added plot generators and current c++ code

renamed some matlab files
This commit is contained in:
2016-01-10 14:43:47 +01:00
parent a5f2ee6f04
commit 844484f0ef
21 changed files with 58697 additions and 180 deletions

1210
franke/plots/net/input.gp Normal file

File diff suppressed because it is too large Load Diff

613
franke/plots/net/net_0.gp Normal file
View File

@@ -0,0 +1,613 @@
set terminal emf size 600,250
set output 'net_0.emf'
unset xtics
unset key
set format y ' '
plot '-' with lines lw 2 lc rgb '#ff0000' title 'JUMPING_JACK', '-' with lines lw 2 lc rgb '#00ff00' title 'SITUPS', '-' with lines lw 2 lc rgb '#0000ff' title 'PUSHUPS', '-' with lines lw 2 lc rgb '#ffff00' title 'KNEEBEND', '-' with lines lw 2 lc rgb '#000000' title 'FORWARDBEND',
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 1
800 1
900 1
1000 1
1100 1
1200 0
1300 0
1400 0
1500 0
1600 0
1700 1
1800 1
1900 1
2000 1
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 1
2800 1
2900 1
3000 1
3100 1
3200 0
3300 0
3400 0
3500 0
3600 0
3700 1
3800 1
3900 1
4000 1
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 1
4800 1
4900 1
5000 1
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 1
5900 1
6000 1
6100 1
6200 0
6300 0
6400 0
6500 0
6600 0
6700 1
6800 1
6900 1
7000 1
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 1
7800 1
7900 1
8000 1
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 1
8800 1
8900 1
9000 1
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 1
9800 1
9900 1
10000 1
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 1
10800 1
10900 1
11000 1
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 1
11800 1
11900 1
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 1
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 1
100 1
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 1
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 1
2700 0
2800 0
2900 0
3000 0
3100 0
3200 1
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 1
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 1
5200 0
5300 0
5400 0
5500 1
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 1
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 1
7300 0
7400 0
7500 1
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 1
8300 0
8400 0
8500 1
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 1
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 1
10200 0
10300 0
10400 1
10500 1
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 1
11300 0
11400 1
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 1
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 1
3200 1
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 1
4200 0
4300 1
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 1
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 1
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 1
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 1
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 1
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 1
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e

613
franke/plots/net/net_1.gp Normal file
View File

@@ -0,0 +1,613 @@
set terminal emf size 600,250
set output 'net_1.emf'
unset xtics
unset key
set format y ' '
plot '-' with lines lw 2 lc rgb '#ff0000' title 'JUMPING_JACK', '-' with lines lw 2 lc rgb '#00ff00' title 'SITUPS', '-' with lines lw 2 lc rgb '#0000ff' title 'PUSHUPS', '-' with lines lw 2 lc rgb '#ffff00' title 'KNEEBEND', '-' with lines lw 2 lc rgb '#000000' title 'FORWARDBEND',
0 0
100 0
200 0
300 1
400 1
500 1
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 1
1600 1
1700 1
1800 1
1900 1
2000 1
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 1
3100 1
3200 1
3300 1
3400 0
3500 1
3600 1
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 1
4600 1
4700 1
4800 1
4900 1
5000 1
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 1
6100 1
6200 1
6300 1
6400 1
6500 1
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 1
7500 1
7600 1
7700 1
7800 1
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 1
8900 1
9000 1
9100 1
9200 1
9300 1
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 1
10200 1
10300 1
10400 1
10500 1
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 1
11500 1
11600 1
11700 1
11800 1
11900 1
e
0 0
100 0
200 0
300 0
400 0
500 0
600 1
700 1
800 1
900 0
1000 0
1100 0
1200 0
1300 0
1400 1
1500 1
1600 0
1700 0
1800 0
1900 0
2000 1
2100 0
2200 0
2300 1
2400 0
2500 0
2600 0
2700 0
2800 0
2900 1
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 1
3800 1
3900 0
4000 0
4100 0
4200 0
4300 0
4400 1
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 1
5300 1
5400 0
5500 0
5600 0
5700 0
5800 1
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 1
6700 1
6800 0
6900 0
7000 0
7100 0
7200 1
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 1
8100 1
8200 1
8300 0
8400 0
8500 0
8600 0
8700 1
8800 0
8900 0
9000 0
9100 0
9200 0
9300 1
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 1
10100 0
10200 0
10300 0
10400 0
10500 1
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 1
11400 0
11500 0
11600 0
11700 0
11800 1
11900 1
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 1
300 1
400 0
500 0
600 0
700 1
800 1
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 1
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 1
10700 1
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e

613
franke/plots/net/net_2.gp Normal file
View File

@@ -0,0 +1,613 @@
set terminal emf size 600,250
set output 'net_2.emf'
unset xtics
unset key
set format y ' '
plot '-' with lines lw 2 lc rgb '#ff0000' title 'JUMPING_JACK', '-' with lines lw 2 lc rgb '#00ff00' title 'SITUPS', '-' with lines lw 2 lc rgb '#0000ff' title 'PUSHUPS', '-' with lines lw 2 lc rgb '#ffff00' title 'KNEEBEND', '-' with lines lw 2 lc rgb '#000000' title 'FORWARDBEND',
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 1
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 1
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 1
6300 1
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 1
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 1
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 1
400 0
500 0
600 0
700 0
800 0
900 1
1000 0
1100 0
1200 1
1300 1
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 1
2100 1
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 1
3500 1
3600 1
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 1
5000 1
5100 1
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 1
6700 1
6800 1
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 1
8300 1
8400 1
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 1
9900 1
10000 1
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 1
11500 1
11600 1
11700 1
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 1
500 0
600 0
700 0
800 0
900 0
1000 1
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 1
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e

613
franke/plots/net/net_3.gp Normal file
View File

@@ -0,0 +1,613 @@
set terminal emf size 600,250
set output 'net_3.emf'
unset xtics
unset key
set format y ' '
plot '-' with lines lw 2 lc rgb '#ff0000' title 'JUMPING_JACK', '-' with lines lw 2 lc rgb '#00ff00' title 'SITUPS', '-' with lines lw 2 lc rgb '#0000ff' title 'PUSHUPS', '-' with lines lw 2 lc rgb '#ffff00' title 'KNEEBEND', '-' with lines lw 2 lc rgb '#000000' title 'FORWARDBEND',
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 1
700 1
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 1
1800 1
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 1
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 1
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 1
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 1
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 1
11800 0
11900 0
e

613
franke/plots/net/net_4.gp Normal file
View File

@@ -0,0 +1,613 @@
set terminal emf size 600,250
set output 'net_4.emf'
unset xtics
unset key
set format y ' '
plot '-' with lines lw 2 lc rgb '#ff0000' title 'JUMPING_JACK', '-' with lines lw 2 lc rgb '#00ff00' title 'SITUPS', '-' with lines lw 2 lc rgb '#0000ff' title 'PUSHUPS', '-' with lines lw 2 lc rgb '#ffff00' title 'KNEEBEND', '-' with lines lw 2 lc rgb '#000000' title 'FORWARDBEND',
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 1
900 0
1000 1
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 1
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 1
1600 1
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 1
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 1
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 0
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 0
2300 0
2400 0
2500 0
2600 0
2700 0
2800 0
2900 0
3000 0
3100 0
3200 0
3300 0
3400 0
3500 0
3600 0
3700 0
3800 0
3900 0
4000 0
4100 0
4200 0
4300 0
4400 0
4500 0
4600 0
4700 0
4800 0
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 0
7800 0
7900 0
8000 0
8100 0
8200 0
8300 0
8400 0
8500 0
8600 0
8700 0
8800 0
8900 0
9000 0
9100 0
9200 0
9300 0
9400 0
9500 0
9600 0
9700 0
9800 0
9900 0
10000 0
10100 0
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e
0 0
100 0
200 0
300 1
400 0
500 0
600 0
700 0
800 0
900 0
1000 0
1100 0
1200 0
1300 0
1400 0
1500 0
1600 0
1700 0
1800 0
1900 0
2000 0
2100 0
2200 1
2300 1
2400 1
2500 1
2600 1
2700 1
2800 1
2900 1
3000 1
3100 1
3200 1
3300 1
3400 1
3500 1
3600 1
3700 1
3800 1
3900 1
4000 1
4100 1
4200 1
4300 1
4400 1
4500 1
4600 1
4700 1
4800 1
4900 0
5000 0
5100 0
5200 0
5300 0
5400 0
5500 0
5600 0
5700 0
5800 0
5900 0
6000 0
6100 0
6200 0
6300 0
6400 0
6500 0
6600 0
6700 0
6800 0
6900 0
7000 0
7100 0
7200 0
7300 0
7400 0
7500 0
7600 0
7700 1
7800 1
7900 1
8000 1
8100 1
8200 1
8300 1
8400 1
8500 1
8600 1
8700 1
8800 1
8900 1
9000 1
9100 1
9200 1
9300 1
9400 1
9500 1
9600 1
9700 1
9800 1
9900 1
10000 1
10100 1
10200 0
10300 0
10400 0
10500 0
10600 0
10700 0
10800 0
10900 0
11000 0
11100 0
11200 0
11300 0
11400 0
11500 0
11600 0
11700 0
11800 0
11900 0
e

