switched to MDPI journal layout
This commit is contained in:
@@ -1,39 +1,32 @@
|
|||||||
\documentclass[acmlarge]{acmart}
|
%\documentclass[acmlarge]{acmart}
|
||||||
|
\documentclass[ijgi,article,submit,moreauthors,pdftex,10pt,a4paper]{mdpi}
|
||||||
|
%\documentclass[journal,article,accept,moreauthors,pdftex,10pt,a4paper]{mdpi}
|
||||||
|
|
||||||
\usepackage{booktabs} % For formal tables
|
%\usepackage{booktabs} % For formal tables
|
||||||
|
|
||||||
\usepackage[ruled]{algorithm2e} % For algorithms
|
% correct bad hyphenation here
|
||||||
\renewcommand{\algorithmcfname}{ALGORITHM}
|
%\hyphenation{op-tical net-works semi-conduc-tor}
|
||||||
\SetAlFnt{\small}
|
|
||||||
\SetAlCapFnt{\small}
|
%\usepackage[ruled]{algorithm2e} % For algorithms
|
||||||
\SetAlCapNameFnt{\small}
|
%\renewcommand{\algorithmcfname}{ALGORITHM}
|
||||||
\SetAlCapHSkip{0pt}
|
%\SetAlFnt{\small}
|
||||||
\IncMargin{-\parindent}
|
%\SetAlCapFnt{\small}
|
||||||
|
%\SetAlCapNameFnt{\small}
|
||||||
|
%\SetAlCapHSkip{0pt}
|
||||||
|
%\IncMargin{-\parindent}
|
||||||
|
|
||||||
% Metadata Information
|
% Metadata Information
|
||||||
\acmJournal{IMWUT}
|
\firstpage{1}
|
||||||
\acmVolume{0}
|
\makeatletter
|
||||||
\acmNumber{0}
|
\setcounter{page}{\@firstpage}
|
||||||
\acmArticle{0}
|
\makeatother
|
||||||
\acmYear{2017}
|
\articlenumber{x}
|
||||||
\acmMonth{0}
|
\doinum{10.3390/------}
|
||||||
\acmArticleSeq{0}
|
\pubvolume{xx}
|
||||||
|
\pubyear{2017}
|
||||||
% Copyright
|
\copyrightyear{2017}
|
||||||
\setcopyright{acmcopyright}
|
\externaleditor{Academic Editor: name}
|
||||||
%\setcopyright{acmlicensed}
|
\history{Received: date; Accepted: date; Published: date}
|
||||||
%\setcopyright{rightsretained}
|
|
||||||
%\setcopyright{usgov}
|
|
||||||
%\setcopyright{usgovmixed}
|
|
||||||
%\setcopyright{cagov}
|
|
||||||
%\setcopyright{cagovmixed}
|
|
||||||
|
|
||||||
% DOI
|
|
||||||
\acmDOI{0000001.0000001}
|
|
||||||
|
|
||||||
% Paper history
|
|
||||||
\received{dummy}
|
|
||||||
\received[accepted]{dummy}
|
|
||||||
|
|
||||||
|
|
||||||
\usepackage{color, colortbl}
|
\usepackage{color, colortbl}
|
||||||
@@ -93,8 +86,7 @@
|
|||||||
\graphicspath{ {gfx/paths/},{gfx/},{gfx2/}}
|
\graphicspath{ {gfx/paths/},{gfx/},{gfx2/}}
|
||||||
|
|
||||||
|
|
||||||
% correct bad hyphenation here
|
|
||||||
\hyphenation{op-tical net-works semi-conduc-tor}
|
|
||||||
|
|
||||||
|
|
||||||
% input stuff
|
% input stuff
|
||||||
@@ -102,84 +94,51 @@
|
|||||||
\input{misc/functions}
|
\input{misc/functions}
|
||||||
|
|
||||||
|
|
||||||
|
\Title{On \docWIFI{} Optimizations for Smartphone-based Indoor Localization}
|
||||||
|
|
||||||
|
|
||||||
|
% Authors, for the paper (add full first names)
|
||||||
|
\Author{Frank Ebner $^{1}$\orcidONE{}, Toni Fetzer $^{1}$\orcidTWO{}, Frank Deinzer $^{1}$ and Marcin Grzegorzek $^{2}$ }
|
||||||
|
|
||||||
|
% Authors, for metadata in PDF
|
||||||
|
\AuthorNames{Frank Ebner, Toni Fetzer, Frank Deinzer and Marcin Grzegorzek}
|
||||||
|
|
||||||
|
\keyword{indoor localization; smartphones; \docWIFI{}; IMU; sensor fusion; optimization}
|
||||||
|
|
||||||
|
% Author Orchid ID: enter ID or remove command
|
||||||
|
\orcidauthorONE{0000-0002-4698-8232} % Add \orcidONE{} behind the author's name
|
||||||
|
\orcidauthorTWO{0000-0002-8249-8783} % Add \orcidTWO{} behind the author's name
|
||||||
|
|
||||||
|
|
||||||
|
% Affiliations / Addresses (Add [1] after \address if there is only one affiliation.)
