This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
OTHER2017/tex/chapters/experiments.tex
2017-06-29 15:37:38 +02:00

850 lines
51 KiB
TeX
Executable File

\section{Experiments}
% intro
Within our experiments we will first have a look at model optimizations to reduce the error (in \decibel)
between model predictions and real-world conditions in section \ref{sec:evalModelOpt}.
%
Hereafter, in section \ref{sec:evalWifiMeter} we examine the resulting accuracy (in \meter)
when using the optimized models for localization solely by the \docWIFI{} component without additional sensors, assumptions or filtering.
%
Finally, all models are evaluated in the context of our indoor localization system \refeq{eq:recursiveDensity},
using additional smartphone sensors and the building's floorplan in section \ref{sec:evalFiltered}.
All optimizations and evaluations took place within two adjacent buildings (4 and 2 floors, respectively)
and two connected outdoor regions (entrance and inner courtyard),
\SI{110}{\meter} x \SI{60}{\meter} in size.
Within all \docWIFI{} observations, we only consider the \docAP{}s that are permanently installed
and can be identified by their well-known MAC address.
Temporal and movable transmitters like smart TVs or smartphone hotspots are ignored as they might cause estimation errors.
The \docWIFI{} quality factor from section \ref{sec:wifiQuality} was configured with
a lower bound of \SI{-85}{\decibel m}, an upper bound of \SI{-70}{\decibel m} and a threshold of $0.25$.
%
Unfortunately, due to legal reasons, our institution does not allow depicting the actual location
of installed transmitters within the following figures.
%modell direkt fuer den gelaufenen pfad optimiert (also wirklich jede wifi messung direkt auf den ground-truth)
%der fehler wird zwar kleiner, ist aber immernoch deutlich spürbar. das spricht dafür, dass das modell einfach nicht
%gut geeignet ist.
%optimierungs input: alle 4 walks samt ground-truth
%dann kommt fuer die 4 typen [fixed, all same par, each par, each par pos]
%log probability 50 75, meter 50, 75
% -------------------------------- optimization -------------------------------- %
\subsection{Model optimization}
\label{sec:evalModelOpt}
As the signal strength prediction model is the core of the absolute positioning component
described in section \ref{sec:system}, we start with the model parameter optimization (see section \ref{sec:optimization}).
\mTXP{}, \mPLE{} and \mWAF{} will be estimated based on some reference measurements using
various optimization strategies. The results of those optimization strategies are compared
with each other and an empiric parameter choice:
\mTXP{} = \SI{-40}{\decibel{}m} @ \SI{1}{\meter}
(defined by the usual \docAPshort{} transmit power for Europe), a path loss exponent $\mPLE{} = 2.5$ and
$\mWAF{} = \SI{-8}{\decibel}$ per floor/ceiling (made of reinforced concrete)
\cite{PathLossPredictionModelsForIndoor, ElectromagneticPropagation, ANewPathLossPrediction}.
\reffig{fig:referenceMeasurements} depicts the location of the used 121 reference measurements.
Each location was scanned 30 times ($\approx$ \SI{25}{\second} scan time),
non-permanent \docAP{}s were removed, the values were grouped per physical transmitter (see section \ref{sec:vap})
and aggregated to form the average signal strength per transmitter.
\begin{figure}
\begin{subfigure}[t!]{0.48\textwidth}
\input{gfx2/all_fingerprints.tex}
\caption{
The size of each square denotes the number of permanently installed \docAPshort{}s
that were visible while scanning, and ranges between 2 and 22 with an average of 9.
}
\label{fig:referenceMeasurements}
\end{subfigure}
\enskip\enskip
\begin{subfigure}[t!]{0.48\textwidth}
\input{gfx2/model-bboxes.tex}
\caption{
Each distinct floor-color denotes a region (6 indoors, 1 outdoors) for {\em \optPerRegion{}}.
Often more than one bounding box is needed to describe the region's shape.
}
\label{fig:modelBBoxes}
\end{subfigure}
\caption{Locations of the 121 reference measurements (left) and bounding-boxes used for {\em \optPerRegion{}} (right).}
\end{figure}
% used reference measurements
%\begin{figure}
% {
% \centering
% \input{gfx/all_fingerprints.tex}
% }
% \caption{
% Locations of the 121 reference measurements.
% The size of each square denotes the number of permanently installed \docAPshort{}s
% that are visible at this location,
% and ranges between 2 and 22 with an average of 9.
% }
% \label{fig:referenceMeasurements}
%\end{figure}
% visible APs:
% cnt(121) min(2.000000) max(22.000000) range(20.000000) med(8.000000) avg(9.322314) stdDev(4.386709)
\begin{figure}
\centering
\input{gfx/compare-wifi-in-out.tex}
\caption{
Measurable signal strengths of a testing \docAPshort{} (black dot).
While the signal diminishes slowly along the corridor (wide rectangle)
the metallized windows (dashed outline) attenuate the signal by over \SI{30}{\decibel} (small rectangle).
}
\label{fig:wifiIndoorOutdoor}
\end{figure}
\reffig{fig:wifiIndoorOutdoor} depicts the to-be-expected issues by examining the signal strength
values of the reference measurements for one \docAP{}.
Even though the transmitter is only \SI{5}{\meter} away from the reference
measurement (small box), the metallized windows attenuate the signal as much as \SI{50}{\meter}
of corridor (wide rectangle). The model described in section \ref{sec:sigStrengthModel} will not be able
to match such situations due to the lack of obstacle information.
%
We will thus look at various optimization strategies and the error between
the resulting estimation model and our reference measurements:
\begin{itemize}
\item{
{\em\noOptEmpiric{}} uses the same three empiric parameters \mTXP{}, \mPLE{}, \mWAF{} for each \docAPshort{} in combination
with its position, which is well known from the floorplan.
}
\item{
{\em\optParamsAllAP{}} is the same as above, except that the three parameters are optimized
using the reference measurements (convex function). All transmitters share the same three parameters.
}
\item{
{\em\optParamsEachAP{}} optimizes the three parameters per \docAP{} instead of using the same
parameters for all. This still denotes a convex function per transmitter.
}
\item{
{\em\optParamsPosEachAP{}} does not need any prior knowledge and will optimize all six parameters
(3D position, \mTXP, \mPLE, \mWAF) based on the reference measurements (non-convex function).
}
\item{
{\em\optPerFloor{}} and {\em\optPerRegion{}} are just like {\em \optParamsPosEachAP{}} except that
there are several sub-models, each of which is optimized for one floor/region instead of the whole building.
The chosen bounding boxes and resulting sub-models are depicted in \reffig{fig:modelBBoxes}.
}
\end{itemize}
\reffig{fig:wifiModelError} shows the optimization results for all strategies which are as expected:
The estimation error is indirectly proportional to the number of optimized parameters.
However, while median- and average-errors are fine, maximal errors sometimes are relatively high.
As depicted in \reffig{fig:wifiModelErrorMax}, even with {\em \optPerRegion{}}, some locations simply do not fit the model,
and thus lead to high (local) errors.
