refactoring to add nav mesh

This commit is contained in:
k-a-z-u
2018-07-11 19:04:42 +02:00
parent bb974d3871
commit b4a1a3d969
27 changed files with 1581 additions and 712 deletions

253
nav/grid/Filter.h Normal file
View File

@@ -0,0 +1,253 @@
#ifndef FILTER_H
#define FILTER_H
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/WiFiProbabilityGrid.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeadingControl.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleNodeImportance.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFavorZ.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleActivityControl.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFollowDestination.h>
#include "../Observation.h"
#include "State.h"
#include "Node.h"
#include "NodeResampling.h"
#include "../Settings.h"
#include <omp.h>
#include <future>
namespace GridBased {
class PFInit : public K::ParticleFilterInitializer<MyState> {
private:
Grid<MyGridNode>* grid;
public:
PFInit(Grid<MyGridNode>* grid) : grid(grid) {
}
virtual void initialize(std::vector<K::Particle<MyState>>& particles) override {
std::minstd_rand gen;
std::uniform_int_distribution<int> distIdx(0, grid->getNumNodes()-1);
std::uniform_real_distribution<float> distHead(0, 2*M_PI);
for (K::Particle<MyState>& p : particles) {
const int idx = distIdx(gen);
const MyGridNode& node = (*grid)[idx];
p.state.position = node; // random position
p.state.heading.direction = Heading(distHead(gen)); // random heading
p.weight = 1.0 / particles.size(); // equal weight
}
// // fix position + heading
// for (K::Particle<MyState>& p : particles) {
//// const int idx = 9000;
//// const MyGridNode& node = (*grid)[idx];
// const MyGridNode& node = grid->getNodeFor(GridPoint(2000, 2000, 0)); // center of the testmap
// p.state.position = node;
// p.state.heading.direction = Heading(0);
// }
}
};
class PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
public:
/** local, static control-data COPY */
MyControl ctrl;
Grid<MyGridNode>* grid;
GridWalker<MyGridNode, MyState> walker;
WalkModuleFavorZ<MyGridNode, MyState> modFavorZ;
WalkModuleHeadingControl<MyGridNode, MyState, MyControl> modHeading;
WalkModuleNodeImportance<MyGridNode, MyState> modImportance;
WalkModuleFollowDestination<MyGridNode, MyState> modDestination;
WalkModuleActivityControl<MyGridNode, MyState, MyControl> modActivity;
NodeResampling<MyState, MyGridNode> resampler;
std::minstd_rand gen;
public:
PFTrans(Grid<MyGridNode>* grid) : grid(grid), modHeading(&ctrl, Settings::IMU::turnSigma), modDestination(*grid), modActivity(&ctrl), resampler(*grid) {
//walker.addModule(&modFavorZ);
walker.addModule(&modHeading);
//walker.addModule(&modImportance);
walker.addModule(&modActivity);
if (Settings::destination != GridPoint(0,0,0)) {
//walker.addModule(&modDestination);
modDestination.setDestination(grid->getNodeFor(Settings::destination));
}
}
void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* _ctrl) override {
// local copy!! observation might be changed async outside!! (will really produces crashes!)
this->ctrl = *_ctrl;
((MyControl*)_ctrl)->resetAfterTransition();
std::normal_distribution<float> noise(0, Settings::IMU::stepSigma);
// sanity check
Assert::equal((int)particles.size(), Settings::numParticles, "number of particles does not match the settings!");
//for (K::Particle<MyState>& p : particles) {
#pragma omp parallel for num_threads(3)
for (int i = 0; i < Settings::numParticles; ++i) {