|
||||||
|
\address{%
|
||||||
|
$^{1}$ \quad University of Applied Sciences W\"urzburg-Schweinfurt - Faculty of Computer Science and Business Information Systems; frank.ebner@fhws.de, toni.fetzer@fhws.de, frank.deinzer@fhws.de\\
|
||||||
|
$^{2}$ \quad University of Siegen - Pattern Recognition Group; marcin.grzegorzek@uni-siegen.de}
|
||||||
|
|
||||||
|
% Contact information of the corresponding author
|
||||||
|
%\corres{Correspondence: e-mail@e-mail.com; Tel.: +x-xxx-xxx-xxxx}
|
||||||
|
|
||||||
|
\input{chapters/abstract}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\title{On \docWIFI{} Optimizations for Smartphone-based Indoor Localization}
|
|
||||||
|
|
||||||
\author{Frank Ebner}
|
|
||||||
\author{Toni Fetzer}
|
|
||||||
\author{Frank Deinzer}
|
|
||||||
\affiliation{%
|
|
||||||
\institution{University of Applied Sciences W\"urzburg-Schweinfurt}
|
|
||||||
\department{Faculty of Computer Science and Business Information Systems}
|
|
||||||
\city{W\"urzburg}
|
|
||||||
%\state{VA}
|
|
||||||
%\postcode{22903}
|
|
||||||
\country{Germany}
|
|
||||||
}
|
|
||||||
|
|
||||||
\author{Marcin Grzegorzek}
|
|
||||||
\affiliation{%
|
|
||||||
\institution{University of Siegen}
|
|
||||||
\department{Pattern Recognition Group}
|
|
||||||
\city{Siegen}
|
|
||||||
%\state{VA}
|
|
||||||
%\postcode{22903}
|
|
||||||
\country{Germany}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\input{chapters/abstract}
|
|
||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
|
|
||||||
|
\input{chapters/introduction}
|
||||||
|
|
||||||
|
\input{chapters/relatedwork}
|
||||||
|
|
||||||
|
\input{chapters/system}
|
||||||
|
|
||||||
% For peer review papers, you can put extra information on the cover
|
\input{chapters/work}
|
||||||
% page as needed:
|
|
||||||
% \ifCLASSOPTIONpeerreview
|
|
||||||
% \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
|
|
||||||
% \fi
|
|
||||||
%
|
|
||||||
% For peerreview papers, this IEEEtran command inserts a page break and
|
|
||||||
% creates the second title. It will be ignored for other modes.
|
|
||||||
%\IEEEpeerreviewmaketitle
|
|
||||||
|
|
||||||
|
\input{chapters/experiments}
|
||||||
|
|
||||||
\input{chapters/introduction}
|
\input{chapters/conclusion}
|
||||||
|
|
||||||
\input{chapters/relatedwork}
|
%\bibliographystyle{ACM-Reference-Format}
|
||||||
|
\externalbibliography{yes}
|
||||||
\input{chapters/system}
|
\bibliography{egbib}
|
||||||
|
|
||||||
\input{chapters/work}
|
|
||||||
|
|
||||||
\input{chapters/experiments}
|
|
||||||
|
|
||||||
\input{chapters/conclusion}
|
|
||||||
|
|
||||||
|
|
||||||
% conference papers do not normally have an appendix
|
|
||||||
|
|
||||||
% use section* for acknowledgment
|
|
||||||
%\section*{Acknowledgment}
|
|
||||||
|
|
||||||
%The authors would like to thank...