%
Looking at the optimization results for \mTXP{}, \mPLE{} and \mWAF{} supports
this finding. While the median for those values based on all optimized transmitters is totally sane
(\SI{-42}{\decibel{}m}, \SI{2.4}, \SI{-6.0}{\decibel}), the minimum and maximum values are far beyond the physically possible range.
The same holds for the estimated transmitter position when using {\em \optParamsPosEachAP{}}: The median
distance between estimated and real position is $\sim$\SI{8}{\meter} and the maximum $\sim$\SI{27}{\meter}.
For \SI{68}{\percent} of all installed transmitters, the estimated floor-number matched the real location.
\newcommand{\tablefont}{\scriptsize}
\begin{figure}
\centering
\begin{subfigure}{0.52\textwidth}
\input{gfx2/wifi_model_error_0_95.tex}
\end{subfigure}%
\begin{subfigure}{0.47\textwidth}
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
& \tablefont 25 \% & \tablefont median & \tablefont 75 \% & \tablefont avg \\\hline
\tablefont\noOptEmpiric{} & \tablefont\SI{2.5}{\decibel} & \tablefont\SI{5.6}{\decibel} & \tablefont\SI{9.3}{\decibel} & \tablefont\SI{6.5}{\decibel} \\\hline
\tablefont\optParamsAllAP{} & \tablefont\SI{2.0}{\decibel} & \tablefont\SI{4.3}{\decibel} & \tablefont\SI{7.5}{\decibel} & \tablefont\SI{5.4}{\decibel} \\\hline
\tablefont\optParamsEachAP{} & \tablefont\SI{1.6}{\decibel} & \tablefont\SI{3.3}{\decibel} & \tablefont\SI{6.2}{\decibel} & \tablefont\SI{4.4}{\decibel} \\\hline
\tablefont\optParamsPosEachAP{} & \tablefont\SI{1.5}{\decibel} & \tablefont\SI{3.0}{\decibel} & \tablefont\SI{5.5}{\decibel} & \tablefont\SI{3.8}{\decibel} \\\hline
\tablefont\optPerFloor{} & \tablefont\SI{0.7}{\decibel} & \tablefont\SI{1.6}{\decibel} & \tablefont\SI{3.3}{\decibel} & \tablefont\SI{2.6}{\decibel} \\\hline
\tablefont\optPerRegion{} & \tablefont\SI{0.6}{\decibel} & \tablefont\SI{1.4}{\decibel} & \tablefont\SI{3.1}{\decibel} & \tablefont\SI{2.4}{\decibel} \\\hline
\end{tabular}
\vspace{8mm}
\end{subfigure}
\caption{
Cumulative error distribution for all optimization strategies. The error results from the (absolute) difference
between model predictions and real-world values for each reference measurement.
The higher the number of variable parameters, the better the model resembles real-world conditions.
}
\label{fig:wifiModelError}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.32\textwidth}
\centering
\input{gfx2/wifiMaxErrorNN_opt0.tex}
\caption{\em \noOptEmpiric{}}
\label{fig:wifiModelErrorMaxA}
\end{subfigure}
\begin{subfigure}{0.32\textwidth}
\centering
\input{gfx2/wifiMaxErrorNN_opt3.tex}
\caption{\em \optParamsPosEachAP{}}
\label{fig:wifiModelErrorMaxB}
\end{subfigure}
\begin{subfigure}{0.32\textwidth}
\centering
\input{gfx2/wifiMaxErrorNN_opt5.tex}
\caption{\em \optPerRegion{}}
\label{fig:wifiModelErrorMaxC}
\end{subfigure}
\caption{
Local maximum error between model estimation and reference measurements among all known transmitters.
While optimization is able to reduce such errors, some local maxima remain due to overadaption.
}
\label{fig:wifiModelErrorMax}
\end{figure}
%\begin{figure}
% \input{gfx/wifi_model_error_0_95.tex}
% %\input{gfx/wifi_model_error_95_100.tex}
% \caption{
% Comparison between different optimization strategies by examining the error (in \decibel) at each reference measurement.
% The higher the number of variable parameters, the better the model resembles real world conditions.
% }
% \label{fig:wifiModelError}
%\end{figure}
% statds:
%TXP: cnt(34) min(-67.698959) max(4.299183) range(71.998146) med(-41.961170) avg(-41.659286) stdDev(17.742294)
%EXP: cnt(34) min(0.932817) max(4.699000) range(3.766183) med(2.380410) avg(2.546959) stdDev(1.074687)
%WAF: cnt(34) min(-27.764957) max(5.217187) range(32.982143) med(-5.921916) avg(-7.579522) stdDev(5.840527)
%Pos: cnt(34) min(3.032438) max(26.767128) range(23.734690) med(7.342710) avg(8.571227) stdDev(4.801449)
While {\em \optPerRegion{}} is able to overcome the indoor vs. outdoor issues depicted in
\reffig{fig:wifiIndoorOutdoor}, by using a separate bounding box just for the outdoor area,
it obviously requires a profound prior knowledge to correctly select the individual regions for the sub-model.
%Such issues can only be fixed using more appropriate models that consider walls and other obstacles.
% das ist wohl zu viel
%\begin{figure}
% \centering
% \input{gfx/wifiOptApPosDifference.tex}
% \caption{zu viel, oder?}
%\end{figure}
% -------------------------------- number of fingerprints -------------------------------- %
\hspace{3mm} % HACK...
As we try to minimize the system's setup time as much as possible, we need to determine
the amount of necessary reference measurements for the optimization to produce robust model parameters.
Depending on the chosen model, and thus the number of to-be-optimized parameters, more measurements will be required.
While there was almost no difference between using 121 or 30 reference measurements for
{\em \optParamsAllAP{}} and {\em \optParamsEachAP{}}
(average error changed from \SIrange{5.3}{5.4}{\decibel} and \SIrange{4.5}{5.0}{\decibel}, respectively),
{\em \optPerRegion{}} is highly affected
(average error changed from \SIrange{2.0}{6.2}{\decibel}), as it needs at least a certain number of measurements within each
region for the optimization to converge.
\begin{figure}
\centering
\begin{subfigure}{0.49\textwidth}
\input{gfx2/wifi_model_error_num_fingerprints_method_5_0_90.tex}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\input{gfx2/wifi_model_error_num_fingerprints_method_5_90_100.tex}
\end{subfigure}
\caption{
Impact of reducing the number of reference measurements for optimizing {\em \optPerRegion{}}.
The cumulative error distribution is determined by comparing its signal strength prediction against all 121 measurements.
While using only \SI{50}{\percent} of the 121 scans has barely an impact on the error,
30 measurements (\SI{25}{\percent}) are clearly insufficient.
}
\label{fig:wifiNumFingerprints}
\end{figure}
%\begin{figure}[b]
% \input{gfx/wifi_model_error_num_fingerprints_method_5_0_90.tex}
% \input{gfx/wifi_model_error_num_fingerprints_method_5_90_100.tex}
% \caption{%
% Impact of reducing the number of reference measurements during optimization on {\em \optPerRegion{}}.
% The model's cumulative error distribution is determined by comparing the its signal strength prediction against all 121 measurements.
% While using only \SI{50}{\percent} of the 121 scans has barely an impact on the error,
% 30 measurements (\SI{25}{\percent}) are clearly insufficient.