//#pragma omp atomic
const float dist_m = std::abs(ctrl.numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen));
K::Particle<MyState>& p = particles[i];
double prob;
p.state = walker.getDestination(*grid, p.state, dist_m, prob);
//p.weight *= prob;//(prob > 0.01) ? (1.0) : (0.15);
//p.weight = (prob > 0.01) ? (1.0) : (0.15);
//p.weight = prob;
//p.weight = 1.0; // reset
//p.weight = std::pow(p.weight, 0.1); // make all particles a little more equal [less strict]
//p.weight *= std::pow(prob, 0.1); // add grid-walk-probability
p.weight = prob; // grid-walk-probability
if (p.weight != p.weight) {throw Exception("nan");}
}
}
};
class PFEval : public K::ParticleFilterEvaluation<MyState, MyObservation> {
Grid<MyGridNode>* grid;
WiFiModelLogDistCeiling& wifiModel;
//WiFiObserverFree wiFiProbability; // free-calculation
WiFiObserverGrid<MyGridNode> wiFiProbability; // grid-calculation
// smartphone is 1.3 meter above ground
const Point3 person = Point3(0,0,Settings::smartphoneAboveGround);
public:
PFEval(Grid<MyGridNode>* grid, WiFiModelLogDistCeiling& wifiModel) :
grid(grid), wifiModel(wifiModel),
//wiFiProbability(Settings::WiFiModel::sigma, wifiModel) { // WiFi free
wiFiProbability(Settings::WiFiModel::sigma) { // WiFi grid
}
double getStairProb(const K::Particle<MyState>& p, const Activity act) {
const float kappa = 0.75;
const MyGridNode& gn = grid->getNodeFor(p.state.position);
switch (act) {
case Activity::STANDING:
case Activity::WALKING:
if (gn.getType() == GridNode::TYPE_FLOOR) {return kappa;}
if (gn.getType() == GridNode::TYPE_DOOR) {return kappa;}
{return 1-kappa;}
case Activity::WALKING_UP:
case Activity::WALKING_DOWN:
if (gn.getType() == GridNode::TYPE_STAIR) {return kappa;}
if (gn.getType() == GridNode::TYPE_ELEVATOR) {return kappa;}
{return 1-kappa;}
}
return 1.0;
}
double evaluation(std::vector<K::Particle<MyState>>& particles, const MyObservation& _observation) override {
double sum = 0;
// local copy!! observation might be changed async outside!! (will really produces crashes!)
const MyObservation observation = _observation;
// vap-grouping
const int numAP1 = observation.wifi.entries.size();
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(_observation.wifi);
const int numAP2 = wifiObs.entries.size();
Log::add("Filter", "VAP: " + std::to_string(numAP1) + " -> " + std::to_string(numAP2));
// sanity check
Assert::equal((int)particles.size(), Settings::numParticles, "number of particles does not match the settings!");
#pragma omp parallel for num_threads(3)
for (int i = 0; i < Settings::numParticles; ++i) {
K::Particle<MyState>& p = particles[i];
// WiFi free
//const double pWiFi = wiFiProbability.getProbability(p.state.position.inMeter()+person, observation.currentTime, vg.group(observation.wifi));
// WiFi grid
const MyGridNode& node = grid->getNodeFor(p.state.position);
const double pWiFi = wiFiProbability.getProbability(node, observation.currentTime, wifiObs);
//Log::add("xxx", std::to_string(observation.currentTime.ms()) + "_" + std::to_string(wifiObs.entries[0].ts.ms()));
const double pStair = getStairProb(p, observation.activity);
const double pGPS = 1;
const double prob = pWiFi * pGPS * pStair;
p.weight *= prob; // NOTE: keeps the weight returned by the transition step!
//p.weight = prob; // does NOT keep the weights returned by the transition step
if (p.weight != p.weight) {throw Exception("nan");}
#pragma omp atomic
sum += p.weight;
}
return sum;
}
};
}
#endif // FILTER_H