|
|
||||||
|
|
||||||
% balancing
|
|
||||||
%\IEEEtriggeratref{8}
|
|
||||||
% The "triggered" command can be changed if desired:
|
|
||||||
%\IEEEtriggercmd{\enlargethispage{-5in}}
|
|
||||||
|
|
||||||
|
|
||||||
% references section
|
|
||||||
%\bibliographystyle{IEEEtran}
|
|
||||||
%\bibliography{IEEEabrv,egbib}
|
|
||||||
|
|
||||||
\bibliographystyle{ACM-Reference-Format}
|
|
||||||
\bibliography{egbib}
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
\begin{abstract}
|
\abstract{%
|
||||||
|
%
|
||||||
Indoor localization and indoor pedestrian navigation is an active field of research
|
Indoor localization and indoor pedestrian navigation is an active field of research
|
||||||
with increasing attention.
|
with increasing attention.
|
||||||
%
|
%
|
||||||
@@ -12,7 +12,7 @@
|
|||||||
While more complex models provide an increased accuracy by including architectural knowledge
|
While more complex models provide an increased accuracy by including architectural knowledge
|
||||||
about walls and other obstacles, they often require additional computation during runtime and
|
about walls and other obstacles, they often require additional computation during runtime and
|
||||||
demand for prior knowledge during setup.
|
demand for prior knowledge during setup.
|
||||||
|
\\%
|
||||||
Within this work we will thus focus on simple, easy to set-up models and evaluate their
|
Within this work we will thus focus on simple, easy to set-up models and evaluate their
|
||||||
performance compared to real-world measurements. The evaluation ranges from a fully empiric, instant
|
performance compared to real-world measurements. The evaluation ranges from a fully empiric, instant
|
||||||
setup, given the transmitter locations are well-known, to a highly-optimized scenario based
|
setup, given the transmitter locations are well-known, to a highly-optimized scenario based
|
||||||
@@ -23,36 +23,18 @@
|
|||||||
All of the optimized models are evaluated within an actual smartphone-based
|
All of the optimized models are evaluated within an actual smartphone-based
|
||||||
indoor localization system. This system uses the phone's \docWIFI{}, barometer and IMU
|
indoor localization system. This system uses the phone's \docWIFI{}, barometer and IMU
|
||||||
to infer the pedestrian's current location via recursive density estimation based on particle filtering.
|
to infer the pedestrian's current location via recursive density estimation based on particle filtering.
|
||||||
|
\\%
|
||||||
We will show that while a \SI{100}{\percent} empiric parameter choice for the model already provides enough
|
We will show that while a \SI{100}{\percent} empiric parameter choice for the model already provides enough
|
||||||
accuracy for many use-cases, a small number of reference measurements is enough to dramatically increase
|
accuracy for many use-cases, a small number of reference measurements is enough to dramatically increase
|
||||||
such a system's performance.
|
such a system's performance.
|
||||||
|
%
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%system setup kostet oft sehr viel zeit [fingerprinting kostet]
|
|
||||||
%deshalb werden alternativen untersucht:
|
|
||||||
%bekannte AP position mit empirischen parametern
|
|
||||||
%und optimierung durch einige referenzmessungen
|
|
||||||
|
|
||||||
%floorplan wird für die navigation bzw orientierung des anwenders eh gebraucht
|
|
||||||
%dann kann man ihn auch gleich für ein bewegungsmodell nutzen
|
|
||||||
|
|
||||||
%es sollte klar werden, dass es auch darum geht, effizient
|
|
||||||
%auf einem normalen smartphone lauffähig zu sein [passend zum journal]
|
|
||||||
|
|
||||||
\end{abstract}
|
|
||||||
|
|
||||||
% TODO
|
|
||||||
\begin{CCSXML}
|
|
||||||
|
|
||||||
\end{CCSXML}
|
|
||||||
|
|
||||||
%\ccsdesc[500]{Computer systems organization~Embedded systems}
|
%\ccsdesc[500]{Computer systems organization~Embedded systems}
|
||||||
%\ccsdesc[300]{Computer systems organization~Redundancy}
|
%\ccsdesc[300]{Computer systems organization~Redundancy}
|
||||||
%\ccsdesc{Computer systems organization~Robotics}
|
%\ccsdesc{Computer systems organization~Robotics}
|
||||||
%s\ccsdesc[100]{Networks~Network reliability}
|
%s\ccsdesc[100]{Networks~Network reliability}
|
||||||
|
|
||||||
\keywords{\docWIFI{}, indoor localization, sensor fusion}
|
|
||||||
|
|
||||||
|
|||||||
@@ -36,8 +36,7 @@
|
|||||||
While we were able to improve the performance of the \docWIFI{} sensor component,
|
While we were able to improve the performance of the \docWIFI{} sensor component,
|
||||||
the filtering process should be more robust against erroneous observations.