% }%
% \label{fig:wifiNumFingerprints}%
%\end{figure}
\reffig{fig:wifiNumFingerprints} depicts the impact of reducing the number of reference measurements
during the optimization process for the {\em \optPerRegion{}} strategy.
The error is determined by using the (absolute) difference between expected signal strength and
the optimized model's corresponding prediction for all of the 121 reference measurements.
%
Considering only 60 of the 121 scans (\SI{50}{\percent}) yields a slightly increasing model error but still provides good results.
While using only \SI{25}{\percent} of the reference measurements increases the error rapidly,
for \SI{75}{\percent} of the 121 considered error-values, the estimation is still better than using just empiric values without optimization.
%The extremely large outlier depicted in the right half of figure \ref{fig:wifiNumFingerprints} (red line) relates to one
%sub-model with only one assigned reference measurement, where the optimized result is unable to predict values
%for the rest of the sub-model's region. \todo{versteht man das?}
Additionally we examined the impact of skipping reference measurements for difficult locations,
like staircases surrounded by steel-enforced concrete. While this slightly decreases the
estimation error for all other positions (hallway, etc.) as expected, the error within the skipped locations is dramatically
increasing (see right half of \reffig{fig:wifiNumFingerprints}). It is thus highly recommended
to also perform reference measurements for locations, that are expected to strongly deviate (signal strength)
from their surroundings.
%leaving out fingerprints for model 1
% 25%: cnt(1128) min(0.007439) max(27.804710) range(27.797272) med(4.404236) avg(5.449720) stdDev(4.470373)
% 50%: cnt(1128) min(0.006027) max(27.732193) range(27.726166) med(4.367859) avg(5.437861) stdDev(4.475426)
% 100%: cnt(1128) min(0.000282) max(27.705376) range(27.705093) med(4.272881) avg(5.411202) stdDev(4.493495)
% noStair%: cnt(1128) min(0.000801) max(27.209221) range(27.208420) med(4.333328) avg(5.459918) stdDev(4.459484)
%leaving out fingerprints for model 2
% 25%: cnt(1128) min(0.000320) max(29.752560) range(29.752239) med(3.837357) avg(5.027578) stdDev(4.617191)
% 50%: cnt(1128) min(0.015305) max(34.152130) range(34.136826) med(3.627090) avg(4.635868) stdDev(4.135866)
% 100%: cnt(1128) min(0.000488) max(25.687740) range(25.687252) med(3.319756) avg(4.441193) stdDev(3.912525)
% noStair%: cnt(1128) min(0.017693) max(25.687740) range(25.670048) med(3.304321) avg(4.507620) stdDev(3.957071)
%leaving out fingerprints for model 3
% 25%: cnt(1128) min(0.003242) max(39.470978) range(39.467735) med(3.371758) avg(4.977330) stdDev(5.213937)
% 50%: cnt(1128) min(0.002808) max(30.113415) range(30.110607) med(2.941238) avg(4.015042) stdDev(3.696969)
% 100%: cnt(1128) min(0.000557) max(16.813850) range(16.813293) med(3.056915) avg(3.813013) stdDev(3.062580)
% noStair%: cnt(1128) min(0.002518) max(30.370636) range(30.368118) med(3.016884) avg(3.983101) stdDev(3.508327)
%leaving out fingerprints for model 4
% 25%: cnt(1128) min(0.000000) max(62.233345) range(62.233345) med(2.502831) avg(5.432897) stdDev(8.664582)
% 50%: cnt(1128) min(0.000000) max(56.843803) range(56.843803) med(1.543137) avg(2.937506) stdDev(4.417061)
% 100%: cnt(1128) min(0.000046) max(33.175812) range(33.175766) med(1.537933) avg(2.441976) stdDev(2.793499)
% noStair%: cnt(1128) min(0.000000) max(62.233345) range(62.233345) med(1.493668) avg(2.744918) stdDev(4.428092)
%leaving out fingerprints for model 5
% 25%: cnt(1128) min(0.000000) max(62.620842) range(62.620842) med(2.140709) avg(6.257105) stdDev(11.638572)
% 50%: cnt(1128) min(0.000000) max(57.371948) range(57.371948) med(1.357452) avg(2.982217) stdDev(5.877471)
% 100%: cnt(1128) min(0.000000) max(14.837151) range(14.837151) med(1.251358) avg(1.989277) stdDev(2.189072)
% noStair%: cnt(1128) min(0.000000) max(62.233345) range(62.233345) med(1.143669) avg(2.316189) stdDev(4.164822)
% -------------------------------- wifi walk error -------------------------------- %
\subsection{\docWIFI{} location estimation error}
\label{sec:evalWifiMeter}
Having optimized several signal strength prediction models, we can now examine the resulting localization
accuracy (in \meter) for each. For now, this will just cover the \docWIFI{} component itself.
The impact of fusing additional sensors and a adding prior knowledge provided by a transition model will be evaluated later.
%Using the optimized model setups and the measurements $\mRssiVec$ determined by scanning for nearby \docAPshort{}s,
%we can directly perform a location estimation by rewriting \refeq{eq:wifiProb}:
%For each of the discussed optimization strategies we can now determine the resulting localization accuracy.
The position $\mPosVec{}$ within the building that best fits some \docWIFI{} signal strength measurements $\mRssiVec$ received by the smartphone
is the one that maximizes $p(\mPosVec \mid \mRssiVec)$.
Omitting prior knowledge and normalization, this can be rewritten as:
\begin{equation}
p(\mPosVec \mid \mRssiVec) =
\frac{p(\mRssiVec \mid \mPosVec) p(\mPosVec)}{p(\mRssiVec)}
\propto p(\mRssiVec \mid \mPosVec),\enskip
p(\mPosVec) = p(\mRssiVec) = \text{const}
.
\label{eq:wifiBayes}
\end{equation}
Following \refeq{eq:wifiObs} and \refeq{eq:wifiProb}, the best
location $\mPosVec^*$ given $\mRssiVec$ is the one that satisfies
\begin{equation}
\mPosVec^* = \argmax_{\mPosVec}
\prod_{\mRssi_{i} \in \mRssiVec{}}
\mathcal{N}(\mRssi_i \mid \mu_{i,\mPosVec}, \sigma^2)
\enskip.
\label{eq:bestWiFiPos}
\end{equation}
In \refeq{eq:bestWiFiPos} $\mu_{i,\mPosVec}$ is the signal strength for \docAP{} $i$,
installed at location $\mPosVec$, returned from the to-be-examined prediction model.
For all comparisons, we use a constant uncertainty of $\sigma = \SI{8}{\decibel}$,
which is an empirical choice based on prior experiments.
The quality of the estimated location is determined by using the Euclidean distance between estimation
$\mPosVec^*$ and the pedestrian's ground truth position at the time the scan $\mRssiVec$
has been received.
We therefore conducted 13 walks on 5 different paths within our building,
each of which is defined by connecting marker points at well known positions
(see \reffig{fig:allWalks}).
Whenever the pedestrian reached such a marker, the current time was recorded.
Due to constant walking speeds, the ground-truth for any timestamp can be approximated
using linear interpolation between adjacent markers.