View File

@@ -0,0 +1,266 @@
#include "NavControllerGrid.h"
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include "Settings.h"
#include "RegionalResampling.h"
#include "NodeResampling.h"
#include "../ui/debug/SensorDataWidget.h"
#include "../ui/map/3D/MapView3D.h"
#include "../ui/map/2D/MapView2D.h"
#include "../ui/debug/InfoWidget.h"
#include "../Controller.h"
Q_DECLARE_METATYPE(const void*)
GridBased::NavControllerGrid::NavControllerGrid(Controller* mainController, Floorplan::IndoorMap* im, Grid<MyGridNode>* grid) : NavController(mainController, im), grid(grid), wifiModel(im) {
// filter init
std::unique_ptr<K::ParticleFilterInitializer<MyState>> init(new PFInit(grid));
// estimation
//std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>> estimation(new K::ParticleFilterEstimationWeightedAverage<MyState>());
std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>> estimation(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.5));
// resampling
std::unique_ptr<NodeResampling<MyState, MyGridNode>> resample(new NodeResampling<MyState, MyGridNode>(*grid));
//std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>> resample(new K::ParticleFilterResamplingSimple<MyState>());
//std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>> resample(new K::ParticleFilterResamplingPercent<MyState>(0.05));
//std::unique_ptr<RegionalResampling> resample(new RegionalResampling());
// eval and transition
wifiModel.loadAPs(im, Settings::WiFiModel::TXP, Settings::WiFiModel::EXP, Settings::WiFiModel::WAF);
std::unique_ptr<K::ParticleFilterEvaluation<MyState, MyObservation>> eval(new PFEval(grid, wifiModel));
std::unique_ptr<K::ParticleFilterTransition<MyState, MyControl>> transition(new PFTrans(grid));
// setup the filter
pf = std::unique_ptr<K::ParticleFilter<MyState, MyControl, MyObservation>>(new K::ParticleFilter<MyState, MyControl, MyObservation>(Settings::numParticles, std::move(init)));
pf->setTransition(std::move(transition));
pf->setEvaluation(std::move(eval));
pf->setEstimation(std::move(estimation));
pf->setResampling(std::move(resample));
pf->setNEffThreshold(0.85); //before 0.75, edit by toni
//pf->setNEffThreshold(0.65); // still too low?
//pf->setNEffThreshold(0.25); // too low
// attach as listener to all sensors
SensorFactory::get().getAccelerometer().addListener(this);
SensorFactory::get().getGyroscope().addListener(this);
SensorFactory::get().getBarometer().addListener(this);
SensorFactory::get().getWiFi().addListener(this);
SensorFactory::get().getSteps().addListener(this);
SensorFactory::get().getTurns().addListener(this);
//SensorFactory::get().getActivity().addListener(this);
}
void GridBased::NavControllerGrid::start() {
Assert::isFalse(running, "already started!");
running = true;
curCtrl.resetAfterTransition(); // ensure we start empty ;)
tFilter = std::thread(&NavControllerGrid::filterUpdateLoop, this);
tDisplay = std::thread(&NavControllerGrid::updateMapViewLoop, this);
// start all sensors
SensorFactory::get().getAccelerometer().start();
SensorFactory::get().getGyroscope().start();
SensorFactory::get().getBarometer().start();
SensorFactory::get().getWiFi().start();
#ifndef ANDROID
// #include <valgrind/callgrind.h>
// run with
// valgrind --tool=callgrind --quiet --instr-atstart=no ./yasmin
// show with
// kcachegrind callgrind.out.xxxx
CALLGRIND_START_INSTRUMENTATION;
#endif
}
void GridBased::NavControllerGrid::stop() {
Assert::isTrue(running, "not started!");
running = false;
tFilter.join();
tDisplay.join();
}
void GridBased::NavControllerGrid::onSensorData(Sensor<AccelerometerData>* sensor, const Timestamp ts, const AccelerometerData& data) {
(void) sensor;
(void) data;
(void) ts;
gotSensorData(ts);
}
void GridBased::NavControllerGrid::onSensorData(Sensor<GyroscopeData>* sensor, const Timestamp ts, const GyroscopeData& data) {
(void) sensor;
(void) ts;
(void) data;
gotSensorData(ts);
}
void GridBased::NavControllerGrid::onSensorData(Sensor<BarometerData>* sensor, const Timestamp ts, const BarometerData& data) {
(void) sensor;
(void) ts;
(void) data;
gotSensorData(ts);
}
void GridBased::NavControllerGrid::onSensorData(Sensor<WiFiMeasurements>* sensor, const Timestamp ts, const WiFiMeasurements& data) {
(void) sensor;
(void) ts;
curObs.wifi = data;
gotSensorData(ts);
}
void GridBased::NavControllerGrid::onSensorData(Sensor<GPSData>* sensor, const Timestamp ts, const GPSData& data) {
(void) sensor;
(void) ts;
curObs.gps = data;
gotSensorData(ts);
}
void GridBased::NavControllerGrid::onSensorData(Sensor<StepData>* sensor, const Timestamp ts, const StepData& data) {
(void) sensor;
(void) ts;
curCtrl.numStepsSinceLastTransition += data.stepsSinceLastEvent; // set to zero after each transition
gotSensorData(ts);
}
void GridBased::NavControllerGrid::onSensorData(Sensor<TurnData>* sensor, const Timestamp ts, const TurnData& data) {
(void) sensor;
(void) ts;