373
franke/plots/net/raw_0.gp Normal file
View File

@@ -0,0 +1,373 @@
set terminal emf size 600,250
set output 'raw_0.emf'
unset xtics
unset key
unset arrow 1
unset arrow 2
set format y ' '
plot '-' with lines lw 1 lc rgb '#ff0000' title 'x', '-' with lines lw 1 lc rgb '#00ff00' title 'y', '-' with lines lw 1 lc rgb '#0000ff' title 'z',
0 -0.315052
100 -0.100348
200 -0.714899
300 -1.3262
400 -4.45613
500 -7.14655
600 -2.71385
700 -4.60695
800 -1.51472
900 -4.06279
1000 -3.30813
1100 -2.83877
1200 -0.918857
1300 -0.821319
1400 -4.68272
1500 0.988832
1600 6.21252
1700 2.44585
1800 -1.78964
1900 -1.77271
2000 -5.78066
2100 -1.49856
2200 -0.572313
2300 -1.83359
2400 -3.56091
2500 3.1689
2600 7.66564
2700 -1.17898
2800 -0.865727
2900 -3.84471
3000 -7.19882
3100 0.556601
3200 -0.0638017
3300 0.293747
3400 2.58813
3500 3.65679
3600 2.16946
3700 -1.11959
3800 1.28551
3900 -2.68021
4000 -5.19343
4100 -1.91881
4200 -1.52679
4300 -2.02667
4400 1.68099
4500 4.07682
4600 1.79854
4700 -0.844275
4800 1.58911
4900 -5.05075
5000 -7.42942
5100 -0.334937
5200 -0.893757
5300 -0.0569917
5400 3.52949
5500 2.37381
5600 0.997887
5700 0.869522
5800 -0.160722
5900 -0.356331
6000 -8.70641
6100 0.538758
6200 -0.550209
6300 0.786485
6400 1.1134
6500 3.30072
6600 1.93595
6700 -0.340219
6800 0.0434095
6900 -4.30713
7000 -4.59901
7100 0.0928378
7200 0.198672
7300 0.62025
7400 -1.68566
7500 3.51644
7600 1.89377
7700 -3.02984
7800 -1.61228
7900 0.627707
8000 -2.72681
8100 -0.0397344
8200 -0.978552
8300 -0.388156
8400 0.0655518
8500 3.65696
8600 0.542664
8700 -0.0409239
8800 -1.6444
8900 -0.332096
9000 -1.96728
9100 0.211588
9200 -2.00376
9300 -1.27581
9400 2.22294
9500 3.43038
9600 2.32911
9700 -3.02961
9800 -2.32249
9900 -3.90164
10000 -2.96448
10100 1.78732
10200 -0.527306
10300 -2.778
10400 -3.2021
10500 3.83957
10600 2.30363
10700 -2.78657
10800 -2.01888
10900 -3.40192
11000 -1.24806
11100 1.83264
11200 -0.750479
11300 -1.30957
11400 0.946044
11500 3.47622
11600 2.71941
11700 -2.42211
11800 -2.01381
11900 0.243679
e
0 -0.230363
100 -0.111054
200 0.0410659
300 0.807417
400 1.33664
500 1.34501
600 0.931574
700 0.19228
800 -0.328013
900 -2.23359
1000 -3.83911
1100 -3.2938
1200 0.282695
1300 1.24893
1400 5.90077
1500 -3.09393
1600 -0.0701477
1700 3.35931
1800 5.21873
1900 4.11618
2000 -5.3961
2100 -3.4219
2200 0.439155
2300 1.89324
2400 4.39448
2500 -1.63465
2600 2.68021
2700 5.62438
2800 5.56521
2900 2.80647
3000 -6.0253
3100 -0.690646
3200 1.85679
3300 2.4842
3400 1.77327
3500 -1.56727
3600 2.16499
3700 2.96431
3800 5.53352
3900 -1.11294
4000 -4.38223
4100 -0.436226
4200 2.13905
4300 3.63362
4400 -0.0558199
4500 -2.30102
4600 1.69846
4700 2.56169
4800 5.56441
4900 -4.94775
5000 -2.41735
5100 2.51012
5200 3.30052
5300 3.53721
5400 2.37527
5500 -3.05758
5600 -0.0785633
5700 2.20643
5800 4.359
5900 5.14789
6000 -5.48145
6100 1.78352
6200 3.34387
6300 3.84736
6400 3.22725
6500 -2.05916
6600 -0.0500008
6700 1.57806
6800 4.04454
6900 0.274306
7000 -0.997221
7100 3.28128
7200 4.7596
7300 3.4954
7400 -0.409742
7500 -2.23935
7600 3.76044
7700 3.20066
7800 3.83975
7900 -0.092678
8000 -0.77205
8100 1.82682
8200 3.47798
8300 3.62696
8400 -0.887327
8500 -2.16843
8600 2.65695
8700 3.35345
8800 4.28226
8900 -0.0644485
9000 -3.36624
9100 -0.735698
9200 2.06288
9300 3.40219
9400 0.531034
9500 -1.65329
9600 3.28492
9700 3.34733
9800 4.27927
9900 -1.23597
10000 -0.966689
10100 2.16013
10200 3.34754
10300 3.44714
10400 -1.88623
10500 -0.712484
10600 2.59365
10700 3.97589
10800 3.85812
10900 0.213586
11000 -0.228979
11100 0.770262
11200 2.49698
11300 2.93906
11400 -0.0384383
11500 -1.24716
11600 3.06658
11700 3.58142
11800 5.03767
11900 0.757137
e
0 0.170709
100 0.153132
200 0.341737
300 0.844009
400 1.98938
500 3.52154
600 3.87259
700 1.77409
800 0.034266
900 -1.0642
1000 -4.21051
1100 -5.12776
1200 -7.96312
1300 -8.1285
1400 -6.52803
1500 2.15796
1600 8.72638
1700 8.72638
1800 5.56694
1900 2.5063
2000 -1.32898
2100 -5.89571
2200 -8.70108
2300 -8.3088
2400 -7.27789
2500 4.97532
2600 8.72638
2700 7.03245
2800 6.03759
2900 1.73315
3000 -3.41674
3100 -7.88926
3200 -8.70108
3300 -7.96552
3400 -2.27281
3500 8.72638
3600 8.71205
3700 8.13276
3800 5.53685
3900 -2.62188
4000 -4.68876
4100 -8.28829
4200 -8.24488
4300 -7.51997
4400 -0.672129
4500 8.09058
4600 8.57629
4700 8.09548
4800 5.69916
4900 -1.68405
5000 -5.79078
5100 -8.52327
5200 -7.86778
5300 -6.34152
5400 -0.875647
5500 7.03367
5600 8.6116
5700 7.74873
5800 6.03705
5900 7.04859
6000 -4.74163
6100 -7.84541
6200 -8.1
6300 -6.47127
6400 -4.7895
6500 8.26219
6600 8.27924
6700 7.68269
6800 6.15936
6900 2.69565
7000 -6.14192
7100 -8.70108
7200 -7.26484
7300 -5.99227
7400 -2.72338
7500 8.66596
7600 8.72638
7700 8.13143
7800 4.96866
7900 -1.39843
8000 -7.17269
8100 -8.70108
8200 -6.98947
8300 -4.87412
8400 0.0864386
8500 8.69238
8600 8.68839
8700 7.61824
8800 4.31349
8900 -2.30976
9000 -5.71781
9100 -8.57858
9200 -8.0526
9300 -6.03036
9400 -0.890028
9500 8.72638
9600 8.72638
9700 7.73355
9800 5.35753
9900 -0.993466
10000 -7.09109
10100 -8.70108
10200 -7.08896
10300 -6.27957
10400 0.102354
10500 8.72638
10600 8.72638
10700 7.1149
10800 4.19005
10900 -1.8256
11000 -6.90925
11100 -8.38409
11200 -6.93714
11300 -6.60224
11400 -0.219178
11500 8.72638
11600 8.25718
11700 8.13103
11800 4.60012
11900 0.28629
e