% walked paths
\begin{figure}
\centering
\input{gfx2/all_walks.tex}
\caption{
Overview of all conducted paths, each starting at the denoted rectangle.
Outdoor areas are marked in green.
The length of the paths is as follows:
path 1: \SI{207}{\meter}, path 2: \SI{138}{\meter}, path 3: \SI{86}{\meter}, path 4: \SI{140}{\meter},
and path 5: \SI{97}{\meter}.
}
\label{fig:allWalks}
\end{figure}
\begin{figure}
\centering
% error gfx
\begin{subfigure}{0.52\textwidth}
\centering
\input{gfx2/modelPerformance_meter.tex}
\end{subfigure}
% table
%5.98767 9.23025 14.4272 11.9649
%6.53764 9.01424 12.8797 12.0121
%6.85665 9.82203 13.8528 12.9988
%5.35629 8.5921 14.8037 11.9996
%4.30191 6.91534 14.0746 11.948
%4.26189 6.35975 11.5646 10.7466
\begin{subfigure}{0.47\textwidth}
\footnotesize
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
& \tablefont\SI{25}{\percent} & \tablefont median & \tablefont\SI{75}{\percent} & \tablefont avg \\\hline
\tablefont\noOptEmpiric{} & \tablefont\SI{6.0}{\meter} & \tablefont\SI{9.2}{\meter} & \tablefont\SI{14.4}{\meter} & \tablefont\SI{11.9}{\meter} \\\hline
\tablefont\optParamsAllAP{} & \tablefont\SI{6.5}{\meter} & \tablefont\SI{9.0}{\meter} & \tablefont\SI{12.8}{\meter} & \tablefont\SI{12.0}{\meter} \\\hline
\tablefont\optParamsEachAP{} & \tablefont\SI{6.8}{\meter} & \tablefont\SI{9.8}{\meter} & \tablefont\SI{13.8}{\meter} & \tablefont\SI{13.0}{\meter} \\\hline
\tablefont\optParamsPosEachAP{} & \tablefont\SI{5.4}{\meter} & \tablefont\SI{8.6}{\meter} & \tablefont\SI{14.8}{\meter} & \tablefont\SI{12.0}{\meter} \\\hline
\tablefont\optPerFloor{} & \tablefont\SI{4.3}{\meter} & \tablefont\SI{6.9}{\meter} & \tablefont\SI{14.0}{\meter} & \tablefont\SI{11.9}{\meter} \\\hline
\tablefont\optPerRegion{} & \tablefont\SI{4.2}{\meter} & \tablefont\SI{6.5}{\meter} & \tablefont\SI{11.6}{\meter} & \tablefont\SI{10.7}{\meter} \\\hline
\end{tabular}
\vspace{7mm}
\end{subfigure}
\caption {
Cumulative error distribution between walked ground truth and \docWIFI{}-only location estimation using \refeq{eq:bestWiFiPos}.
%depending on the signal strength prediction model.
All models suffer from several (extremely) high errors that relate to bad \docWIFI{}
coverage e.g. within outdoor areas (see \reffig{fig:wifiIndoorOutdoor}). This negatively affects the average and 75th
percentile. The strategies {\em \optParamsAllAP{}} and {\em \optParamsEachAP{}} sometimes suffered from overadaption,
indicated by increased error values for the 25th percentile.
}
\label{fig:modelPerformance}
\end{figure}
%To estimate the overall performance of the prediction models, we compare the position estimation
%for each \docWIFI{} measurement within the recorded paths (3756 \docAPshort{} scans in total)
%against the corresponding ground-truth, which indicates the absolute 3D error in meter.
The position estimation for each \docWIFI{} measurement within the recorded walks (3756 scans in total)
is compared against its corresponding ground-truth, indicating the 3D distance error.
The resulting cumulative error distribution can be seen in \reffig{fig:modelPerformance}.
The quality of the location estimation directly scales with the quality of the signal strength prediction model.
However, as discussed earlier, the maximal estimation error might increase for some setups.
%
Either due to multimodalities, where more than one area matches the recent
\docWIFI{} observation, or optimization yielded an overadaption where the average signal
strength prediction error is small, but the maximum error is dramatically increased for some regions.
% -------------------------------- plots indicating walk issues -------------------------------- %
\begin{figure}
\centering
\input{gfx2/wifiMultimodality.tex}
\caption{
\docWIFI{}-only location probability for three distinct scans where
higher color intensities denote a higher likelihood for \refeq{eq:bestWiFiPos}.
The first scan (left, green) depicts a best-case scenario, where the region around the ground truth (black rectangle) is highly probable.
Often, other locations are just as likely as the ground truth (2nd scan, blue),
or the location with the highest probability is far from the actual ground truth (3rd scan, right, red).
}
\label{fig:wifiMultimodality}
\end{figure}
\reffig{fig:wifiMultimodality} depicts aforementioned issues of multimodal (blue) or wrong (red) location
estimations. Filtering (\refeq{eq:recursiveDensity}) thus is highly recommended, as minor errors are compensated
using other sensors or a movement model that prevents the estimation from leaping within the building.
However, if wrong sensor values are observed for longer time periods, even filtering will produce erroneous
results and might get stranded (density is trapped e.g. within a room),
as the movement model is constrained by the actual floorplan.
% -------------------------------- other distributions, unseen APs, etc -------------------------------- %
\hspace{3mm}%hack
To reduce the amount of such misclassifications, where other locations within the building are
as likely as the pedestrian's actual location, we examined various approaches.
Unfortunately, most of which did not provide a viable enhancement under all conditions for the performed walks.
%\commentByFrank{ja, eig gehoert das vor in die theorie, aber da es so kurz ist und vorne immer die ueberleitung kaputt macht
%oder anderen dingen vorgreifen wuerde, steht es hier}
The misclassification-rate is determined by counting the amount of (random) locations within
the building that produce a similar probability \refeq{eq:wifiProb} compared to the actual ground-truth
position.
One possibility to dissolve such an equal \docWIFI{}-likelihood between two (or more) locations is,
to not only consider the \docAPshort{}s seen by the smartphone, but also the \docAPshort{}s not seen
by the smartphone. This additional information can be used to rule out all locations where this unseen
\docAP{} should have be received (high signal strength from the prediction model).
% There might be an \docAP{} that should be visible at the other locations. However,
%as the Smartphone did not see this \docAPshort{} the other location can be ruled out.
While this works in theory, evaluations revealed several issues:
\begin{itemize}
\item{
There is a chance that even a nearby \docAPshort{} is unseen during a scan due to packet collisions or
temporal effects within the surrounding. It thus might make sense to opt-out other locations
only, if at least two \docAPshort{}s are missing. On the other hand, this obviously demands for (at least)
two \docAPshort{}s to actually be different between the two locations, and requires a lot of permanently
installed transmitters to work out.
}
\item{
Furthermore, this requires the signal strength prediction model to be fairly accurate. Within our testing
walks, several places are surrounded by concrete walls, which cause a harsh, local drop in signal strength.
The models used within this work will not accurately predict the signal strength for such locations.
%%Including \docAPshort{}s unseen by the Smartphone thus often increases the estimation error instead
%%of fixing the multimodality.