curCtrl.turnSinceLastTransition_rad += data.radSinceLastEvent; // set to zero after each transition
gotSensorData(ts);
}
/** called when any sensor has received new data */
void GridBased::NavControllerGrid::gotSensorData(const Timestamp ts) {
curObs.currentTime = ts;
if (Settings::Filter::useMainThread) {filterUpdateIfNeeded();}
}
// void debugActivity(const ActivityData& activity) {
// QString act;
// switch(activity.curActivity) {
// case ActivityButterPressure::Activity::STAY: act = "STAY"; break;
// case ActivityButterPressure::Activity::DOWN: act = "DOWN"; break;
// case ActivityButterPressure::Activity::UP: act = "UP"; break;
// default: act = "???"; break;
// }
// Assert::isTrue(QMetaObject::invokeMethod(mainController->getInfoWidget(), "showActivity", Qt::QueuedConnection, Q_ARG(const QString&, act)), "call failed");
// }
/** particle-filter update loop */
void GridBased::NavControllerGrid::filterUpdateLoop() {
while(running && !Settings::Filter::useMainThread) {
// // fixed update rate based on the systems time -> LIVE! even for offline data
// const Timestamp ts1 = Timestamp::fromUnixTime();
// doUpdate();
// const Timestamp ts2 = Timestamp::fromUnixTime();
// const Timestamp needed = ts2-ts1;
// const Timestamp sleep = Timestamp::fromMS(500) - needed;
// std::this_thread::sleep_for(std::chrono::milliseconds(sleep.ms()));
const bool wasUpdated = filterUpdateIfNeeded();
if (!wasUpdated) { std::this_thread::sleep_for(std::chrono::milliseconds(2)); }
}
}
/** check whether its time for a filter update, and if so, execute the update and return true */
bool GridBased::NavControllerGrid::filterUpdateIfNeeded() {
static float avgSum = 0;
static int avgCount = 0;
// fixed update rate based on incoming sensor data
// allows working with live data and faster for offline data
const Timestamp diff = curObs.currentTime - lastTransition;
if (diff >= Settings::Filter::updateEvery) {
// as the difference is slightly above the 500ms, calculate the error and incorporate it into the next one
const Timestamp err = diff - Settings::Filter::updateEvery;
lastTransition = curObs.currentTime - err;
const Timestamp ts1 = Timestamp::fromUnixTime();
filterUpdate();
const Timestamp ts2 = Timestamp::fromUnixTime();
const Timestamp tsDiff = ts2-ts1;
const QString filterTime = QString::number(tsDiff.ms());
avgSum += tsDiff.ms(); ++avgCount;
//Log::add("xxx", "ts:" + std::to_string(curObs.currentTime.ms()) + " avg:" + std::to_string(avgSum/avgCount));
QMetaObject::invokeMethod(mainController->getInfoWidget(), "showFilterTime", Qt::QueuedConnection, Q_ARG(const QString&, filterTime));
return true;
} else {
return false;
}
}
/** perform a filter-update (called from a background-loop) */
void GridBased::NavControllerGrid::filterUpdate() {
//lastEst = curEst;
MyState sCurEst = pf->update(&curCtrl, curObs);
curEst.pos_m = sCurEst.position.inMeter();
curEst.head = sCurEst.heading.direction;
//Log::add("Nav", "cur est: " + curEst.position.asString());
// inform listeners about the new estimation
for (NavControllerListener* l : listeners) {l->onNewEstimation(curEst.pos_m);}
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView3D(), "showParticles", Qt::QueuedConnection, Q_ARG(const void*, &pf->getParticles())), "call failed");
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView2D(), "showParticles", Qt::QueuedConnection, Q_ARG(const void*, &pf->getParticles())), "call failed");
// update estimated path
estPath.push_back(curEst.pos_m);
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView3D(), "setPathWalked", Qt::QueuedConnection, Q_ARG(const void*, &estPath)), "call failed");
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView2D(), "setPathWalked", Qt::QueuedConnection, Q_ARG(const void*, &estPath)), "call failed");
PFTrans* trans = (PFTrans*)pf->getTransition();
const MyGridNode* node = grid->getNodePtrFor(sCurEst.position);
if (node) {
try {
pathToDest = trans->modDestination.getShortestPath(*node);
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView3D(), "setPathToDestination", Qt::QueuedConnection, Q_ARG(const void*, &pathToDest)), "call failed");
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView2D(), "setPathToDestination", Qt::QueuedConnection, Q_ARG(const void*, &pathToDest)), "call failed");
} catch (...) {;}
}
// mainController->getMapView()->showGridImportance();
}
/** UI update loop */
void GridBased::NavControllerGrid::updateMapViewLoop() {
while(running) {
const Timestamp ts1 = Timestamp::fromUnixTime();
updateMapView();
const Timestamp ts2 = Timestamp::fromUnixTime();
const Timestamp tsDiff = ts2-ts1;
const QString mapViewTime = QString::number(tsDiff.ms());
//QMetaObject::invokeMethod(mainController->getInfoWidget(), "showMapViewTime", Qt::QueuedConnection, Q_ARG(const QString&, mapViewTime));
std::this_thread::sleep_for(std::chrono::milliseconds(display_ms));
}
}

