This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/sensors/imu/PoseDetection.h
2018-08-06 18:33:17 +02:00

203 lines
5.1 KiB
C++

#ifndef INDOOR_IMU_POSEDETECTION_H
#define INDOOR_IMU_POSEDETECTION_H
#include "AccelerometerData.h"
#include "../../data/Timestamp.h"
#include "../../math/MovingAverageTS.h"
#include "../../math/MovingMedianTS.h"
#include "../../math/Matrix3.h"
#include "../../geo/Point3.h"
//#include <eigen3/Eigen/Dense>
#include "PoseDetectionPlot.h"
/**
* estimate the smartphones world-pose,
* based on the accelerometer's data
*/
class PoseDetection {
/** live-pose-estimation using moving average of the smartphone's accelerometer */
struct EstMovingAverage {
// average the accelerometer
MovingAverageTS<AccelerometerData> avg;
EstMovingAverage(const Timestamp window) :
avg(MovingAverageTS<AccelerometerData>(window, AccelerometerData())) {
// start approximately
addAcc(Timestamp(), AccelerometerData(0,0,9.81));
}
/** add the given accelerometer reading */
void addAcc(const Timestamp ts, const AccelerometerData& acc) {
avg.add(ts, acc);
}
AccelerometerData getBase() const {
return avg.get();
}
/** get the current rotation matrix estimation */
//Eigen::Matrix3f get() const {
Matrix3 get() const {
// get the current acceleromter average
const AccelerometerData avgAcc = avg.get();
//const Eigen::Vector3f avg(avgAcc.x, avgAcc.y, avgAcc.z);
const Vector3 avg(avgAcc.x, avgAcc.y, avgAcc.z);
// rotate average-accelerometer into (0,0,1)
//Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
const Vector3 zAxis(0,0,1);
const Matrix3 rotMat = getRotationMatrix(avg.normalized(), zAxis);
//const Matrix3 rotMat = getRotationMatrix(zAxis, avg.normalized()); // INVERSE
//const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
//Eigen::Vector3f aligned = (rotMat * avg).normalized();
const Vector3 aligned = (rotMat * avg).normalized();
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
return rotMat;
}
};
// /** live-pose-estimation using moving median of the smartphone's accelerometer */
// struct EstMovingMedian {
// // median the accelerometer
// MovingMedianTS<float> medianX;
// MovingMedianTS<float> medianY;
// MovingMedianTS<float> medianZ;
// EstMovingMedian(const Timestamp window) :
// medianX(window), medianY(window), medianZ(window) {
// // start approximately
// addAcc(Timestamp(), AccelerometerData(0,0,9.81));
// }
// /** add the given accelerometer reading */
// void addAcc(const Timestamp ts, const AccelerometerData& acc) {
// medianX.add(ts, acc.x);
// medianY.add(ts, acc.y);
// medianZ.add(ts, acc.z);
// }
// AccelerometerData getBase() const {
// return AccelerometerData(medianX.get(), medianY.get(), medianZ.get());
// }
// /** get the current rotation matrix estimation */
// //Eigen::Matrix3f get() const {
// Matrix3 get() const {
// const Vector3 base(medianX.get(), medianY.get(), medianZ.get());
// // rotate average-accelerometer into (0,0,1)
// const Vector3 zAxis(0,0,1);
// const Matrix3 rotMat = getRotationMatrix(base.normalized(), zAxis);
// // just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
// const Vector3 aligned = (rotMat * base).normalized();
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
// return rotMat;
// }
// };
private:
struct {
//Eigen::Matrix3f rotationMatrix = Eigen::Matrix3f::Identity();
Matrix3 rotationMatrix = Matrix3::identity();
bool isKnown = false;
Timestamp lastEstimation;
} orientation;
/** how the pose is estimated */
//LongTermMovingAverage est = LongTermMovingAverage(Timestamp::fromMS(1250));
EstMovingAverage est = EstMovingAverage(Timestamp::fromMS(450));
//EstMovingMedian est = EstMovingMedian(Timestamp::fromMS(300));
#ifdef WITH_DEBUG_PLOT
PoseDetectionPlot plot;
#endif
public:
/** ctor */
PoseDetection() {
;
}
/** get the smartphone's rotation matrix */
const Matrix3& getMatrix() const {
return orientation.rotationMatrix;
}
/** is the pose known and stable? */
bool isKnown() const {
return orientation.isKnown;
}
void addAccelerometer(const Timestamp& ts, const AccelerometerData& acc) {
// add accelerometer data
est.addAcc(ts, acc);
// update (if needed)
orientation.rotationMatrix = est.get();
orientation.isKnown = true;
orientation.lastEstimation = ts;
// debug-plot (if configured)
#ifdef WITH_DEBUG_PLOT
plot.add(ts, est.getBase(), orientation.rotationMatrix);
#endif
}
public:
/** get a matrix that rotates the vector "from" into the vector "to" */
static Matrix3 getRotationMatrix(const Vector3& from, const Vector3 to) {
// http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
const Vector3 v = from.cross(to) / from.cross(to).norm();
const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
Matrix3 A({
0.0f, -v.z, v.y,
v.z, 0.0f, -v.x,
-v.y, v.x, 0.0f
});
return Matrix3::identity() + (A * std::sin(angle)) + ((A*A) * (1-std::cos(angle)));
}
};
#endif // INDOOR_IMU_POSEDETECTION_H