}
\end{itemize}
To sum up, while some situations e.g. outdoors could be improved,
many other situations are deteriorated, especially when some transmitters are (temporarily)
attenuated by ambient conditions like concrete walls.
We therefore examined variations of the probability calculation from \refeq{eq:wifiProb}.
Contrary to the results shown in \cite{PotentialRisks}, removing weak \docAPshort{}s from $\mRssiVec{}$
did not work out. While some estimations were improved, the overall error increased
for our walks, as there are many situations where only a handful \docAP{}s can be seen.
Removing this (valid) information will increase the error for such situations.
However, incorporating additional knowledge provided by virtual \docAP{}s (see section \ref{sec:vap}) mitigated this issues.
If e.g. only one out of six virtual networks is seen, this observation is likely to be erroneous, no matter
what the corresponding signal strength indicates.
As those occasions are relatively seldom, the impact is a minor one.
Nevertheless, depending on the used prediction model, a handful of major estimation errors were prevented.
Additionally, among all examined models and walks, there was none where this approached lead to increased error values.
%This approach improved the location estimation especially
%for areas where a transmitter was hardly seen within the reference measurements and its optimization is thus
%expected to be inaccurate.
Using a smaller $\sigma$ or a stricter exponential distribution for the model vs. scan comparison in \refeq{eq:wifiProb}
had a positive effect on the misclassification error for some of the walks, but also slightly increased the overall estimation error.
%(see figure \ref{fig:normalVsExponential}).
Due to those negative side-effects, the final localization system (\refeq{eq:recursiveDensity}) is unlikely to profit from such changes.
%\todo{ueberleitung OK?}
% braucht zu viel platz
%\begin{figure}
% \input{gfx/wifiCompare_normalVsExp_cross.tex}
% \input{gfx/wifiCompare_normalVsExp_meter.tex}
% \caption{
% Comparison between normal- (black) and exponential-distribution (red) for \refeq{eq:wifiProb}.
% While misclassifications are slightly reduced (upper chart),
% the median error between ground-truth and estimation (lower chart) increases by
% about \SI{1}{\meter}.
% }
% \label{fig:normalVsExponential}
%\end{figure}
%\todo{
% erwähnen??? sigma je nach signalstärke anpassen bringt leider auch nichts. wenn man das aber macht,
% dann: fuer grosse signalstaerken ein grosses sigma! andersrum gehts nach hinten los!
%}
% -------------------------------- final system -------------------------------- %
\subsection{Filtered location estimation error}
\label{sec:evalFiltered}
After examining the \docWIFI{} component on its own, we will now analyze the impact of previously discussed model
optimizations on our smartphone-based indoor localization system described in section \ref{sec:system}, based on
\refeq{eq:recursiveDensity}.
Due to transition constraints from the building's floorplan, we expect the
posterior density to often get stuck when the \docWIFI{} component provides erroneous estimations
due to bad signal strength predictions or observations (see \reffig{fig:wifiMultimodality}):
A pedestrian walks along a hallway, but bad model values indicate that his most likely position
is within a room right next to the hallway.
If the density (described by the particles) is dragged (completely) into this room,
the IMU indicates no change in direction (pedestrian walks straight),
and the room has only one single door, the density is trapped within this room.
%
While such problems can often be solved by simply using more particles to describe the posterior,
smartphone use-cases are usually performance- and battery limited.
As particle filtering from \refeq{eq:recursiveDensity} is a random process with varying output,
we calculated each combination of the {\em 13 walks and six optimization strategies},
25 times, using 5000, 7500 and 10000 particles resulting in 75 runs per walk, 975 per strategy and 5850 in total.
%
\reffig{fig:overallSystemError} depicts the cumulative error distribution per optimization strategy,
resulting from all executions for each conducted walk.
While most values represent the expected results (more optimization yields better results),
the values for {\em \optParamsAllAP{}} and {\em \optPerRegion{}} do not.
The increased error for both strategies can be explained by having a closer look at the walked
paths and relates to exceptional regions like outdoors. In both cases there is some sort of model overadaption.
%
As mentioned earlier, a single, simple model is unable to accurately estimate the signal strength for both
buildings and adjacent outdoor regions. Due to metallized glass (see \reffig{fig:wifiIndoorOutdoor}), in- and
outdoor conditions strongly differ. The model's optimization
builds a compromise among all locations and renders indoor places unnecessarily bad: Previous
discussions showed that outdoor regions do not provide viable \docWIFI{} signals at all. It thus makes sense
to just omit badly covered regions from the model optimization process, as the filter's evaluation will simply
omit \docWIFI{} when the quality is insufficient (see section \ref{sec:wifiQuality}).
%
While {\em \optPerRegion{}} does not suffer from such issues due to separated optimization regions for in- and outdoor,
its increased error relates to movements between such adjacent regions, as there often is a huge model difference.
While this difference is perfectly fine, as it also exists within real-world conditions,
the filtering process suffers at such model-boundaries:
The model prevents the particles from moving e.g. from inside the building towards outdoor regions, as the
outdoor-model does not yet match. Due to sensor delays and issues with the absolute heading near in- and outdoor boundaries
(metal-framed doors) the error is slightly increased and retained for some time until the density stabilizes itself.
Especially for {\em path 1}, the particle-filter often got stuck within the upper right outdoor area between both buildings
(see \reffig{fig:final}). Using the empirical parameters, \SI{40}{\percent} of all runs for this path got stuck at this location.
{\em \optParamsAllAP{}} already reduced the risk to \SI{20}{\percent} and all other optimization strategies did not get stuck at all.
Increasing the number of particles from 5000 to 10000 indicated only a minor increase in accuracy and slightly decreased
the risk of getting stuck. For battery- and performance-constrained use-cases on the smartphone 5000 thus seems to be sufficient.
Issues while moving from the inside out or vice versa, should also be mitigated by incorporating the smartphone's GPS sensor.
However, within our testing walks, the GPS did rarely provide accurate measurements, as the outdoor-time often was too short
for the sensor to receive a valid fix. The accuracy indicated by the GPS usually was $\ge \SI{50}{\meter}$ and thus
did not provide useful information.