373
franke/plots/net/raw_1.gp Normal file
View File

@@ -0,0 +1,373 @@
set terminal emf size 600,250
set output 'raw_1.emf'
unset xtics
unset key
unset arrow 1
unset arrow 2
set format y ' '
plot '-' with lines lw 1 lc rgb '#ff0000' title 'x', '-' with lines lw 1 lc rgb '#00ff00' title 'y', '-' with lines lw 1 lc rgb '#0000ff' title 'z',
0 0.27324
100 -0.123038
200 0.0183758
300 -0.0817591
400 -0.203066
500 -1.81574
600 -5.22073
700 2.19087
800 3.60139
900 1.9497
1000 0.857272
1100 -0.652475
1200 -3.27329
1300 -3.2922
1400 -3.59607
1500 -1.67893
1600 -0.705738
1700 -0.13955
1800 -0.0113184
1900 0.487669
2000 1.45249
2100 1.28657
2200 1.85383
2300 1.95143
2400 1.35358
2500 0.776311
2600 -0.74952
2700 -2.20203
2800 -2.93081
2900 -0.719586
3000 -0.477185
3100 -0.563099
3200 -0.299339
3300 -0.229298
3400 -0.0191748
3500 0.3036
3600 0.776844
3700 1.42277
3800 2.40042
3900 1.96546
4000 1.32247
4100 0.16469
4200 -2.27208
4300 -3.19872
4400 -1.33677
4500 -0.246419
4600 -0.672448
4700 -0.0957216
4800 0.113717
4900 0.314253
5000 0.583993
5100 0.868457
5200 1.33322
5300 1.4448
5400 1.24663
5500 1.11876
5600 -0.430633
5700 -3.47601
5800 -1.45568
5900 -0.0553938
6000 -0.480434
6100 -0.713689
6200 0.223173
6300 0.282828
6400 0.592598
6500 0.622114
6600 1.27645
6700 0.963912
6800 1.11327
6900 1.71369
7000 -1.09333
7100 -2.9087
7200 -1.08018
7300 -0.315318
7400 -0.328741
7500 -0.235119
7600 -0.107592
7700 0.448583
7800 0.33183
7900 0.953412
8000 1.3646
8100 1.53102
8200 1.49439
8300 0.789894
8400 -0.440221
8500 -2.14291
8600 -2.57714
8700 -0.749014
8800 -0.39449
8900 -0.518517
9000 -0.305465
9100 0.190505
9200 0.680438
9300 1.3403
9400 1.68376
9500 1.91684
9600 1.41148
9700 0.302801
9800 -2.44372
9900 -2.60115
10000 -1.39283
10100 -0.339997
10200 -0.709276
10300 -0.310258
10400 0.0774219
10500 0.823236
10600 1.45409
10700 2.02445
10800 1.3907
10900 1.33158
11000 0.105119
11100 -0.80605
11200 -2.20601
11300 -1.81894
11400 -0.290969
11500 -0.260679
11600 -0.672714
11700 -0.205004
11800 0.432142
11900 0.916039
e
0 0.21039
100 -0.0221042
200 -0.0332895
300 -0.300671
400 -1.17086
500 -3.05997
600 -2.76769
700 0.532937
800 1.19884
900 0.593086
1000 1.00108
1100 -0.141148
1200 -0.166714
1300 -2.26475
1400 -4.21754
1500 -1.85489
1600 -0.674046
1700 0.13085
1800 0.119043
1900 0.389221
2000 1.16806
2100 1.07432
2200 1.05476
2300 1.02192
2400 0.433935
2500 0.398675
2600 0.495295
2700 -1.43285
2800 -3.34919
2900 -1.93212
3000 -0.245064
3100 0.0131028
3200 0.277501
3300 -0.0458508
3400 0.149936
3500 0.410793
3600 0.701477
3700 1.01839
3800 1.86083
3900 1.78596
4000 0.946434
4100 0.181148
4200 -0.763528
4300 -3.56509
4400 -2.05583
4500 0.0746446
4600 -0.319579
4700 0.0736935
4800 -0.0827355
4900 0.280165
5000 0.720499
5100 0.580835
5200 1.04696
5300 1.98459
5400 2.06608
5500 0.845054
5600 -0.267115
5700 -2.93741
5800 -2.97821
5900 -0.586428
6000 -0.133158
6100 -0.425649
6200 -0.216781
6300 0.442085
6400 0.722915
6500 0.522246
6600 1.15741
6700 1.89834
6800 1.92453
6900 1.38586
7000 -0.0511993
7100 -3.47756
7200 -2.8906
7300 -1.02106
7400 -0.190629
7500 -0.164774
7600 0.293587
7700 0.869416
7800 0.782969
7900 0.736098
8000 1.30988
8100 1.70715
8200 1.60491
8300 1.04795
8400 -0.352869
8500 -1.25115
8600 -2.35696
8700 -1.2947
8800 -0.191862
8900 -0.507332
9000 -0.0772317
9100 0.376305
9200 1.10434
9300 1.44783
9400 1.97681
9500 1.56993
9600 1.0483
9700 0.00945422
9800 -0.919323
9900 -2.38597
10000 -1.58272
10100 0.236489
10200 -0.288991
10300 -0.0596548
10400 0.133424
10500 0.675218
10600 0.744886
10700 0.844045
10800 0.884702
10900 0.659931
11000 0.357739
11100 -0.896154
11200 -1.47474
11300 -1.05994
11400 0.0848788
11500 0.576841
11600 -0.22841
11700 -0.00174585
11800 0.0862864
11900 0.551629
e
0 0.0106526
100 0.0338221
200 0.191748
300 0.448743
400 1.53818
500 1.69856
600 -1.98925
700 -3.39062
800 -2.73324
900 -1.95396
1000 -0.669519
1100 0.399741
1200 0.799481
1300 1.35422
1400 1.76088
1500 2.00768
1600 1.10987
1700 0.277531
1800 -0.227434
1900 -0.563525
2000 -1.45728
2100 -1.60242
2200 -1.8089
2300 -1.8224
2400 -1.24359
2500 -0.631436
2600 0.214012
2700 1.63019
2800 2.56942
2900 2.61549
3000 1.54905
3100 0.976155
3200 0.278034
3300 -0.224904
3400 -0.474043
3500 -1.23025
3600 -1.63731
3700 -2.10542
3800 -2.21259
3900 -1.6362
4000 -0.875594
4100 0.102478
4200 1.8196
4300 2.40563
4400 2.61416
4500 1.82548
4600 1.17579
4700 0.611538
4800 -0.275637
4900 -0.794421
5000 -1.47265
5100 -1.92334
5200 -2.06954
5300 -1.86505
5400 -1.57739
5500 -0.60001
5600 0.809335
5700 2.65741
5800 2.82189
5900 2.54572
6000 1.22519
6100 0.864805
6200 0.320911
6300 -0.418383
6400 -1.37632
6500 -1.83731
6600 -2.09964
6700 -2.45068
6800 -1.77833
6900 -0.929283
7000 0.793322
7100 2.95771
7200 2.70551
7300 1.88565
7400 1.18617
7500 1.07367
7600 0.278833
7700 -0.777164
7800 -1.42399
7900 -1.81574
8000 -2.077
8100 -2.18616
8200 -1.60278
8300 -0.834368
8400 0.839695
8500 2.58193
8600 2.5609
8700 2.27314
8800 1.24324
8900 0.854342
9000 0.170709
9100 -0.878399
9200 -1.74403
9300 -1.93036
9400 -1.8844
9500 -1.25446
9600 -1.00881
9700 -0.30916
9800 1.14543
9900 2.09804
10000 2.59685
10100 1.58076
10200 0.673666
10300 0.482298
10400 -0.47001
10500 -1.51379
10600 -1.99684
10700 -2.07651
10800 -1.72333
10900 -1.24689
11000 -0.21545
11100 0.778797
11200 2.48694
11300 2.84239
11400 2.1739
11500 1.2219
11600 0.386336
11700 -0.442055
11800 -1.27752
11900 -1.89954
e

