added recent C++ code

This commit is contained in:
2016-01-09 18:34:03 +01:00
parent 1af38ba3b5
commit a5f2ee6f04
5 changed files with 243 additions and 27 deletions

View File

@@ -23,6 +23,10 @@ std::string getClass(const std::vector<ClassifiedFeature>& nns) {
return "";
}
struct ClassStats {
int counts[6] = {};
};
struct Stats{
int match;
int error;
@@ -31,23 +35,178 @@ struct Stats{
float getSum() {return match+error+unknown;}
};
std::vector<ClassifiedPattern> removePatterns(const std::vector<ClassifiedPattern>& patAll, const std::string& fileName) {
std::vector<ClassifiedPattern> res;
for (const ClassifiedPattern& pat : patAll) {
if (pat.belongsToFile(fileName)) {
continue;
} else {
res.push_back(pat);
}
}
return res;
}
template <int numFeatures> struct PCA {
aKNN<ClassifiedFeature, numFeatures> knn;
TrainPCA::Matrices m;
};
class Plot {
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementLines lines[5];
public:
Plot() {
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
}
void add(int idx, std::vector<float>& vec) {
K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]);
lines[idx].add(p3);
}
void clear() {
for (int i = 0; i < 5; ++i) {lines[i].clear();}
}
void show() {
gp.setDebugOutput(false);
gp.draw(splot);
gp.flush();
}
};
int main(void) {
omp_set_dynamic(false);
omp_set_num_threads(3);
const int numFeatures = 3;
const int numFeatures = 10;
TrainPCA::Settings setTrain;
TrainPCA::Settings setClass; setClass.regionStart_ms += 25;
Data::getAllDataFiles();
Plot p;
// convert all provided datasets into patterns
std::vector<ClassifiedPattern> srcTrain = TrainPCA::getAllData(setTrain);
std::vector<ClassifiedPattern> srcClass = TrainPCA::getAllData(setClass);
std::cout << "windows: " << srcTrain.size() << std::endl;
// error calculation
std::unordered_map<std::string, Stats> stats;
std::unordered_map<std::string, ClassStats> classStats;
//int xx = 0;
std::unordered_map<std::string, PCA<numFeatures>*> pcas;
// try to classify each pattern
for (const ClassifiedPattern& patClassify : srcClass) {
// construct knn search for this leave-one-out ONLY ONCE
if (pcas.find(patClassify.fileName) == pcas.end()) {
std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl;
// remove all training patterns belonging to the same source file as the to be classifed pattern
std::vector<ClassifiedPattern> srcTrainLOO = removePatterns(srcTrain, patClassify.fileName);
// sanity check (have we removed all patterns?)
int diff = srcTrain.size() - srcTrainLOO.size();
if (diff < 200) {throw 1;}
p.clear();
PCA<numFeatures>* pca = new PCA<numFeatures>();
pcas[patClassify.fileName] = pca;
// train PCA using all pattern without those belonging to the same source file as the to-be-classified one
pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures);
// calculate features and add them to the KNN
for (const ClassifiedPattern& pat : srcTrainLOO) {
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
pca->knn.add(ClassifiedFeature(pat.className, arr));
const int idx = Settings::classToInt(pat.className);
p.add(idx, arr);
}
pca->knn.build();
//p.show();
//sleep(100);
}
{
PCA<numFeatures>* pca = pcas[patClassify.fileName];
// calculate features for the to-be-classified pattern
//const int idx = Settings::classToInt(pat.className);
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(patClassify.pattern);
// get KNN's answer
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = pca->knn.get(arr.data(), 5);
std::string gotClass = getClass(neighbors);
if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;}
else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;}
else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;}
int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass);
++classStats[patClassify.className].counts[gotIdx];
}
}
for (auto& it : stats) {
Stats& stats = it.second;
std::cout << "'" <<it.first << "',";
std::cout << stats.match/stats.getSum() << ",";
std::cout << stats.error/stats.getSum() << ",";
std::cout << stats.unknown/stats.getSum();
std::cout << std::endl;
}
for (auto& it : classStats) {
ClassStats& stats = it.second;
std::cout << "'" << it.first << "',";
for (int i = 0; i < 6; ++i) {
std::cout << stats.counts[i] << ",";
}
std::cout << std::endl;
}
/*
std::vector<ClassifiedPattern> patTrain = TrainPCA::getTrainData();
TrainPCA::Matrices m = TrainPCA::getMatrices(patTrain, numFeatures);
std::vector<ClassifiedPattern> patTest = TrainPCA::getTestData();
// construct knn
aKNN<ClassifiedFeature, 3> knn;
aKNN<ClassifiedFeature, numFeatures> knn;
for (const ClassifiedPattern& pat : patTrain) {
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
const std::vector<float> arr = {vec(0), vec(1), vec(2)};
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
knn.add(ClassifiedFeature(pat.className, arr));
}
knn.build();
@@ -65,7 +224,8 @@ int main(void) {
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
// get KNN's answer
std::vector<float> arr = {vec(0), vec(1), vec(2)};
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = knn.get(arr.data(), 10);
std::string gotClass = getClass(neighbors);
@@ -93,7 +253,7 @@ int main(void) {
sleep(10000);
*/