However, comparing the error results within \reffig{fig:modelPerformance} and \reffig{fig:overallSystemError}, one can
denote the positive impact of fusing multiple sensors with a transition model based on the building's
actual floorplan. Even within outdoor regions and staircases that suffer from erroneous \docWIFI{} estimations due to a bad
signal strength coverage. The quality metric described in section \ref{sec:wifiQuality} was able to detect such
cases and \docWIFI{} was temporarily ignored. The remaining sensors, like the IMU, and the floorplan were able to
keep the pedestrian's heading until the signal quality reached sane levels again.
\begin{figure}
\centering
\begin{subfigure}{0.49\textwidth}
\input{gfx2/overall-system-error.tex}
\end{subfigure}
%
\begin{subfigure}{0.50\textwidth}
%OVERALL:2.62158 5.13701 11.1822 9.00261
%OVERALL:2.92524 6.00231 12.4425 10.6983
%OVERALL:1.98318 3.99259 7.92429 5.81281
%OVERALL:1.8647 3.86918 7.10482 5.62054
%OVERALL:1.60847 3.15739 6.13963 4.79148
%OVERALL:1.63617 3.34828 6.5379 5.12281
\footnotesize
\centering
\setlength{\tabcolsep}{0.25em} % for the horizontal padding
\begin{tabular}{|l|c|c|c|c|c|}
\hline
& \tablefont\SI{25}{\percent} & \tablefont median & \tablefont\SI{75}{\percent} & \tablefont avg & \tablefont stuck \\\hline
\tablefont\noOptEmpiric{} & \tablefont\SI{2.6}{\meter} & \tablefont\SI{5.1}{\meter} & \tablefont\SI{11.2}{\meter} & \tablefont\SI{9.0}{\meter} & \tablefont\SI{22}{\percent} \\\hline
\tablefont\optParamsAllAP{} & \tablefont\SI{2.9}{\meter} & \tablefont\SI{6.0}{\meter} & \tablefont\SI{12.4}{\meter} & \tablefont\SI{10.7}{\meter} & \tablefont\SI{15}{\percent} \\\hline
\tablefont\optParamsEachAP{} & \tablefont\SI{1.9}{\meter} & \tablefont\SI{4.0}{\meter} & \tablefont\SI{7.9}{\meter} & \tablefont\SI{5.8}{\meter} & \tablefont\SI{5}{\percent} \\\hline
\tablefont\optParamsPosEachAP{} & \tablefont\SI{1.9}{\meter} & \tablefont\SI{3.9}{\meter} & \tablefont\SI{7.1}{\meter} & \tablefont\SI{5.6}{\meter} & \tablefont\SI{5}{\percent} \\\hline
\tablefont\optPerFloor{} & \tablefont\SI{1.6}{\meter} & \tablefont\SI{3.2}{\meter} & \tablefont\SI{6.1}{\meter} & \tablefont\SI{4.8}{\meter} & \tablefont\SI{4}{\percent} \\\hline
\tablefont\optPerRegion{} & \tablefont\SI{1.6}{\meter} & \tablefont\SI{3.3}{\meter} & \tablefont\SI{6.5}{\meter} & \tablefont\SI{5.0}{\meter} & \tablefont\SI{4}{\percent} \\\hline
\end{tabular}
\setlength{\tabcolsep}{1.0em} % reset the horizontal padding
\vspace{9.0mm}
\end{subfigure}
%
\caption{
Cumulative error distribution for each model when used within the final localization system from \refeq{eq:recursiveDensity}.
Especially {\em \optParamsAllAP{}} suffered from overadaption and thus provided worse results. Compared to just using \docWIFI{}
(\reffig{fig:modelPerformance}) the error difference between the models now is much more distinct.
Starting from {\em \optParamsEachAP{}} the system rarely gets stuck and provides a viable accuracy.
}
\label{fig:overallSystemError}
\end{figure}
Finally, \reffig{fig:final} depicts all of the previously discussed improvements and issues by examining {\em path 1}
from \reffig{fig:allWalks}.
For better visibility within path- and error-plots, the unfiltered estimations were smoothed, using a moving average of
ten consecutive values ($\approx \SI{7}{\second}$). As can be seen, optimizing the \docWIFI{} model yields an improvement
for indoor situations, as the estimation is closer to the ground truth, and the starting position (indicated by the rectangle)
is more accurate.
For the depicted walk, the error outdoors is increased, as the likeliest position is shifted. Adding
the particle filter (\refeq{eq:recursiveDensity}) on top of the optimized model, fixes this issue. What cannot be seen
within the figure: while the likeliest position is deteriorated by the optimization, the likelihood of the region around
the pedestrian's ground truth is actually increased. Thus, combined with transition model and other sensors, the system
is able to stay right on track. The filter fails for {\em \noOptEmpiric}, as one \docAPshort{} near the entry of the second
building prevents the density from entering, due to a very high difference between model and real-world conditions.
\begin{figure}
%\begin{subfigure}{0.49\textwidth}
% \centering
% \input{gfx/final3D.tex}
%\end{subfigure}
%\begin{subfigure}{0.49\textwidth}
% \centering
% \input{gfx/final2D.tex}
%\end{subfigure}
\begin{subfigure}{0.99\textwidth}
\centering
\input{gfx/final3D.tex}
\end{subfigure}
\\\vspace{4mm}
\begin{subfigure}{0.48\textwidth}
\centering
\input{gfx/final2D-a.tex}
\end{subfigure}
\begin{subfigure}{0.48\textwidth}
\centering
\input{gfx/final2D-b.tex}
\end{subfigure}
\\
\begin{subfigure}{0.99\textwidth}
\input{gfx/final-error.tex}
\end{subfigure}
\caption{
Detailed analysis of the \docWIFI{} error for {\em \noOptEmpiric{}} (unoptimized) and {\em \optPerFloor{}}
using {\em path 1} (see \reffig{fig:allWalks}). While optimization reduces the error indoors, the error outdoors
is increased (bold line). A particle filter (PF, \refeq{eq:recursiveDensity}) on top of the optimized model
takes \SI{5}{\second} to initialize the starting-position (rectangles), fixes the outdoor-issue and
improves indoor situations. A filter on top of {\em \noOptEmpiric{}} got stuck right before
entering the 2nd building. Both, the filtered and unfiltered version of {\em \noOptEmpiric{}}
are dragged into the 2nd floor in the middle of the walk.
