getZ(), 1024);
//print autocorr
int[] tmp = IntStream.rangeClosed(-((xAutoCorr.length - 1)/2), ((xAutoCorr.length - 1)/2)).toArray();
double[] rangeAuto = IntStream.range(0, tmp.length).mapToDouble(i -> tmp[i]).toArray();
double[] dXAuto = IntStream.range(0, xAutoCorr.length).mapToDouble(i -> xAutoCorr[i]).toArray();
double[] dYAuto = IntStream.range(0, yAutoCorr.length).mapToDouble(i -> yAutoCorr[i]).toArray();
double[] dZAuto = IntStream.range(0, zAutoCorr.length).mapToDouble(i -> zAutoCorr[i]).toArray();
Plot plotCorr = Plot.plot(Plot.plotOpts().
title("Auto Correlation").
legend(Plot.LegendFormat.BOTTOM)).
series("x", Plot.data().xy(rangeAuto, dXAuto), Plot.seriesOpts().color(Color.RED)).
series("y", Plot.data().xy(rangeAuto, dYAuto), Plot.seriesOpts().color(Color.BLUE)).
series("z", Plot.data().xy(rangeAuto, dZAuto), Plot.seriesOpts().color(Color.GREEN));
windowAuto.set(plotCorr.draw());
//find peaks
//fill hols improve peaks
//estimate bpm between detected peaks
}
}
// line is not visible here.
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
}

1027
java/src/main/java/Plot.java Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,210 @@
import org.jtransforms.fft.FloatFFT_1D;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.ArrayList;
import java.util.Arrays;
public class Utils {
public static float getDistance(float x1, float y1, float x2, float y2) {
return (float) Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
public static class AccelerometerData {
public float x,y,z;
public long ts;
public AccelerometerData(long ts, float x, float y, float z){
this.ts = ts;
this.x = x;
this.y = y;
this.z = z;
}
}
public static class AccelerometerWindowBuffer extends ArrayList<AccelerometerData> {
private int mWindowSize;
private int mOverlapSize;
private int mOverlapCounter;
private float[] mX;
private float[] mY;
private float[] mZ;
private long[] mTs;
public AccelerometerWindowBuffer(int windowSize, int overlap){
this.mWindowSize = windowSize;
this.mOverlapSize = overlap;
mOverlapCounter = 1;
mX = new float[this.mWindowSize];
mY = new float[this.mWindowSize];
mZ = new float[this.mWindowSize];
mTs = new long[this.mWindowSize];
}
public boolean add(AccelerometerData ad){
boolean r = super.add(ad);
if (size() > mWindowSize){
removeRange(0, size() - mWindowSize);
}
//update the double arrays.
for (int i = 0; i < size(); ++i) {
mX[i] = get(i).x;
mY[i] = get(i).y;
mZ[i] = get(i).z;
mTs[i] = get(i).ts;
}
++mOverlapCounter;
return r;
}
public boolean isNextWindowReady(){
if(size() == mWindowSize && mOverlapCounter > mOverlapSize){
mOverlapCounter = 1;
return true;
}
return false;
}
public AccelerometerData getYongest() {
return get(size() - 1);
}
public AccelerometerData getOldest() {
return get(0);
}
public float[] getX(){
return mX;
}
public float[] getY(){
return mY;
}
public float[] getZ(){
return mZ;
}
public long[] getTs(){
return mTs;
}
}
public static float sqr(float x) {
return x * x;
}
public static int nextPow2(int a){
return a == 0 ? 0 : 32 - Integer.numberOfLeadingZeros(a - 1);
}
public static float mean(float[] data){
float sum = 0;
for (int i = 0; i < data.length; i++) {
sum += data[i];
}
return sum / data.length;
}
public static float[] removeZero(float[] array){
int j = 0;
for( int i=0; i<array.length; i++ )
{
if (array[i] != 0)
array[j++] = array[i];
}
float[] newArray = new float[j];
System.arraycopy( array, 0, newArray, 0, j );
return newArray;
}
//TODO: errorhandling maxLag = 0;
//TODO: größeren Testcase schreiben
public static float[] fftAutoCorrelation(float[] data, int maxLag) {
int n = data.length;
float[] x = Arrays.copyOf(data, n);
int mxl = Math.min(maxLag, n - 1);
int ceilLog2 = nextPow2(2*n -1);
int n2 = (int) Math.pow(2,ceilLog2);
// x - mean(x) (pointwise)
float x_mean = mean(x);
for(int i = 0; i < x.length; ++i){
x[i] -= x_mean;
}
// double the size of x and fill up with zeros. if x is not even, add additional 0
float[] x2 = new float[n2 * 2]; //need double the size for fft.realForwardFull (look into method description)
Arrays.fill(x2, 0);
System.arraycopy(x,0, x2, 0, x.length);
// x_fft calculate fft 1D
FloatFFT_1D fft = new FloatFFT_1D(n2);
fft.realForwardFull(x2);
// Cr = abs(x_fft).^2 (absolute with complex numbers is (r^2) + (i^2)
float[] Cr = new float[n2 * 2];
int j = 0;
for(int i = 0; i < x2.length; ++i){
Cr[j++] = sqr(x2[i]) + sqr(x2[i+1]);
++i; //skip the complex part
}
// ifft(Cr,[],1)
FloatFFT_1D ifft = new FloatFFT_1D(n2);
ifft.realInverseFull(Cr, true);
// remove complex part and scale/normalize
float[] c1 = new float[n2];
j = 0;
for(int i = 0; i < Cr.length; ++i){
c1[j++] = Cr[i] / Cr[0];
++i; //skip the complex part
}
// Keep only the lags we want and move negative lags before positive lags.
float[] c = new float[(mxl * 2) + 1];
System.arraycopy(c1, 0, c, mxl, mxl + 1); // +1 to place the 1.0 in the middle of correlation
System.arraycopy(c1, n2 - mxl, c, 0, mxl);
return c;
}
//TODO: findPeaks
@SuppressWarnings("serial")
public static class ShowPNG extends JFrame
{
JLabel mLabel;
ImageIcon mIcon;
public ShowPNG(){
mLabel = new JLabel();
this.setLayout(new GridLayout(1,1));
this.setSize(800, 640);
this.add(mLabel);
this.setVisible(true);
}
public void set(BufferedImage bi){
mIcon = new ImageIcon(bi);
mLabel.setVisible(false);
mLabel.setIcon(mIcon);
mLabel.setVisible(true);
}
}
}