View File

@@ -0,0 +1,89 @@
#ifndef NAVCONTROLLERGRID_H
#define NAVCONTROLLERGRID_H
#include "../sensors/AccelerometerSensor.h"
#include "../sensors/GyroscopeSensor.h"
#include "../sensors/BarometerSensor.h"
#include "../sensors/WiFiSensor.h"
#include "../sensors/SensorFactory.h"
#include "../sensors/StepSensor.h"
#include "../sensors/TurnSensor.h"
#include <Indoor/Assertions.h>
#include <thread>
#include "State.h"
#include "Filter.h"
#include "../Controller.h"
#include "../NavController.h"
namespace GridBased {
class NavControllerGrid : public NavController {
private:
Grid<MyGridNode>* grid;
WiFiModelLogDistCeiling wifiModel;
std::unique_ptr<K::ParticleFilter<MyState, MyControl, MyObservation>> pf;
DijkstraPath<MyGridNode> pathToDest;
MyObservation curObs;
MyControl curCtrl;
public:
NavControllerGrid(Controller* mainController, Floorplan::IndoorMap* im, Grid<MyGridNode>* grid);
void start() override;
void stop() override;
void onSensorData(Sensor<AccelerometerData>* sensor, const Timestamp ts, const AccelerometerData& data) override;
void onSensorData(Sensor<GyroscopeData>* sensor, const Timestamp ts, const GyroscopeData& data) override;
void onSensorData(Sensor<BarometerData>* sensor, const Timestamp ts, const BarometerData& data) override;
void onSensorData(Sensor<WiFiMeasurements>* sensor, const Timestamp ts, const WiFiMeasurements& data) override;
void onSensorData(Sensor<GPSData>* sensor, const Timestamp ts, const GPSData& data) override;
void onSensorData(Sensor<StepData>* sensor, const Timestamp ts, const StepData& data) override ;
void onSensorData(Sensor<TurnData>* sensor, const Timestamp ts, const TurnData& data) override;
// void onSensorData(Sensor<ActivityData>* sensor, const Timestamp ts, const ActivityData& data) override ;
private:
/** called when any sensor has received new data */
void gotSensorData(const Timestamp ts);
// void debugActivity(const ActivityData& activity);
/** particle-filter update loop */
void filterUpdateLoop();
/** check whether its time for a filter update, and if so, execute the update and return true */
bool filterUpdateIfNeeded();
/** perform a filter-update (called from a background-loop) */
void filterUpdate();
/** UI update loop */
void updateMapViewLoop();
};
}
#endif // NAVCONTROLLERGRID_H