}
\label{fig:final}
\end{figure}
% results
% 5000 particles
%
% model empiric
% |path1a(5.76715@100%) |path1b(3.73881@4%) |toni-all-1a(6.1505@76%) |toni-all-1b(4.60639@40%) |path2a(7.35355@28%) |path2b(7.4316@0%) |toni-all-2a(10.7068@44%) |toni-all-2b(7.4323@28%) |toni-inst-1b(4.60685@0%) |toni-inst-2a(3.83979@0%) |toni-inst-2b(3.98889@0%) |toni-inst-3a(4.70925@0%) |toni-inst-3b(4.40971@0%) | OVERALL:(5.12463@24%)
% model opt 1
% |path1a(17.6635@56%) |path1b(9.41882@24%)|toni-all-1a(4.06972@0%) |toni-all-1b(3.83157@0%) |path2a(6.92405@16%) |path2b(8.6365@16%) |toni-all-2a(11.6348@48%) |toni-all-2b(12.029@76%) |toni-inst-1b(5.07535@0%) |toni-inst-2a(4.45517@0%) |toni-inst-2b(3.99025@0%) |toni-inst-3a(8.28201@8%) |toni-inst-3b(5.57021@20%) | OVERALL:(6.57212@20%)
% model opt 2
% |path1a(2.01602@0%) |path1b(2.90237@0%) |toni-all-1a(2.80293@0%) |toni-all-1b(1.99745@0%) |path2a(5.39013@4%) |path2b(8.13855@0%) |toni-all-2a(9.7462@40%) |toni-all-2b(9.28677@44%) |toni-inst-1b(4.5305@0%) |toni-inst-2a(4.28726@0%) |toni-inst-2b(4.03041@0%) |toni-inst-3a(4.26278@4%) |toni-inst-3b(5.63394@24%) | OVERALL:(4.07822@8%)
% model opt 3
% |path1a(1.74623@0%) |path1b(2.61609@0%) |toni-all-1a(2.49372@0%) |toni-all-1b(1.90326@0%) |path2a(5.07957@4%) |path2b(7.73973@8%) |toni-all-2a(10.2793@48%) |toni-all-2b(6.48194@16%) |toni-inst-1b(5.73752@4%) |toni-inst-2a(3.76165@0%) |toni-inst-2b(3.51509@0%) |toni-inst-3a(6.06681@16%) |toni-inst-3b(5.27748@24%) | OVERALL:(3.94786@9%)
% model per floor
% |path1a(1.76139@0%) |path1b(2.22047@0%) |toni-all-1a(2.10094@0%) |toni-all-1b(1.62287@0%) |path2a(5.50715@16%) |path2b(7.1257@0%) |toni-all-2a(10.5138@48%) |toni-all-2b(6.72044@20%) |toni-inst-1b(3.77885@0%) |toni-inst-2a(2.23669@0%) |toni-inst-2b(3.20604@0%) |toni-inst-3a(2.46891@0%) |toni-inst-3b(2.73366@0%) | OVERALL:(3.22315@6%)
% model per bbox
% |path1a(1.80033@0%) |path1b(2.32875@0%) |toni-all-1a(2.17754@0%) |toni-all-1b(1.6697@0%) |path2a(6.38772@16%) |path2b(5.84004@0%) |toni-all-2a(9.67635@36%) |toni-all-2b(8.3282@24%) |toni-inst-1b(4.11891@0%) |toni-inst-2a(2.64016@0%) |toni-inst-2b(3.36297@0%) |toni-inst-3a(2.15568@0%) |toni-inst-3b(2.98047@0%) | OVERALL:(3.40679@5%)
%
%
% 7500 particles
% model empiric
% |path1a(8.23256@100%) |path1b(3.91532@0%) |toni-all-1a(7.0666@80%) |toni-all-1b(5.35225@48%) |path2a(6.5708@16%) |path2b(7.53023@0%) |toni-all-2a(10.6246@40%) |toni-all-2b(6.63087@4%) |toni-inst-1b(4.76934@0%) |toni-inst-2a(3.82903@0%) |toni-inst-2b(4.00339@0%) |toni-inst-3a(3.85417@4%) |toni-inst-3b(4.47613@0%) | OVERALL:(5.23337@22%)
% model opt 1
% |path1a(10.3959@36%) |path1b(8.37674@16%)|toni-all-1a(3.96164@0%) |toni-all-1b(4.24675@4%) |path2a(6.02912@8%) |path2b(8.1804@0%) |toni-all-2a(12.4277@48%) |toni-all-2b(10.4748@56%) |toni-inst-1b(5.49874@4%) |toni-inst-2a(4.09279@0%) |toni-inst-2b(3.87762@0%) |toni-inst-3a(5.10456@0%) |toni-inst-3b(4.52029@4%) | OVERALL:(5.97832@13%)
% model opt 2
% |path1a(2.04657@0%) |path1b(2.82853@0%) |toni-all-1a(2.93467@0%) |toni-all-1b(1.98463@0%) |path2a(4.66513@8%) |path2b(8.19959@0%) |toni-all-2a(8.34246@12%) |toni-all-2b(7.2456@12%) |toni-inst-1b(4.72651@0%) |toni-inst-2a(4.00208@0%) |toni-inst-2b(3.94811@0%) |toni-inst-3a(3.74498@0%) |toni-inst-3b(5.15519@16%) | OVERALL:(3.99594@3%)
% model opt 3
% |path1a(1.82148@0%) |path1b(2.7664@0%) |toni-all-1a(2.46073@0%) |toni-all-1b(1.93273@0%) |path2a(5.15394@4%) |path2b(7.53562@0%) |toni-all-2a(8.43582@20%) |toni-all-2b(6.01557@8%) |toni-inst-1b(5.47576@0%) |toni-inst-2a(3.44451@0%) |toni-inst-2b(3.6069@0%) |toni-inst-3a(4.84921@4%) |toni-inst-3b(5.62456@8%) | OVERALL:(3.88747@3%)
% model per floor
% |path1a(1.79881@0%) |path1b(2.1456@0%) |toni-all-1a(2.17125@0%) |toni-all-1b(1.63247@0%) |path2a(5.37789@8%) |path2b(6.79701@0%) |toni-all-2a(9.29407@32%) |toni-all-2b(6.28292@8%) |toni-inst-1b(3.79967@0%) |toni-inst-2a(2.24007@0%) |toni-inst-2b(3.15768@0%) |toni-inst-3a(2.17671@0%) |toni-inst-3b(2.83445@0%) | OVERALL:(3.16559@3%)
% model per bbox
% |path1a(1.77473@0%) |path1b(2.2609@0%) |toni-all-1a(2.06814@4%) |toni-all-1b(1.6841@0%) |path2a(6.48652@4%) |path2b(5.79359@0%) |toni-all-2a(9.40116@24%) |toni-all-2b(7.21382@16%) |toni-inst-1b(3.82829@0%) |toni-inst-2a(2.47975@0%) |toni-inst-2b(3.35265@0%) |toni-inst-3a(2.20058@0%) |toni-inst-3b(2.86407@0%) | OVERALL:(3.3381@3%)
%
% 10000 particles
% model empiric
% |path1a(6.43082@100%) |path1b(3.58544@0%) |toni-all-1a(6.92747@76%) |toni-all-1b(5.81139@72%) |path2a(5.12683@4%) |path2b(7.91078@0%) |toni-all-2a(10.3958@16%) |toni-all-2b(7.09186@8%) |toni-inst-1b(4.45815@0%) |toni-inst-2a(4.077@0%) |toni-inst-2b(4.02524@0%) |toni-inst-3a(3.35953@0%) |toni-inst-3b(4.40318@0%) | OVERALL:(5.06224@21%)
% model opt 1
% |path1a(6.47262@16%) |path1b(6.04852@12%)|toni-all-1a(3.97276@0%) |toni-all-1b(3.62778@0%) |path2a(5.48776@8%) |path2b(8.21965@0%) |toni-all-2a(11.3175@44%) |toni-all-2b(11.4499@60%) |toni-inst-1b(5.19827@0%) |toni-inst-2a(4.1351@0%) |toni-inst-2b(3.90291@0%) |toni-inst-3a(4.58096@8%) |toni-inst-3b(4.62723@4%) | OVERALL:(5.47998@11%)
% model opt 2