|
the filtering process should be more robust against erroneous observations.
|
||||||
Getting stuck should be prevented, independent of minor changes in quality for
|
Getting stuck should be prevented, independent of minor changes in quality for
|
||||||
the signal strength prediction model \cite{todo-toni}.
|
the signal strength prediction model \cite{Fetzer-17}.
|
||||||
\commentByFrank{cite auf toni?!}
|
|
||||||
|
|
||||||
Our \docWIFI{} quality metric often was able to determine situations that
|
Our \docWIFI{} quality metric often was able to determine situations that
|
||||||
would yield multimodal or bad \docWIFI{} estimations and temporarily
|
would yield multimodal or bad \docWIFI{} estimations and temporarily
|
||||||
|
|||||||
@@ -18,8 +18,12 @@
|
|||||||
Within all \docWIFI{} observations, we only consider the \docAP{}s that are permanently installed
|
Within all \docWIFI{} observations, we only consider the \docAP{}s that are permanently installed
|
||||||
and can be identified by their well-known MAC address.
|
and can be identified by their well-known MAC address.
|
||||||
Temporal and movable transmitters like smart TVs or smartphone hotspots are ignored as they might cause estimation errors.
|
Temporal and movable transmitters like smart TVs or smartphone hotspots are ignored as they might cause estimation errors.
|
||||||
|
|
||||||
|
The \docWIFI{} quality factor from section \ref{sec:wifiQuality} was configured with
|
||||||
|
a lower bound of \SI{-85}{\decibel m}, an upper bound of \SI{-70}{\decibel m} and a threshold of $0.25$.
|
||||||
|
|
||||||
%
|
%
|
||||||
Unfortunately, due to non-disclosure agreements, we are not allowed to depict the actual location
|
Unfortunately, due to legal reasons, our institution does not allow depicting the actual location
|
||||||
of installed transmitters within the following figures.
|
of installed transmitters within the following figures.
|
||||||
|
|
||||||
|
|
||||||
@@ -157,26 +161,27 @@
|
|||||||
distance between estimated and real position is $\sim$\SI{8}{\meter} and the maximum $\sim$\SI{27}{\meter}.
|
distance between estimated and real position is $\sim$\SI{8}{\meter} and the maximum $\sim$\SI{27}{\meter}.
|
||||||
For \SI{68}{\percent} of all installed transmitters, the estimated floor-number matched the real location.
|
For \SI{68}{\percent} of all installed transmitters, the estimated floor-number matched the real location.
|
||||||
|
|
||||||
|
\newcommand{\tablefont}{\scriptsize}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
% cumulative error density
|
\centering
|
||||||
\begin{subfigure}{0.52\textwidth}
|
\begin{subfigure}{0.52\textwidth}
|
||||||
\input{gfx2/wifi_model_error_0_95.tex}
|
\input{gfx2/wifi_model_error_0_95.tex}
|
||||||
\end{subfigure}
|
\end{subfigure}%
|
||||||
% table
|
|
||||||
\begin{subfigure}{0.47\textwidth}
|
\begin{subfigure}{0.47\textwidth}
|
||||||
\smaller
|
|
||||||
\centering
|
\centering
|
||||||
\begin{tabular}{|l|c|c|c|c|}
|
\begin{tabular}{|l|c|c|c|c|}
|
||||||
\hline
|
|
||||||
& 25 \% & median & 75 \% & avg \\\hline
|
\hline
|
||||||
\noOptEmpiric{} & \SI{2.5}{\decibel} & \SI{5.6}{\decibel} & \SI{9.3}{\decibel} & \SI{6.5}{\decibel} \\\hline
|