373
franke/plots/net/raw_2.gp Normal file
View File

@@ -0,0 +1,373 @@
set terminal emf size 600,250
set output 'raw_2.emf'
unset xtics
unset key
unset arrow 1
unset arrow 2
set format y ' '
plot '-' with lines lw 1 lc rgb '#ff0000' title 'x', '-' with lines lw 1 lc rgb '#00ff00' title 'y', '-' with lines lw 1 lc rgb '#0000ff' title 'z',
0 -0.0857538
100 -0.0134823
200 0.00918791
300 0.0490022
400 0.0879376
500 0.6582
600 1.41201
700 -0.733435
800 -0.144255
900 0.00669595
1000 0.387224
1100 -0.419341
1200 -0.141059
1300 0.0530968
1400 0.17497
1500 0.0372843
1600 0.210656
1700 0.136088
1800 0.0609864
1900 -0.548611
2000 0.430899
2100 0.396012
2200 0.18509
2300 0.191037
2400 0.0667788
2500 -0.0450074
2600 -0.0563259
2700 -0.0721717
2800 0.0846505
2900 0.133919
3000 0.00892159
3100 -0.00186421
3200 -0.0969391
3300 -0.0237021
3400 -0.507243
3500 0.389088
3600 0.220243
3700 0.295877
3800 0.12508
3900 0.0600543
4000 -0.0882838
4100 0.0112994
4200 -0.0720829
4300 -0.123216
4400 -0.000332895
4500 0.0314253
4600 0.25735
4700 0.155262
4800 -0.100623
4900 -0.231762
5000 0.176834
5100 -0.00816703
5200 0.470314
5300 0.317449
5400 0.16873
5500 0.0133158
5600 -0.249843
5700 0.0953412
5800 -0.01012
5900 0.0133158
6000 0.0258327
6100 0.0748348
6200 -0.0183758
6300 0.195476
6400 -0.0339553
6500 -0.419714
6600 -0.421756
6700 -0.118206
6800 0.18651
6900 0.164583
7000 0.179763
7100 0.165915
7200 -0.320645
7300 0.0743022
7400 0.023347
7500 0.0179193
7600 -0.0295611
7700 -0.0652474
7800 0.042291
7900 0.127632
8000 0.19015
8100 -0.0388822
8200 -0.600809
8300 0.0232028
8400 0.0492981
8500 0.215183
8600 0.302535
8700 -0.000887721
8800 0.0146474
8900 -0.00133158
9000 -0.0239152
9100 -0.0364853
9200 0.10658
9300 -0.0253444
9400 0.174437
9500 0.103331
9600 -0.0416785
9700 -0.284692
9800 -0.138431
9900 -0.00612527
10000 0.119043
10100 0.232874
10200 0.177633
10300 0.196453
10400 -0.0447411
10500 -0.0723492
10600 -0.0467829
10700 -0.0322242
10800 -0.0537959
10900 -0.129163
11000 -0.0142923
11100 0.18074
11200 -0.0327569
11300 -0.092678
11400 -0.0537959
11500 -0.122861
11600 0.172839
11700 0.035065
11800 0.273507
11900 -0.0863197
e
0 0.0423443
100 0.00569251
200 0.0082558
300 -0.00219711
400 0.0299872
500 -0.000843334
600 -0.0399474
700 0.107592
800 0.265695
900 -0.0426867
1000 -0.464189
1100 -0.438942
1200 -0.154375
1300 0.016445
1400 -0.171774
1500 -0.214384
1600 -0.141946
1700 0.173904
1800 -0.247408
1900 -0.0616078
2000 0.0894822
2100 0.519545
2200 -0.0484695
2300 0.152422
2400 0.0282295
2500 -0.122239
2600 -0.244611
2700 -0.290551
2800 0.0439422
2900 0.276969
3000 0.472977
3100 0.539823
3200 0.474575
3300 -0.117179
3400 -0.49952
3500 -0.148338
3600 0.114516
3700 -0.112474
3800 -0.361213
3900 -0.163207
4000 -0.221775
4100 -0.217847
4200 -0.354556
4300 0.354644
4400 0.188618
4500 0.345945
4600 0.271465
4700 0.123637
4800 0.0432764
4900 -0.265384
5000 -0.123038
5100 0.202134
5200 0.113628
5300 -0.200181
5400 -0.289219
5500 -0.377104
5600 -0.00791339
5700 -0.391185
5800 -0.213319
5900 -0.0743022
6000 0.211455
6100 0.387401
6200 0.447411
6300 0.352922
6400 0.234181
6500 0.0538846
6600 -0.27111
6700 -0.172991
6800 -0.0804275
6900 -0.193878
7000 -0.214917
7100 -0.093477
7200 0.192813
7300 -0.283272
7400 -0.178077
7500 0.184481
7600 0.399208
7700 0.215982
7800 0.167726
7900 0.115515
8000 -0.052198
8100 -0.0506001
8200 -0.0488119
8300 -0.0647148
8400 0.0521388
8500 0.137153
8600 -0.313987
8700 -0.0345323
8800 -0.115848
8900 -0.405333
9000 -0.106953
9100 0.314519
9200 0.250817
9300 0.327968
9400 0.206462
9500 0.00239685
9600 0.0784301
9700 -0.0383495
9800 -0.304879
9900 -0.0857538
10000 0.0327569
10100 -0.181628
10200 0.0157127
10300 -0.390419
10400 0.0790959
10500 -0.085665
10600 -0.101466
10700 0.170709
10800 0.223439
10900 0.194677
11000 0.256995
11100 0.405733
11200 0.184024
11300 0.0785633
11400 -0.131993
11500 -0.260457
11600 0.0535295
11700 -0.0652474
11800 -0.23782
11900 -0.423409
e
0 0.0263653
100 -0.00555935
200 -0.00332895
300 0.015979
400 0.0189617
500 -0.000532632
600 -0.467385
700 -0.334759
800 -0.365741
900 -0.387262
1000 -0.283094
1100 -0.268926
1200 -0.147539
1300 0.158791
1400 0.172839
1500 0.102798
1600 0.233826
1700 0.288687
1800 -0.173372
1900 -0.767346
2000 0.67085
2100 1.30704
2200 0.80747
2300 0.691934
2400 0.566321
2500 0.415719
2600 0.0225037
2700 -0.0865527
2800 -0.0226749
2900 0.15374
3000 0.00146474
3100 -0.323308
3200 -0.833569
3300 -1.33584
3400 -1.54028
3500 0.19015
3600 0.974184
3700 1.20109
3800 1.02594
3900 0.606801
4000 0.234625
4100 0.0917269
4200 -0.240395
4300 -0.0849548
4400 0.170908
4500 -0.130761
4600 -0.385359
4700 -0.804541
4800 -1.21014
4900 -1.24496
5000 -0.0506001
5100 0.55669
5200 1.28906
5300 1.16442
5400 1.0026
5500 0.618919
5600 0.138256
5700 0.0340219
5800 -0.163518
5900 -0.191215
6000 0.110788
6100 0.0979156
6200 -0.211988
6300 -0.395053
6400 -0.833481
6500 -1.23659
6600 -1.31498
6700 -0.243793
6800 0.883193
6900 1.35874
7000 0.931574
7100 0.499343
7200 0.138484
7300 0.0828243
7400 0.000532633
7500 0.0321101
7600 0.322509
7700 0.143811
7800 -0.146847
7900 -0.42271
8000 -0.818123
8100 -1.22559
8200 -1.34619
8300 0.0570582
8400 1.17016
8500 1.20504
8600 1.01387
8700 0.22699
8800 0.01012
8900 -0.0287621
9000 -0.0454335
9100 0.110521
9200 0.183119
9300 -0.081182
9400 -0.237288
9500 -0.588559
9600 -0.949017
9700 -1.1108
9800 -0.929656
9900 0.100667
10000 1.17099
10100 1.10361
10200 0.859668
10300 0.479014
10400 0.0916127
10500 -0.0361302
10600 -0.0848661
10700 0.0964064
10800 0.241016
10900 -0.0119842
11000 -0.167158
11100 -0.371067
11200 -0.68603
11300 -0.948085
11400 -0.914829
11500 -0.618919
11600 0.614391
11700 1.16842
11800 1.08471
11900 0.681103
e