33
nav/grid/Node.h Normal file
View File

@@ -0,0 +1,33 @@
#ifndef NODE_H
#define NODE_H
#include <Indoor/grid/Grid.h>
#include <Indoor/sensors/radio/WiFiGridNode.h>
struct MyGridNode : public GridNode, public GridPoint, public WiFiGridNode<30> {
float navImportance;
float getNavImportance() const { return navImportance; }
float walkImportance;
float getWalkImportance() const { return walkImportance; }
/** empty ctor */
MyGridNode() : GridPoint(-1, -1, -1) {;}
/** ctor */
MyGridNode(const int x_cm, const int y_cm, const int z_cm) : GridPoint(x_cm, y_cm, z_cm) {;}
static void staticDeserialize(std::istream& inp) {
WiFiGridNode::staticDeserialize(inp);
}
static void staticSerialize(std::ostream& out) {
WiFiGridNode::staticSerialize(out);
}
};
#endif // NODE_H

123
nav/grid/NodeResampling.h Normal file
View File

@@ -0,0 +1,123 @@
#ifndef NODERESAMPLING_H
#define NODERESAMPLING_H
#include <algorithm>
#include <random>
#include <Indoor/grid/Grid.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResampling.h>
/**
* uses simple probability resampling by drawing particles according
* to their current weight.
* HOWEVER: after drawing them, do NOT use them directly, but replace them with a neighbor
* O(log(n)) per particle
*/
template <typename State, typename Node>
class NodeResampling : public K::ParticleFilterResampling<State> {
private:
/** this is a copy of the particle-set to draw from it */
std::vector<K::Particle<State>> particlesCopy;
/** random number generator */
std::minstd_rand gen;
Grid<Node>& grid;
public:
/** ctor */
NodeResampling(Grid<Node>& grid) : grid(grid) {
gen.seed(1234);
}
void resample(std::vector<K::Particle<State>>& particles) override {
// compile-time sanity checks
// TODO: this solution requires EXPLICIT overloading which is bad...
//static_assert( HasOperatorAssign<State>::value, "your state needs an assignment operator!" );
const uint32_t cnt = (uint32_t) particles.size();
// equal weight for all particles. sums up to 1.0
const double equalWeight = 1.0 / (double) cnt;
// ensure the copy vector has the same size as the real particle vector
particlesCopy.resize(cnt);
// swap both vectors
particlesCopy.swap(particles);
// calculate cumulative weight
double cumWeight = 0;
for (uint32_t i = 0; i < cnt; ++i) {
cumWeight += particlesCopy[i].weight;
particlesCopy[i].weight = cumWeight;
}
std::uniform_real_distribution<float> distNewOne(0.0, 1.0);
std::uniform_int_distribution<int> distRndNode(0, grid.getNumNodes()-1);
std::normal_distribution<float> distTurn(0.0, +0.03);
// now draw from the copy vector and fill the original one
// with the resampled particle-set
for (uint32_t i = 0; i < cnt; ++i) {
// slight chance to get a truely random node as particle
// mainly for testing
if (distNewOne(gen) < 0.005) {
particles[i].state.position = grid[distRndNode(gen)];
particles[i].weight = equalWeight;
continue;
}
// normal redraw procedure
particles[i] = draw(cumWeight);
particles[i].weight = equalWeight;
const Node* n = grid.getNodePtrFor(particles[i].state.position);
if (n == nullptr) {continue;} // should not happen!
for (int j = 0; j < 2; ++j) {
std::uniform_int_distribution<int> distIdx(0, n->getNumNeighbors()-1);
const int idx = distIdx(gen);
n = &grid.getNeighbor(*n, idx);
}
particles[i].state.position = *n;
particles[i].state.heading.direction += distTurn(gen);
}
}
private:
/** draw one particle according to its weight from the copy vector */
const K::Particle<State>& draw(const double cumWeight) {
// generate random values between [0:cumWeight]
std::uniform_real_distribution<float> dist(0, cumWeight);
// draw a random value between [0:cumWeight]
const float rand = dist(gen);
// search comparator (cumWeight is ordered -> use binary search)
auto comp = [] (const K::Particle<State>& s, const float d) {return s.weight < d;};
auto it = std::lower_bound(particlesCopy.begin(), particlesCopy.end(), rand, comp);
return *it;
}
};
#endif // NODERESAMPLING_H