& \tablefont 25 \% & \tablefont median & \tablefont 75 \% & \tablefont avg \\\hline
|
||||||
\optParamsAllAP{} & \SI{2.0}{\decibel} & \SI{4.3}{\decibel} & \SI{7.5}{\decibel} & \SI{5.4}{\decibel} \\\hline
|
\tablefont\noOptEmpiric{} & \tablefont\SI{2.5}{\decibel} & \tablefont\SI{5.6}{\decibel} & \tablefont\SI{9.3}{\decibel} & \tablefont\SI{6.5}{\decibel} \\\hline
|
||||||
\optParamsEachAP{} & \SI{1.6}{\decibel} & \SI{3.3}{\decibel} & \SI{6.2}{\decibel} & \SI{4.4}{\decibel} \\\hline
|
\tablefont\optParamsAllAP{} & \tablefont\SI{2.0}{\decibel} & \tablefont\SI{4.3}{\decibel} & \tablefont\SI{7.5}{\decibel} & \tablefont\SI{5.4}{\decibel} \\\hline
|
||||||
\optParamsPosEachAP{} & \SI{1.5}{\decibel} & \SI{3.0}{\decibel} & \SI{5.5}{\decibel} & \SI{3.8}{\decibel} \\\hline
|
\tablefont\optParamsEachAP{} & \tablefont\SI{1.6}{\decibel} & \tablefont\SI{3.3}{\decibel} & \tablefont\SI{6.2}{\decibel} & \tablefont\SI{4.4}{\decibel} \\\hline
|
||||||
\optPerFloor{} & \SI{0.7}{\decibel} & \SI{1.6}{\decibel} & \SI{3.3}{\decibel} & \SI{2.6}{\decibel} \\\hline
|
\tablefont\optParamsPosEachAP{} & \tablefont\SI{1.5}{\decibel} & \tablefont\SI{3.0}{\decibel} & \tablefont\SI{5.5}{\decibel} & \tablefont\SI{3.8}{\decibel} \\\hline
|
||||||
\optPerRegion{} & \SI{0.6}{\decibel} & \SI{1.4}{\decibel} & \SI{3.1}{\decibel} & \SI{2.4}{\decibel} \\\hline
|
\tablefont\optPerFloor{} & \tablefont\SI{0.7}{\decibel} & \tablefont\SI{1.6}{\decibel} & \tablefont\SI{3.3}{\decibel} & \tablefont\SI{2.6}{\decibel} \\\hline
|
||||||
\end{tabular}
|
\tablefont\optPerRegion{} & \tablefont\SI{0.6}{\decibel} & \tablefont\SI{1.4}{\decibel} & \tablefont\SI{3.1}{\decibel} & \tablefont\SI{2.4}{\decibel} \\\hline
|
||||||
\vspace{9mm}
|
\end{tabular}
|
||||||
|
\vspace{8mm}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption{
|
\caption{
|
||||||
Cumulative error distribution for all optimization strategies. The error results from the (absolute) difference
|
Cumulative error distribution for all optimization strategies. The error results from the (absolute) difference
|
||||||
@@ -189,6 +194,7 @@
|
|||||||
|
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
\centering
|
||||||
\begin{subfigure}{0.32\textwidth}
|
\begin{subfigure}{0.32\textwidth}
|
||||||
\centering
|
\centering
|
||||||
\input{gfx2/wifiMaxErrorNN_opt0.tex}
|
\input{gfx2/wifiMaxErrorNN_opt0.tex}
|
||||||
@@ -261,6 +267,7 @@
|
|||||||
region for the optimization to converge.
|
region for the optimization to converge.
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
\centering
|
||||||
\begin{subfigure}{0.49\textwidth}
|
\begin{subfigure}{0.49\textwidth}
|
||||||
\input{gfx2/wifi_model_error_num_fingerprints_method_5_0_90.tex}
|
\input{gfx2/wifi_model_error_num_fingerprints_method_5_0_90.tex}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
@@ -414,6 +421,7 @@
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
\centering
|
||||||
% error gfx
|
% error gfx
|
||||||
\begin{subfigure}{0.52\textwidth}
|
\begin{subfigure}{0.52\textwidth}
|
||||||
\centering
|
\centering
|
||||||
@@ -427,19 +435,19 @@
|
|||||||
%4.30191 6.91534 14.0746 11.948
|
%4.30191 6.91534 14.0746 11.948
|
||||||
%4.26189 6.35975 11.5646 10.7466
|
%4.26189 6.35975 11.5646 10.7466
|