% |path1a(2.15007@0%) |path1b(2.80157@0%) |toni-all-1a(2.70849@0%) |toni-all-1b(1.8937@0%) |path2a(4.13743@0%) |path2b(8.20317@0%) |toni-all-2a(7.86448@12%) |toni-all-2b(7.41533@12%) |toni-inst-1b(4.54459@0%) |toni-inst-2a(4.17614@0%) |toni-inst-2b(3.90311@0%) |toni-inst-3a(3.846@4%) |toni-inst-3b(4.84665@8%) | OVERALL:(3.89883@2%)
% model opt 3
% |path1a(1.79085@0%) |path1b(2.64892@0%) |toni-all-1a(2.33085@0%) |toni-all-1b(1.9533@0%) |path2a(4.40712@4%) |path2b(7.815@0%) |toni-all-2a(8.97738@28%) |toni-all-2b(5.87188@0%) |toni-inst-1b(4.93315@0%) |toni-inst-2a(3.53349@0%) |toni-inst-2b(3.60056@0%) |toni-inst-3a(5.57379@8%) |toni-inst-3b(4.49996@4%) | OVERALL:(3.78756@3%)
% model per floor
% |path1a(1.7498@0%) |path1b(2.11555@0%) |toni-all-1a(1.89388@0%) |toni-all-1b(1.61323@0%) |path2a(5.06884@0%) |path2b(6.7157@0%) |toni-all-2a(9.54228@36%) |toni-all-2b(6.7699@24%) |toni-inst-1b(3.84709@0%) |toni-inst-2a(2.2789@0%) |toni-inst-2b(3.17625@0%) |toni-inst-3a(2.13417@0%) |toni-inst-3b(2.59095@0%) | OVERALL:(3.08506@4%)
% model per bbox
% |path1a(1.73406@0%) |path1b(2.30577@0%) |toni-all-1a(2.01979@0%) |toni-all-1b(1.64225@0%) |path2a(6.30713@12%) |path2b(6.02961@0%) |toni-all-2a(9.70206@20%) |toni-all-2b(6.55847@8%) |toni-inst-1b(3.93324@0%) |toni-inst-2a(2.459@0%) |toni-inst-2b(3.3522@0%) |toni-inst-3a(2.13783@0%) |toni-inst-3b(2.63231@0%) | OVERALL:(3.29408@3%)
% all combined
% model empiric
% |path1a(6.72661@100%) |path1b(3.74113@1%) |toni-all-1a(6.69696@77%) |toni-all-1b(5.26661@53%) |path2a(6.11286@16%) |path2b(7.63154@0%) |toni-all-2a(10.5765@33%) |toni-all-2b(7.0506@13%) |toni-inst-1b(4.61087@0%) |toni-inst-2a(3.91375@0%) |toni-inst-2b(4.00372@0%) |toni-inst-3a(3.89586@1%) |toni-inst-3b(4.43552@0%) | OVERALL:(5.13701@22%)
% model opt 1
% |path1a(10.0538@36%) |path1b(7.96075@17%)|toni-all-1a(3.99762@0%) |toni-all-1b(3.89137@1%) |path2a(6.08714@10%) |path2b(8.33165@5%) |toni-all-2a(11.7481@46%) |toni-all-2b(11.2068@64%) |toni-inst-1b(5.25558@1%) |toni-inst-2a(4.23255@0%) |toni-inst-2b(3.92269@0%) |toni-inst-3a(5.62327@5%) |toni-inst-3b(4.82302@9%) | OVERALL:(6.00231@15%)
% model opt 2
% |path1a(2.07273@0%) |path1b(2.84622@0%) |toni-all-1a(2.81671@0%) |toni-all-1b(1.9553@0%) |path2a(4.66453@4%) |path2b(8.17561@0%) |toni-all-2a(8.60702@21%) |toni-all-2b(7.68813@22%) |toni-inst-1b(4.59132@0%) |toni-inst-2a(4.15243@0%) |toni-inst-2b(3.96315@0%) |toni-inst-3a(3.96402@2%) |toni-inst-3b(5.16219@16%) | OVERALL:(3.99259@5%)
% model opt 3
% |path1a(1.78819@0%) |path1b(2.67775@0%) |toni-all-1a(2.43527@0%) |toni-all-1b(1.92948@0%) |path2a(4.90009@4%) |path2b(7.70505@2%) |toni-all-2a(9.16313@32%) |toni-all-2b(6.10436@8%) |toni-inst-1b(5.37191@1%) |toni-inst-2a(3.57332@0%) |toni-inst-2b(3.57426@0%) |toni-inst-3a(5.4337@9%) |toni-inst-3b(5.12685@12%) | OVERALL:(3.86918@5%)
% model per floor
% |path1a(1.77029@0%) |path1b(2.16265@0%) |toni-all-1a(2.05043@0%) |toni-all-1b(1.62289@0%) |path2a(5.29536@8%) |path2b(6.88344@0%) |toni-all-2a(9.75416@38%) |toni-all-2b(6.57473@17%) |toni-inst-1b(3.80742@0%) |toni-inst-2a(2.25183@0%) |toni-inst-2b(3.18067@0%) |toni-inst-3a(2.24992@0%) |toni-inst-3b(2.72835@0%) | OVERALL:(3.15739@4%)
% model per bbox
% |path1a(1.76908@0%) |path1b(2.30081@0%) |toni-all-1a(2.09503@1%) |toni-all-1b(1.66411@0%) |path2a(6.39346@10%) |path2b(5.8772@0%) |toni-all-2a(9.59953@26%) |toni-all-2b(7.06924@16%) |toni-inst-1b(3.96094@0%) |toni-inst-2a(2.51694@0%) |toni-inst-2b(3.3549@0%) |toni-inst-3a(2.1656@0%) |toni-inst-3b(2.81547@0%) | OVERALL:(3.34847@4%)
% REAL WALKS
%\todo{obwohl das angepasste modell doch recht gut laeuft und der fehler recht klein wird, sind immernoch stellen dabei,
%wo es einfach nicht gut passt, unguenstige mehrdeutigkeiten vorliegen, oder regionen einfach nicht passen wie sie sollten.
%das liegt teils auch daran, dass die fingerprints drehend aufgenommen wurden und beim laufen nach hinten durch den
%menschen abgeschottet wird. auch zeitlicher verzug kann ein problem darstellen.}
%\todo{
% wenn ich beim fingerprinten einen AP an einer stelle NICHT gesehen habe,
% ist das auch eine aussage für die model optimierung.. da kann dann sicher keine signatlstaerke > -90 an der stelle raus kommen
%}
%ware das grid-model nicht da, wuerde der outdoor teil richtig schlecht laufen,
%weil das wlan hier absolut ungenau ist.. da die partikel aber aufgrund des vorherigen
%walks schon recht dicht beisamen sind, kittet das das ganze sehr gut.
%kann man testen, indem man z.B. weniger resampling macht und mehr alte partikel aufhebt.
%geht sofort kaputt sobald man aus dem gebäude raus kommt
% was ist das??
%\input{gfx/wifi-opt-error-hist-methods.tex}
%\input{gfx/wifi-opt-error-hist-stair-outdoor.tex}
%outdoor hat insgesamt nicht all zu viel einfluss, da die meisten APs
%an den outdoor punkten kaum gesehen werden. auf einzelne APs kann
%der einfluss jedoch recht groß sein, siehe den fingerprint plot von
%dem einen ausgewählten AP
%\todo{anfaenglich falsches heading ist gift, wegen rel. heading, weil sich dann alles verlaeuft. fix: anfaenglich große heading variation erlauben}
%\todo{NICHT MEHR AKTUELL: abs-head ist in der observation besser, weil es beim resampling mehr bringt und dafuer srogt, dass die richtigen geloescht werden!}