373
franke/plots/net/raw_3.gp Normal file
View File

@@ -0,0 +1,373 @@
set terminal emf size 600,250
set output 'raw_3.emf'
unset xtics
unset key
unset arrow 1
unset arrow 2
set format y ' '
plot '-' with lines lw 1 lc rgb '#ff0000' title 'x', '-' with lines lw 1 lc rgb '#00ff00' title 'y', '-' with lines lw 1 lc rgb '#0000ff' title 'z',
0 -0.327036
100 -0.120109
200 -0.0253381
300 0.294546
400 0.245011
500 0.259285
600 -0.0958738
700 0.130584
800 0.161654
900 0.0119842
1000 -0.0746573
1100 0.0324462
1200 -0.0810933
1300 -0.304666
1400 -0.217999
1500 -0.462525
1600 -0.418616
1700 -0.396855
1800 -0.23276
1900 0.0167779
2000 0.0263653
2100 0.0684876
2200 0.0287089
2300 0.111653
2400 -0.0985961
2500 -0.0314253
2600 0.185356
2700 -0.0356864
2800 0.234168
2900 -0.292948
3000 0.108923
3100 -0.157659
3200 0.0015979
3300 0.344313
3400 -0.0154463
3500 0.0961782
3600 -0.132759
3700 0.0492685
3800 0.0162453
3900 0.168134
4000 0.0319579
4100 -0.161768
4200 -0.0601874
4300 0.0641822
4400 -0.0343548
4500 -0.125169
4600 0.147006
4700 0.358018
4800 0.316117
4900 0.0906616
5000 -0.0380832
5100 0.0824692
5200 -0.132226
5300 0.036219
5400 -0.0852212
5500 -0.0736364
5600 -0.0544426
5700 -0.330853
5800 -0.218246
5900 -0.438889
6000 -0.0577906
6100 -0.0131383
6200 -0.153931
6300 -0.00772317
6400 0.0114516
6500 -0.000399474
6600 0.131028
6700 0.0384383
6800 0.317182
6900 0.0483364
7000 0.069052
7100 -0.065567
7200 -0.0114516
7300 -0.12184
7400 -0.152333
7500 -0.154552
7600 0.189351
7700 -0.185196
7800 -0.0403469
7900 -0.309992
8000 -0.0558731
8100 0.0527306
8200 0.036219
8300 -0.0339553
8400 0.00292948
8500 0.112918
8600 0.0181095
8700 -0.0274971
8800 -0.0118244
8900 0.181628
9000 0.061481
9100 0.011274
9200 0.0754562
9300 0.029135
9400 -0.179231
9500 -0.598679
9600 -0.155955
9700 -0.082558
9800 -0.103939
9900 -0.0956075
10000 -0.0681769
10100 0.0300937
10200 0.0106526
10300 0.139816
10400 0.081546
10500 0.12437
10600 -0.0547089
10700 -0.0652094
10800 0.104929
10900 -0.0484695
11000 -0.0330232
11100 -0.0355976
11200 -0.0322242
11300 0.0442085
11400 0.0716771
11500 -0.0561927
11600 -0.065704
11700 0.0314253
11800 -0.0753675
11900 0.155351
e
0 0.0881506
100 0.119842
200 0.117369
300 0.100401
400 0.0207727
500 0.0591754
600 0.241336
700 0.178254
800 0.192014
900 0.125368
1000 -0.0142035
1100 -0.0874405
1200 -0.133424
1300 0.095208
1400 0.195058
1500 -0.112519
1600 -0.1773
1700 -0.0845554
1800 0.247408
1900 0.270311
2000 -0.14461
2100 -0.10484
2200 0.163199
2300 0.17963
2400 0.178047
2500 0.34408
2600 0.426106
2700 0.604471
2800 -0.233369
2900 0.148445
3000 -0.376571
3100 -0.321177
3200 -0.216895
3300 -0.160123
3400 0.112252
3500 0.148795
3600 -0.0253
3700 -0.207727
3800 -0.0785633
3900 0.149403
4000 -0.041279
4100 -0.249957
4200 -0.0309814
4300 0.0141148
4400 -0.0780306
4500 -0.0873517
4600 0.111986
4700 0.326681
4800 0.47928
4900 0.0652855
5000 0.046339
5100 -0.19339
5200 -0.0834901
5300 0.0822917
5400 0.252934
5500 0.0755672
5600 -0.0805797
5700 -0.122594
5800 -0.137153
5900 -0.118777
6000 -0.124636
6100 -0.104662
6200 0.0201069
6300 0.169643
6400 -0.00506001
6500 0.00332895
6600 0.109456
6700 0.314963
6800 0.322509
6900 0.062784
7000 0.0645626
7100 -0.0508664
7200 -0.160269
7300 -0.145142
7400 -0.0386158
7500 0.00506001
7600 -0.112474
7700 -0.226262
7800 -0.27071
7900 0.113184
8000 0.118351
8100 -0.151268
8200 -0.135888
8300 0.0458064
8400 0.01518
8500 -0.103064
8600 0.0524976
8700 0.187753
8800 0.435693
8900 0.327746
9000 -0.10782
9100 -0.061519
9200 -0.207549
9300 -0.0447944
9400 0.191148
9500 -0.0111853
9600 -0.0855407
9700 -0.19521
9800 -0.134604
9900 -0.0940096
10000 -0.0106526
10100 -0.193079
10200 -0.0503337
10300 0.168045
10400 0.0751011
10500 -0.00319579
10600 0.0841559
10700 0.195628
10800 0.41279
10900 0.140349
11000 -0.116913
11100 -0.141946
11200 -0.174437
11300 -0.0692422
11400 0.169415
11500 0.205596
11600 -0.162681
11700 -0.441818
11800 -0.393882
11900 0.102443
e
0 -0.0913464
100 -0.135289
200 -0.137914
300 -0.280431
400 -0.705471
500 -0.633566
600 -0.326291
700 -0.0861089
800 0.111853
900 0.101866
1000 0.0728818
1100 0.0757669
1200 -0.0249671
1300 -0.124836
1400 -0.141452
1500 -0.161121
1600 0.0431765
1700 -0.0548611
1800 -0.216781
1900 -0.129696
2000 -0.128098
2100 0.055305
2200 0.217207
2300 0.218812
2400 0.163755
2500 0.118599
2600 0.0569916
2700 -0.0140482
2800 -0.0189845
2900 0.054222
3000 0.0113628
3100 -0.0258327
3200 -0.0595026
3300 -0.00775646
3400 -0.00932106
3500 0.0889115
3600 -0.0172662
3700 -0.0540622
3800 -0.0625843
3900 0.0995135
4000 0.123304
4100 0.0385778
4200 0.0551274
4300 0.147006
4400 0.106793
4500 0.000798948
4600 0.0596548
4700 0.0194411
4800 0.0141148
4900 -0.0838515
5000 0.0103863
5100 -0.00963177
5200 -0.00798948
5300 0.00452737
5400 -0.0506666
5500 -0.0802943
5600 -0.0291806
5700 -0.0929443
5800 0.0897485
5900 -0.0162453
6000 0.0218379
6100 0.0375506
6200 -0.0420779
6300 0.0545948
6400 0.0559264
6500 0.0755006
6600 0.087618
6700 0.0195298
6800 0.0295611
6900 -0.0703075
7000 -0.0372082
7100 0.0222108
7200 0.073663
7300 -0.0416785
7400 -0.177367
7500 -0.222729
7600 -0.000177544
7700 -0.0886833
7800 -0.0178432
7900 -0.00541509
8000 0.0918258
8100 0.0913464
8200 0.0518651
8300 0.0822917
8400 0.164317
8500 0.111853
8600 0.0266316
8700 0.0524643
8800 -0.0158724
8900 0.0626731
9000 0.024463
9100 0.0806938
9200 0.0610752
9300 -0.00106526
9400 -0.0516653
9500 -0.19228
9600 -0.116966
9700 -0.0913464
9800 -0.0972815
9900 -0.0330232
10000 0.00612527
10100 0.104396
10200 -0.00213053
10300 0.145142
10400 0.147379
10500 0.123304
10600 -0.00856016
10700 0.0840798
10800 0.0998685
10900 0.015979
11000 -0.0785633
11100 0.0363078
11200 -0.00878843
11300 -0.0229032
11400 -0.0590841
11500 -0.0191748
11600 -0.050562
11700 -0.106526
11800 -0.2277
11900 -0.0651587
e