||||||
\begin{subfigure}{0.47\textwidth}
|
\begin{subfigure}{0.47\textwidth}
|
||||||
\smaller
|
\footnotesize
|
||||||
\centering
|
\centering
|
||||||
\begin{tabular}{|l|c|c|c|c|}
|
\begin{tabular}{|l|c|c|c|c|}
|
||||||
\hline
|
\hline
|
||||||
& \SI{25}{\percent} & median & \SI{75}{\percent} & avg \\\hline
|
& \tablefont\SI{25}{\percent} & \tablefont median & \tablefont\SI{75}{\percent} & \tablefont avg \\\hline
|
||||||
\noOptEmpiric{} & \SI{6.0}{\meter} & \SI{9.2}{\meter} & \SI{14.4}{\meter} & \SI{11.9}{\meter} \\\hline
|
\tablefont\noOptEmpiric{} & \tablefont\SI{6.0}{\meter} & \tablefont\SI{9.2}{\meter} & \tablefont\SI{14.4}{\meter} & \tablefont\SI{11.9}{\meter} \\\hline
|
||||||
\optParamsAllAP{} & \SI{6.5}{\meter} & \SI{9.0}{\meter} & \SI{12.8}{\meter} & \SI{12.0}{\meter} \\\hline
|
\tablefont\optParamsAllAP{} & \tablefont\SI{6.5}{\meter} & \tablefont\SI{9.0}{\meter} & \tablefont\SI{12.8}{\meter} & \tablefont\SI{12.0}{\meter} \\\hline
|
||||||
\optParamsEachAP{} & \SI{6.8}{\meter} & \SI{9.8}{\meter} & \SI{13.8}{\meter} & \SI{13.0}{\meter} \\\hline
|
\tablefont\optParamsEachAP{} & \tablefont\SI{6.8}{\meter} & \tablefont\SI{9.8}{\meter} & \tablefont\SI{13.8}{\meter} & \tablefont\SI{13.0}{\meter} \\\hline
|
||||||
\optParamsPosEachAP{} & \SI{5.4}{\meter} & \SI{8.6}{\meter} & \SI{14.8}{\meter} & \SI{12.0}{\meter} \\\hline
|
\tablefont\optParamsPosEachAP{} & \tablefont\SI{5.4}{\meter} & \tablefont\SI{8.6}{\meter} & \tablefont\SI{14.8}{\meter} & \tablefont\SI{12.0}{\meter} \\\hline
|
||||||
\optPerFloor{} & \SI{4.3}{\meter} & \SI{6.9}{\meter} & \SI{14.0}{\meter} & \SI{11.9}{\meter} \\\hline
|
\tablefont\optPerFloor{} & \tablefont\SI{4.3}{\meter} & \tablefont\SI{6.9}{\meter} & \tablefont\SI{14.0}{\meter} & \tablefont\SI{11.9}{\meter} \\\hline
|
||||||
\optPerRegion{} & \SI{4.2}{\meter} & \SI{6.5}{\meter} & \SI{11.6}{\meter} & \SI{10.7}{\meter} \\\hline
|
\tablefont\optPerRegion{} & \tablefont\SI{4.2}{\meter} & \tablefont\SI{6.5}{\meter} & \tablefont\SI{11.6}{\meter} & \tablefont\SI{10.7}{\meter} \\\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\vspace{9mm}
|
\vspace{7mm}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\caption {
|
\caption {
|
||||||
Cumulative error distribution between walked ground truth and \docWIFI{}-only location estimation using \refeq{eq:bestWiFiPos}.
|
Cumulative error distribution between walked ground truth and \docWIFI{}-only location estimation using \refeq{eq:bestWiFiPos}.
|
||||||
@@ -470,6 +478,7 @@
|
|||||||
% -------------------------------- plots indicating walk issues -------------------------------- %
|
% -------------------------------- plots indicating walk issues -------------------------------- %
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
\centering
|
||||||
\input{gfx2/wifiMultimodality.tex}
|
\input{gfx2/wifiMultimodality.tex}
|
||||||
\caption{
|
\caption{
|
||||||
\docWIFI{}-only location probability for three distinct scans where
|
\docWIFI{}-only location probability for three distinct scans where
|
||||||
@@ -652,6 +661,7 @@
|
|||||||
keep the pedestrian's heading until the signal quality reached sane levels again.
|
keep the pedestrian's heading until the signal quality reached sane levels again.