View File

@@ -0,0 +1,72 @@
#ifndef REGIONALRESAMPLING_H
#define REGIONALRESAMPLING_H
#include <KLib/math/filter/particles/ParticleFilter.h>
#include "State.h"
namespace GridBased {
class RegionalResampling : public K::ParticleFilterResampling<MyState> {
public:
float maxDist = 12.5;
RegionalResampling() {;}
void resample(std::vector<K::Particle<MyState>>& particles) override {
Point3 sum;
for (const K::Particle<MyState>& p : particles) {
sum += p.state.position.inMeter();
}
const Point3 avg = sum / particles.size();
std::vector<K::Particle<MyState>> next;
for (const K::Particle<MyState>& p : particles) {
const float dist = p.state.position.inMeter().getDistance(avg);
if (rand() % 6 != 0) {continue;}
if (dist < maxDist) {next.push_back(p);}
}
// cumulate
std::vector<K::Particle<MyState>> copy = particles;
double cumWeight = 0;
for ( K::Particle<MyState>& p : copy) {
cumWeight += p.weight;
p.weight = cumWeight;
}
// draw missing particles
const int missing = particles.size() - next.size();
for (int i = 0; i < missing; ++i) {
next.push_back(draw(copy, cumWeight));
}
std::swap(next, particles);
}
std::minstd_rand gen;
/** draw one particle according to its weight from the copy vector */
const K::Particle<MyState>& draw(std::vector<K::Particle<MyState>>& copy, const double cumWeight) {
// generate random values between [0:cumWeight]
std::uniform_real_distribution<float> dist(0, cumWeight);
// draw a random value between [0:cumWeight]
const float rand = dist(gen);
// search comparator (cumWeight is ordered -> use binary search)
auto comp = [] (const K::Particle<MyState>& s, const float d) {return s.weight < d;};
auto it = std::lower_bound(copy.begin(), copy.end(), rand, comp);
return *it;
}
};
}
#endif // REGIONALRESAMPLING_H

44
nav/grid/State.h Normal file
View File

@@ -0,0 +1,44 @@
#ifndef GRID_STATE_H
#define GRID_STATE_H
#include <Indoor/grid/walk/v2/GridWalker.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleActivityControl.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeadingControl.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleNodeImportance.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFavorZ.h>
namespace GridBased {
struct MyState : public WalkState, public WalkStateFavorZ, public WalkStateHeading {
/** ctor */
MyState(const int x_cm, const int y_cm, const int z_cm) : WalkState(GridPoint(x_cm, y_cm, z_cm)), WalkStateHeading(Heading(0), 0) {
;
}
MyState() : WalkState(GridPoint()), WalkStateHeading(Heading(0), 0) {
;
}
MyState& operator += (const MyState& o) {
position += o.position;
return *this;
}
MyState& operator /= (const float val) {
position /= val;
return *this;
}
MyState operator * (const float val) const {
MyState copy = *this;
copy.position = copy.position * val;
return copy;
}
};
}
#endif // GRID_STATE_H