373
franke/plots/net/raw_4.gp Normal file
View File

@@ -0,0 +1,373 @@
set terminal emf size 600,250
set output 'raw_4.emf'
unset xtics
unset key
unset arrow 1
unset arrow 2
set format y ' '
plot '-' with lines lw 1 lc rgb '#ff0000' title 'x', '-' with lines lw 1 lc rgb '#00ff00' title 'y', '-' with lines lw 1 lc rgb '#0000ff' title 'z',
0 -0.119043
100 -0.160855
200 -0.371131
300 -1.34872
400 -1.94704
500 -1.55818
600 -0.427304
700 -0.772184
800 -0.642887
900 -0.595394
1000 -0.703645
1100 -0.781904
1200 -1.8216
1300 -1.47972
1400 -0.792157
1500 -0.068603
1600 0.250603
1700 0.131494
1800 0.342962
1900 -0.467385
2000 0.112119
2100 -0.317182
2200 -0.131187
2300 0.051399
2400 0.28435
2500 0.143811
2600 0.284692
2700 0.36432
2800 0.292415
2900 0.282029
3000 0.290418
3100 0.580569
3200 0.776045
3300 0.931973
3400 0.896953
3500 1.28977
3600 1.57979
3700 1.37366
3800 1.25595
3900 0.861266
4000 -0.481606
4100 -0.307062
4200 -0.179177
4300 -0.619185
4400 0.0229032
4500 0.380299
4600 0.531301
4700 0.704939
4800 0.664725
4900 0.415453
5000 -0.421904
5100 -0.180962
5200 0.0310449
5300 0.0253
5400 0.0511327
5500 -0.223173
5600 -0.693221
5700 -0.346553
5800 -0.996289
5900 0.137419
6000 -0.288953
6100 -0.934397
6200 -0.944091
6300 -0.210123
6400 -0.769121
6500 -0.671738
6600 -0.868191
6700 -0.967793
6800 -0.899882
6900 -1.08684
7000 0.193845
7100 -0.339287
7200 -0.0812264
7300 -0.82558
7400 -0.134916
7500 -0.05827
7600 -0.175312
7700 -0.0910801
7800 -0.0565655
7900 0.220576
8000 0.303448
8100 0.0378169
8200 0.221385
8300 0.442922
8400 0.542752
8500 0.983505
8600 1.14116
8700 1.08808
8800 0.990696
8900 0.774714
9000 0.81352
9100 0.636496
9200 0.799925
9300 -0.0426638
9400 0.0644485
9500 0.302801
9600 0.485814
9700 0.027324
9800 -0.0892159
9900 0.440487
10000 0.469449
10100 -0.0790578
10200 -1.03641
10300 -0.447145
10400 0.0684432
10500 0.0185356
10600 0.345501
10700 -0.0956408
10800 -0.158724
10900 0.0481366
11000 -0.392284
11100 -0.145941
11200 -0.477505
11300 -0.201761
11400 -0.544426
11500 -0.598945
11600 -0.46632
11700 -1.02974
11800 -0.316079
11900 -0.911174
e
0 0.115848
100 0.0708401
200 0.181247
300 0.444814
400 1.17046
500 1.61319
600 1.39603
700 1.16633
800 0.66073
900 0.518606
1000 0.621049
1100 0.548079
1200 0.583232
1300 0.406998
1400 0.580081
1500 0.601928
1600 0.533697
1700 0.305132
1800 0.381524
1900 0.329167
2000 0.594418
2100 -0.0798948
2200 -0.257847
2300 -0.0877512
2400 0.0102341
2500 -0.493217
2600 -0.966195
2700 -1.63849
2800 -1.92999
2900 -1.51614
3000 -1.32612
3100 -1.15475
3200 -0.985103
3300 -1.01333
3400 -1.12013
3500 -1.32386
3600 -1.91614
3700 -2.16793
3800 -1.99178
3900 -2.23406
4000 -2.38241
4100 -2.06422
4200 -1.88365
4300 -1.72776
4400 -1.35209
4500 -0.689759
4600 -0.3795
4700 -0.131294
4800 -0.216249
4900 -0.356864
5000 -0.4757
5100 0.0660131
5200 0.697596
5300 0.905741
5400 1.1417
5500 1.01573
5600 0.977989
5700 1.60722
5800 2.21948
5900 2.90631
6000 2.39365
6100 2.26124
6200 2.62694
6300 2.52734
6400 1.91249
6500 1.76319
6600 1.40775
6700 0.868723
6800 0.634631
6900 0.844435
7000 0.836332
7100 0.612261
7200 0.642976
7300 0.452737
7400 0.443949
7500 0.509303
7600 0.197873
7700 -0.11931
7800 -0.261629
7900 -0.299805
8000 -0.564857
8100 -1.192
8200 -1.44903
8300 -1.34535
8400 -1.36913
8500 -1.49989
8600 -1.67912
8700 -1.72622
8800 -2.04131
8900 -2.16389
9000 -2.12402
9100 -2.25703
9200 -1.86102
9300 -1.83561
9400 -1.62453
9500 -1.23058
9600 -1.04534
9700 -1.06031
9800 -0.979378
9900 -0.680737
10000 -0.663726
10100 -0.676329
10200 -1.00605
10300 -0.630104
10400 -0.463124
10500 -0.265783
10600 0.132182
10700 0.178365
10800 0.705951
10900 1.39483
11000 1.58691
11100 1.9995
11200 2.25463
11300 2.4002
11400 2.48618
11500 2.54609
11600 2.44425
11700 2.44308
11800 2.34727
11900 2.08957
e
0 -0.0330232
100 0.01012
200 -0.0186041
300 -0.0498677
400 -0.199204
500 0.36356
600 0.625943
700 0.331963
800 0.150735
900 0.204353
1000 0.232228
1100 0.189351
1200 0.0897485
1300 0.136221
1400 0.279676
1500 0.532792
1600 0.37737
1700 0.160922
1800 0.20549
1900 -0.12579
2000 0.0556601
2100 -0.220243
2200 -0.0363788
2300 0.1095
2400 0.248473
2500 0.0403469
2600 0.0127832
2700 0.00201639
2800 -0.103064
2900 -0.0759001
3000 -0.0860201
3100 -0.0460727
3200 -0.00223706
3300 0.107192
3400 0.274572
3500 0.394947
3600 0.333161
3700 0.654753
3800 1.11746
3900 1.00102
4000 0.832131
4100 0.680704
4200 0.354147
4300 0.0155462
4400 0.0644485
4500 0.0527306
4600 0.0495348
4700 -0.00372843
4800 -0.163429
4900 -0.026099
5000 -0.0642414
5100 -0.0106526
5200 0.0450455
5300 -0.0969391
5400 -0.105461
5500 -0.132892
5600 -0.156213
5700 -0.332857
5800 -0.437025
5900 -0.481766
6000 -0.643952
6100 -0.763795
6200 -0.654339
6300 -0.816525
6400 -1.00922
6500 -0.744531
6600 -0.517719
6700 -0.39468
6800 -0.299606
6900 -0.151534
7000 -0.038982
7100 -0.0183758
7200 0.121795
7300 0.0537959
7400 -0.0104929
7500 0.0238619
7600 0.00528828
7700 -0.0729706
7800 0.0472977
7900 0.168112
8000 0.141186
8100 0.0830906
8200 0.0152942
8300 0.106032
8400 0.135555
8500 0.219444
8600 0.254865
8700 0.456732
8800 0.570549
8900 0.571514
9000 0.61968
9100 0.576042
9200 0.710709
9300 0.508344
9400 0.557133
9500 0.492086
9600 0.373375
9700 0.194304
9800 0.00119842
9900 -0.0857205
10000 0.130362
10100 0.0466434
10200 -0.0935657
10300 0.214917
10400 0.110788
10500 -0.0379767
10600 0.113273
10700 0.0712396
10800 -0.124476
10900 0.0219711
11000 0.11871
11100 0.00772317
11200 -0.140615
11300 -0.260457
11400 -0.3943
11500 -0.502006
11600 -0.511061
11700 -0.547479
11800 -0.593086
11900 -0.520382
e