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
\centering
|
||||||
\begin{subfigure}{0.49\textwidth}
|
\begin{subfigure}{0.49\textwidth}
|
||||||
\input{gfx2/overall-system-error.tex}
|
\input{gfx2/overall-system-error.tex}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
@@ -669,16 +679,16 @@
|
|||||||
\begin{tabular}{|l|c|c|c|c|c|}
|
\begin{tabular}{|l|c|c|c|c|c|}
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
& \SI{25}{\percent} & median & \SI{75}{\percent} & avg & stuck \\\hline
|
& \tablefont\SI{25}{\percent} & \tablefont median & \tablefont\SI{75}{\percent} & \tablefont avg & \tablefont stuck \\\hline
|
||||||
\noOptEmpiric{} & \SI{2.6}{\meter} & \SI{5.1}{\meter} & \SI{11.2}{\meter} & \SI{9.0}{\meter} & \SI{22}{\percent} \\\hline
|
\tablefont\noOptEmpiric{} & \tablefont\SI{2.6}{\meter} & \tablefont\SI{5.1}{\meter} & \tablefont\SI{11.2}{\meter} & \tablefont\SI{9.0}{\meter} & \tablefont\SI{22}{\percent} \\\hline
|
||||||
\optParamsAllAP{} & \SI{2.9}{\meter} & \SI{6.0}{\meter} & \SI{12.4}{\meter} & \SI{10.7}{\meter} & \SI{15}{\percent} \\\hline
|
\tablefont\optParamsAllAP{} & \tablefont\SI{2.9}{\meter} & \tablefont\SI{6.0}{\meter} & \tablefont\SI{12.4}{\meter} & \tablefont\SI{10.7}{\meter} & \tablefont\SI{15}{\percent} \\\hline
|
||||||
\optParamsEachAP{} & \SI{1.9}{\meter} & \SI{4.0}{\meter} & \SI{7.9}{\meter} & \SI{5.8}{\meter} & \SI{5}{\percent} \\\hline
|
\tablefont\optParamsEachAP{} & \tablefont\SI{1.9}{\meter} & \tablefont\SI{4.0}{\meter} & \tablefont\SI{7.9}{\meter} & \tablefont\SI{5.8}{\meter} & \tablefont\SI{5}{\percent} \\\hline
|
||||||
\optParamsPosEachAP{} & \SI{1.9}{\meter} & \SI{3.9}{\meter} & \SI{7.1}{\meter} & \SI{5.6}{\meter} & \SI{5}{\percent} \\\hline
|
\tablefont\optParamsPosEachAP{} & \tablefont\SI{1.9}{\meter} & \tablefont\SI{3.9}{\meter} & \tablefont\SI{7.1}{\meter} & \tablefont\SI{5.6}{\meter} & \tablefont\SI{5}{\percent} \\\hline
|
||||||
\optPerFloor{} & \SI{1.6}{\meter} & \SI{3.2}{\meter} & \SI{6.1}{\meter} & \SI{4.8}{\meter} & \SI{4}{\percent} \\\hline
|
\tablefont\optPerFloor{} & \tablefont\SI{1.6}{\meter} & \tablefont\SI{3.2}{\meter} & \tablefont\SI{6.1}{\meter} & \tablefont\SI{4.8}{\meter} & \tablefont\SI{4}{\percent} \\\hline
|
||||||
\optPerRegion{} & \SI{1.6}{\meter} & \SI{3.3}{\meter} & \SI{6.5}{\meter} & \SI{5.0}{\meter} & \SI{4}{\percent} \\\hline
|
\tablefont\optPerRegion{} & \tablefont\SI{1.6}{\meter} & \tablefont\SI{3.3}{\meter} & \tablefont\SI{6.5}{\meter} & \tablefont\SI{5.0}{\meter} & \tablefont\SI{4}{\percent} \\\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\setlength{\tabcolsep}{1.0em} % reset the horizontal padding
|
\setlength{\tabcolsep}{1.0em} % reset the horizontal padding
|
||||||
\vspace{11.5mm}
|
\vspace{9.0mm}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
%
|
%
|
||||||
\caption{
|
\caption{
|
||||||
|
|||||||
@@ -41,7 +41,7 @@
|
|||||||
\label{sec:sigStrengthModel}
|
\label{sec:sigStrengthModel}
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mRssi = \mTXP{} + 10 \mPLE{} + \log_{10} \frac{d}{d_0} + \mGaussNoise{}
|
\mRssi = \mTXP{} - 10 \mPLE{} + \log_{10} \frac{d}{d_0} + \mGaussNoise{}
|
||||||
\label{eq:logDistModel}
|
\label{eq:logDistModel}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@@ -79,7 +79,7 @@
|
|||||||
without costly intersection checks and thus allows for real-time use-cases running on smartphones.
|
without costly intersection checks and thus allows for real-time use-cases running on smartphones.