1210
franke/plots/pca/input.gp Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

16614
franke/plots/pca/pca.gp Normal file

File diff suppressed because it is too large Load Diff

16617
franke/plots/pca/pca1.gp Normal file

File diff suppressed because it is too large Load Diff

16620
franke/plots/pca/pca2.gp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,198 +1,32 @@
//#include "usingneuralnet.h" //#include "usingneuralnet.h"
#include "usingpca.h"
#include <omp.h> #include <omp.h>
#include "pca/TrainPCA.h"
#include <KLib/misc/gnuplot/Gnuplot.h> #include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h> #include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h> #include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include "pca/KNN.h"
#include "pca/aKNN.h"
#include <vector> #include <vector>
std::vector<std::string> COLORS = {"#000000", "#0000ff", "#00ff00", "#ff0000", "#00ffff"};
std::string getClass(const std::vector<ClassifiedFeature>& nns) {
std::unordered_map<std::string, int> map;
for(const ClassifiedFeature& nn : nns) { map[nn.className] += 1; }
for (auto& it : map) {
if (it.second > nns.size() * 0.75) {return it.first;}
}
return "";
}
struct ClassStats {
int counts[6] = {};
};
struct Stats{
int match;
int error;
int unknown;
Stats() : match(0), error(0), unknown(0) {;}
float getSum() {return match+error+unknown;}
};
std::vector<ClassifiedPattern> removePatterns(const std::vector<ClassifiedPattern>& patAll, const std::string& fileName) {
std::vector<ClassifiedPattern> res;
for (const ClassifiedPattern& pat : patAll) {
if (pat.belongsToFile(fileName)) {
continue;
} else {
res.push_back(pat);
}
}
return res;
}
template <int numFeatures> struct PCA { #include "usingpca.h"
//#include "plotFile.h"
aKNN<ClassifiedFeature, numFeatures> knn; //#include "usingneuralnet.h"
TrainPCA::Matrices m;
};
class Plot {
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementLines lines[5];
public:
Plot() {
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
}
void add(int idx, std::vector<float>& vec) {
K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]);
lines[idx].add(p3);
}
void clear() {
for (int i = 0; i < 5; ++i) {lines[i].clear();}
}
void show() {
gp.setDebugOutput(false);
gp.draw(splot);
gp.flush();
}
};
int main(void) { int main(void) {
omp_set_dynamic(false); omp_set_dynamic(false);
omp_set_num_threads(3); omp_set_num_threads(3);
const int numFeatures = 10; runPCA();
//runPlot();
TrainPCA::Settings setTrain; //UsingNeuralNet::run();
TrainPCA::Settings setClass; setClass.regionStart_ms += 25;
Data::getAllDataFiles();
Plot p;
// convert all provided datasets into patterns
std::vector<ClassifiedPattern> srcTrain = TrainPCA::getAllData(setTrain);
std::vector<ClassifiedPattern> srcClass = TrainPCA::getAllData(setClass);
std::cout << "windows: " << srcTrain.size() << std::endl;
// error calculation
std::unordered_map<std::string, Stats> stats;
std::unordered_map<std::string, ClassStats> classStats;
//int xx = 0;
std::unordered_map<std::string, PCA<numFeatures>*> pcas;
// try to classify each pattern
for (const ClassifiedPattern& patClassify : srcClass) {
// construct knn search for this leave-one-out ONLY ONCE
if (pcas.find(patClassify.fileName) == pcas.end()) {
std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl;
// remove all training patterns belonging to the same source file as the to be classifed pattern
std::vector<ClassifiedPattern> srcTrainLOO = removePatterns(srcTrain, patClassify.fileName);
// sanity check (have we removed all patterns?)
int diff = srcTrain.size() - srcTrainLOO.size();
if (diff < 200) {throw 1;}
p.clear();
PCA<numFeatures>* pca = new PCA<numFeatures>();
pcas[patClassify.fileName] = pca;
// train PCA using all pattern without those belonging to the same source file as the to-be-classified one
pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures);
// calculate features and add them to the KNN
for (const ClassifiedPattern& pat : srcTrainLOO) {
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
pca->knn.add(ClassifiedFeature(pat.className, arr));
const int idx = Settings::classToInt(pat.className);
p.add(idx, arr);
}
pca->knn.build();
//p.show();
//sleep(100);
}
{
PCA<numFeatures>* pca = pcas[patClassify.fileName];
// calculate features for the to-be-classified pattern
//const int idx = Settings::classToInt(pat.className);
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(patClassify.pattern);
// get KNN's answer
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = pca->knn.get(arr.data(), 5);
std::string gotClass = getClass(neighbors);
if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;}
else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;}
else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;}
int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass);
++classStats[patClassify.className].counts[gotIdx];
}
}
for (auto& it : stats) {
Stats& stats = it.second;
std::cout << "'" <<it.first << "',";
std::cout << stats.match/stats.getSum() << ",";
std::cout << stats.error/stats.getSum() << ",";
std::cout << stats.unknown/stats.getSum();
std::cout << std::endl;
}
for (auto& it : classStats) {
ClassStats& stats = it.second;
std::cout << "'" << it.first << "',";
for (int i = 0; i < 6; ++i) {
std::cout << stats.counts[i] << ",";
}
std::cout << std::endl;
}
/* /*

50
workspace/plotFile.h Normal file
View File

@@ -0,0 +1,50 @@
#ifndef PLOTFILE_H
#define PLOTFILE_H
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
#include "pca/Data.h"
#include "pca/Settings.h"
void runPlot() {
// read all sensor-values within the given data-file
Recording rec = SensorReader::read("/mnt/firma/kunden/HandyGames/datenOK/jumpingjack/jumpingjack_gl_5_subject_3_left.txt");
// get the value-interpolator
K::Interpolator<uint64_t, SensorAccelerometer> intAccel;
for (const auto& val : rec.accel.values) {intAccel.add(val.ts, val.val);}
intAccel.makeRelative();
K::Gnuplot gp;
K::GnuplotPlot plot;
K::GnuplotPlotElementLines lines[3];
plot.add(&lines[0]); lines[0].setColorHex("#0000ff");
plot.add(&lines[1]); lines[1].setColorHex("#00FF00");
plot.add(&lines[2]); lines[2].setColorHex("#ff0000");
for (int ms = 0; ms < 20000; ms += 50) {
SensorAccelerometer sa = intAccel.get(ms);
lines[0].add(K::GnuplotPoint2(ms, sa.x));
lines[1].add(K::GnuplotPoint2(ms, sa.y));
lines[2].add(K::GnuplotPoint2(ms, sa.z));
}
gp.draw(plot);
std::ofstream out("/tmp/1.dat");
out << gp.getBuffer();
out.close();
gp.flush();
sleep(1000);
}
#endif // PLOTFILE_H