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mRssi = \mTXP{} + 10 \mPLE{} + \log_{10} \frac{d}{d_0} + \numFloors{} \mWAF{} + \mGaussNoise{}
|
\mRssi = \mTXP{} - 10 \mPLE{} + \log_{10} \frac{d}{d_0} + \numFloors{} \mWAF{} + \mGaussNoise{}
|
||||||
\label{eq:logNormShadowModel}
|
\label{eq:logNormShadowModel}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@@ -284,6 +284,9 @@
|
|||||||
In \refeq{eq:wifiQuality} we use the average signal strength $\bar\mRssi$ among all \docAP{}s seen within one measurement
|
In \refeq{eq:wifiQuality} we use the average signal strength $\bar\mRssi$ among all \docAP{}s seen within one measurement
|
||||||
$\mRssiVec$ and scale this value to match a region of $[0, 1]$ depending on an upper and lower bound.
|
$\mRssiVec$ and scale this value to match a region of $[0, 1]$ depending on an upper and lower bound.
|
||||||
If the returned quality is below a certain threshold, \docWIFI{} is ignored within the evaluation.
|
If the returned quality is below a certain threshold, \docWIFI{} is ignored within the evaluation.
|
||||||
|
Lower and upper bound are chosen empirically by looking at the usual range of \docWIFI{} signal strengths,
|
||||||
|
that still provide persistent data-connections to clients. The threshold is also determined empirically by examining
|
||||||
|
the results of \refeq{eq:wifiQuality} for some places with good and bad \docWIFI{} location estimations, respectively.
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\newcommand{\leMin}{l_\text{min}}
|
\newcommand{\leMin}{l_\text{min}}
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
|
||||||
@Book{Szeliski08,
|
@Book{Szeliski08,
|
||||||
author = {R. Szeliski},
|
author = {R. Szeliski},
|
||||||
title = {Computer Vision: Algorithms and Applications},
|
title = {Computer Vision: Algorithms and Applications},
|
||||||
@@ -2776,3 +2777,19 @@ year = {1967}
|
|||||||
title = {Genetic Algorithms in Search, Optimization, and Machine Learning},
|
title = {Genetic Algorithms in Search, Optimization, and Machine Learning},
|
||||||
year = 1989
|
year = 1989
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@article{Ebner-17,
|
||||||
|
author={F. Ebner and T. Fetzer and F. Deinzer and M. Grzegorzek},
|
||||||
|
journal={{IMWUT}},
|
||||||
|
title={{On Wi-Fi Optimizations for Smartphone-based Indoor Localization}},
|
||||||
|
year={2017, submitted},
|
||||||
|
}
|
||||||
|
|
||||||
|
@inproceedings{Fetzer-17,
|
||||||
|
author={T. Fetzer and F. Ebner and F. Deinzer and M. Grzegorzek},
|
||||||
|
booktitle={2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN)},
|
||||||
|
title={{Recovering from Sample Impoverishment in Context of Indoor Localisation}},
|
||||||
|
year={2017, submitted},
|
||||||
|
%pages={1-8},
|
||||||
|
%notes={},
|
||||||
|
}
|
||||||
|
|||||||
21
tex/make.sh
21
tex/make.sh
@@ -3,14 +3,17 @@
|
|||||||
#PATH=$PATH:/mnt/data/texlive/bin/x86_64-linux/
|
#PATH=$PATH:/mnt/data/texlive/bin/x86_64-linux/
|
||||||
PATH=$PATH:/mnt/vm/programme/texlive/bin/x86_64-linux/
|
PATH=$PATH:/mnt/vm/programme/texlive/bin/x86_64-linux/
|
||||||
|
|
||||||
latex bare_conf.tex
|
#latex bare_conf.tex
|
||||||
|
#bibtex bare_conf
|
||||||
|
#latex bare_conf.tex
|
||||||
|
#latex bare_conf.tex
|
||||||
|
#dvips bare_conf.dvi
|
||||||
|
#ps2pdf14 bare_conf.ps
|
||||||
|
|
||||||
|
pdflatex -shell-escape bare_conf.tex
|
||||||
bibtex bare_conf
|
bibtex bare_conf
|
||||||
latex bare_conf.tex
|
pdflatex -shell-escape bare_conf.tex
|
||||||
latex bare_conf.tex
|
pdflatex -shell-escape bare_conf.tex
|
||||||
|
|
||||||
dvips bare_conf.dvi
|
#okular bare_conf.pdf&
|
||||||
|
#atril bare_conf.pdf&
|
||||||
ps2pdf14 bare_conf.ps
|
|
||||||
|
|
||||||
okular bare_conf.pdf&
|
|
||||||
atril bare_conf.pdf&
|
|
||||||
|
|||||||
Reference in New Issue
Block a user