View File

@@ -440,8 +440,8 @@ public:
opt.setElitism(0.07f); opt.setElitism(0.07f);
opt.setPopulationSize(100); opt.setPopulationSize(100);
opt.setMaxIterations(200); opt.setMaxIterations(200);
opt.setMutation(0.20f); opt.setMutation(0.40f);
opt.setValRange(0.25); opt.setValRange(0.20);
opt.calculateOptimum(func, vec); opt.calculateOptimum(func, vec);
@@ -514,7 +514,7 @@ public:
netLines[i].clear(); netLines[i].clear();
} }
for (int ms = 0; ms < 20000; ms += 50) { // K::Gnuplot gp; for (int ms = 0; ms < 12000; ms += 100) { // K::Gnuplot gp;
// K::GnuplotPlot plot; // K::GnuplotPlot plot;
// K::GnuplotPlotElementLines line[3]; // K::GnuplotPlotElementLines line[3];
// line[0].setColorHex("#ff0000"); line[0].setTitle("x"); // line[0].setColorHex("#ff0000"); line[0].setTitle("x");
@@ -546,7 +546,7 @@ public:
} }
// process every (positive) occurence within the practice // process every (positive) occurence within the practice
for (int ts = 1000; ts < 10000; ts += 50) { for (int ts = 0; ts < 12000; ts += 100) {
std::vector<float> values = getNetworkInput(interpol, ts); std::vector<float> values = getNetworkInput(interpol, ts);
std::vector<float> res = net.get(values); std::vector<float> res = net.get(values);
@@ -566,11 +566,32 @@ public:
gp2.draw(plot2); gp2.draw(plot2);
gp2.flush(); gp2.flush();
usleep(1000*50);
//usleep(1000*50);
} }
gp1.flush();;
gp2.flush();;
std::string fileRaw = "raw_" + std::to_string((int)p.type);
std::string fileNet = "net_" + std::to_string((int)p.type);
gp1 << "set terminal emf size 600,250\n set output '"<<fileRaw<<".emf'\n unset xtics\n unset key\n unset arrow 1\n unset arrow 2\n set format y ' '\n";
gp2 << "set terminal emf size 600,250\n set output '"<<fileNet<<".emf'\n unset xtics\n unset key\n set format y ' '\n";
gp1.draw(plot1);
gp2.draw(plot2);
std::ofstream out1("/tmp/"+fileRaw+".gp"); out1 << gp1.getBuffer(); out1.close();
std::ofstream out2("/tmp/"+fileNet+".gp"); out2 << gp2.getBuffer(); out2.close();
gp1.flush();
gp2.flush();
} }
sleep(1000); sleep(1000);

View File

@@ -1,6 +1,204 @@
#ifndef USINGPCA_H #ifndef USINGPCA_H
#define USINGPCA_H #define USINGPCA_H
#include "pca/TrainPCA.h"
#include "pca/KNN.h"
#include "pca/aKNN.h"
std::vector<std::string> COLORS = {"#000000", "#0000ff", "#00ff00", "#ff0000", "#00ffff"};
struct Plot {
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementLines lines[5];
public:
Plot() {
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
}
void add(int idx, std::vector<float>& vec) {
K::GnuplotPoint3 p3(vec[0], vec[1], vec[2]);
lines[idx].add(p3);
}
void clear() {
for (int i = 0; i < 5; ++i) {lines[i].clear();}
}
void show() {
gp.setDebugOutput(false);
gp.draw(splot);
gp.flush();
}
};
std::string getClass(const std::vector<ClassifiedFeature>& nns) {
std::unordered_map<std::string, int> map;
for(const ClassifiedFeature& nn : nns) { map[nn.className] += 1; }
for (auto& it : map) {
if (it.second > nns.size() * 0.75) {return it.first;}
}
return "";
}
struct ClassStats {
int counts[6] = {};
};
struct Stats{
int match;
int error;
int unknown;
Stats() : match(0), error(0), unknown(0) {;}
float getSum() {return match+error+unknown;}
};
std::vector<ClassifiedPattern> removePatterns(const std::vector<ClassifiedPattern>& patAll, const std::string& fileName) {
std::vector<ClassifiedPattern> res;
for (const ClassifiedPattern& pat : patAll) {
if (pat.belongsToFile(fileName)) {
continue;
} else {
res.push_back(pat);
}
}
return res;
}
template <int numFeatures> struct PCA {
aKNN<ClassifiedFeature, numFeatures> knn;
TrainPCA::Matrices m;
};
void runPCA() {
const int numFeatures = 10;
TrainPCA::Settings setTrain;
TrainPCA::Settings setClass; setClass.regionStart_ms += 25;
Plot p;
// convert all provided datasets into patterns
std::vector<ClassifiedPattern> srcTrain = TrainPCA::getAllData(setTrain);
std::vector<ClassifiedPattern> srcClass = TrainPCA::getAllData(setClass);
std::cout << "windows: " << srcTrain.size() << std::endl;
// error calculation
std::unordered_map<std::string, Stats> stats;
std::unordered_map<std::string, ClassStats> classStats;
int xx = 0;
std::unordered_map<std::string, PCA<numFeatures>*> pcas;
// try to classify each pattern
for (const ClassifiedPattern& patClassify : srcClass) {
// construct knn search for this leave-one-out ONLY ONCE
if (pcas.find(patClassify.fileName) == pcas.end()) {
std::cout << "constructing PCA for all files but " << patClassify.fileName << std::endl;
// remove all training patterns belonging to the same source file as the to be classifed pattern
std::vector<ClassifiedPattern> srcTrainLOO = removePatterns(srcTrain, patClassify.fileName);
// sanity check (have we removed all patterns?)
int diff = srcTrain.size() - srcTrainLOO.size();
if (diff < 200) {throw 1;}
p.clear();
PCA<numFeatures>* pca = new PCA<numFeatures>();
pcas[patClassify.fileName] = pca;
// train PCA using all pattern without those belonging to the same source file as the to-be-classified one
pca->m = TrainPCA::getMatrices(srcTrainLOO, numFeatures);
// calculate features and add them to the KNN
for (const ClassifiedPattern& pat : srcTrainLOO) {
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
pca->knn.add(ClassifiedFeature(pat.className, arr));
const int idx = Settings::classToInt(pat.className);
p.add(idx, arr);
}
pca->knn.build();
if (xx == 0) {
++xx;
std::ofstream out("/tmp/pca.gp"); p.gp.draw(p.splot); out << p.gp.getBuffer(); out.close();
}
//p.show();
//sleep(100);
}
{
PCA<numFeatures>* pca = pcas[patClassify.fileName];
// calculate features for the to-be-classified pattern
//const int idx = Settings::classToInt(pat.className);
K::DynColVector<float> vec = pca->m.A1 * K::PCAHelper<float>::toVector(patClassify.pattern);
// get KNN's answer
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = pca->knn.get(arr.data(), 5);
std::string gotClass = getClass(neighbors);
if (patClassify.className == gotClass) {stats["all"].match++; stats[patClassify.fileName].match++; stats[patClassify.className].match++;}
else if (gotClass == "") {stats["all"].unknown++; stats[patClassify.fileName].unknown++; stats[patClassify.className].unknown++;}
else {stats["all"].error++; stats[patClassify.fileName].error++; stats[patClassify.className].error++;}
int gotIdx = (gotClass == "") ? (5) : Settings::classToInt(gotClass);
++classStats[patClassify.className].counts[gotIdx];
}
}
for (auto& it : stats) {
Stats& stats = it.second;
std::cout << "'" <<it.first << "',";
std::cout << stats.match/stats.getSum() << ",";
std::cout << stats.error/stats.getSum() << ",";
std::cout << stats.unknown/stats.getSum();
std::cout << std::endl;
}
for (auto& it : classStats) {
ClassStats& stats = it.second;
std::cout << "'" << it.first << "',";
for (int i = 0; i < 6; ++i) {
std::cout << stats.counts[i] << ",";
}
std::cout << std::endl;
}
}
/*
#include <vector> #include <vector>
#include "sensors/SensorReader.h" #include "sensors/SensorReader.h"
@@ -8,6 +206,7 @@
#include <eigen3/Eigen/Dense> #include <eigen3/Eigen/Dense>
enum class PracticeType { enum class PracticeType {
//REST, //REST,
JUMPING_JACK, JUMPING_JACK,
@@ -108,6 +307,7 @@ public:
} }
}; };
*/
#endif // USINGPCA_H #endif // USINGPCA_H