This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/grid/factory/GridImportance.h
FrankE e6329e1db4 dijkstra is now bleching fast
deleting from the grid is now bleaching fast
added new helper methods
many new test-cases
many new methods for geo classes and others
added a bunch of new grid-walkers
2016-01-26 18:13:30 +01:00

218 lines
5.5 KiB
C++

#ifndef GRIDIMPORTANCE_H
#define GRIDIMPORTANCE_H
#include "../Grid.h"
#include "GridFactory.h"
#include "../../misc/KNN.h"
#include "../../misc/KNNArray.h"
#include "../../math/MiniMat2.h"
#include "../../misc/Debug.h"
#include "../../nav/dijkstra/Dijkstra.h"
#include "../../nav/dijkstra/DijkstraPath.h"
#include <KLib/math/distribution/Normal.h>
/**
* add an importance factor to each node within the grid.
* the importance is calculated based on several facts:
* - nodes that belong to a door or narrow path are more important
* - nodes directly located at walls are less important
*/
class GridImportance {
private:
static constexpr const char* name = "GridImp";
public:
/** attach importance-factors to the grid */
template <typename T> void addImportance(Grid<T>& g, const float z_cm) {
Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm));
// get an inverted version of the grid
Grid<T> inv(g.getGridSize_cm());
GridFactory<T> fac(inv);
fac.addInverted(g, z_cm);
// construct KNN search
KNN<Grid<T>, 3> knn(inv);
// the number of neighbors to use
static constexpr int numNeighbors = 8;
// create list of all doors
std::vector<T> doors;
// process each node
for (T& n1 : g) {
// skip nodes on other than the requested floor-level
if (n1.z_cm != z_cm) {continue;}
// get the 10 nearest neighbors and their distance
size_t indices[numNeighbors];
float squaredDist[numNeighbors];
float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm};
knn.get(point, numNeighbors, indices, squaredDist);
// get the neighbors
std::vector<T*> neighbors;
for (int i = 0; i < numNeighbors; ++i) {
neighbors.push_back(&inv[indices[i]]);
}
n1.imp = 1.0f;
n1.imp += getWallImportance(n1, Units::cmToM(std::sqrt(squaredDist[0])) );
//addDoor(n1, neighbors);
// is the current node a door?
if (isDoor(n1, neighbors)) {doors.push_back(n1);}
// favor stairs just like doors
if (isStaircase(g, n1)) {doors.push_back(n1);}
}
KNNArray<std::vector<T>> knnArrDoors(doors);
KNN<KNNArray<std::vector<T>>, 3> knnDoors(knnArrDoors);
// process each node again
for (T& n1 : g) {
static K::NormalDistribution favorDoors(0.0, 1.0);
// get the distance to the nearest door
const float dist_m = Units::cmToM(knnDoors.getNearestDistance( {n1.x_cm, n1.y_cm, n1.z_cm} ));
// importance for this node (based on the distance from the next door)
n1.imp += favorDoors.getProbability(dist_m) * 0.30;
}
}
/** is the given node connected to a staircase? */
template <typename T> bool isStaircase(Grid<T>& g, T& node) {
// if this node has a neighbor with a different z, this is a stair
for (T& neighbor : g.neighbors(node)) {
if (neighbor.z_cm != node.z_cm) {return true;}
}
return false;
}
/** attach importance-factors to the grid */
template <typename T> void addDistanceToTarget(Grid<T>& g, Dijkstra<T>& d) {
//Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm));
for (T& node : g) {
DijkstraNode<T>* dn = d.getNode(node);
if (dn != nullptr) {
node.distToTarget = dn->cumWeight / 2000;
}
}
}
template <typename T> void addImportance(Grid<T>& g, DijkstraNode<T>* start, DijkstraNode<T>* end) {
// routing path
DijkstraPath<T> path(end, start);
// knn search within the path
KNN<DijkstraPath<T>, 3> knn(path);
// update each node from the grid using its distance to the path
for (T& n : g) {
//const int idx = knn.getNearestIndex( {n.x_cm, n.y_cm, n.z_cm} );
//T& node = g[idx];
const float dist_cm = knn.getNearestDistance( {n.x_cm, n.y_cm, n.z_cm} );
const float dist_m = Units::cmToM(dist_cm);
n.impPath = 1.0 + K::NormalDistribution::getProbability(0, 1.0, dist_m) * 0.8;
}
}
/** is the given node (and its inverted neighbors) a door? */
template <typename T> bool isDoor( T& nSrc, std::vector<T*> neighbors ) {
MiniMat2 m;
Point3 center = nSrc;
// calculate the centroid of the nSrc's nearest-neighbors
Point3 centroid(0,0,0);
for (const T* n : neighbors) {
centroid = centroid + (Point3)*n;
}
centroid /= neighbors.size();
// if nSrc is too far from the centroid, this does not make sense
if ((centroid-center).length() > 20) {return false;}
// build covariance of the nearest-neighbors
int used = 0;
for (const T* n : neighbors) {
Point3 d = (Point3)*n - center;
if (d.length() > 100) {continue;} // radius search
m.addSquared(d.x, d.y);
++used;
}
// we need at least two points for the covariance
if (used < 2) {return false;}
// check eigenvalues
MiniMat2::EV ev = m.getEigenvalues();
// ensure e1 > e2
if (ev.e1 < ev.e2) {std::swap(ev.e1, ev.e2);}
// door?
return ((ev.e2/ev.e1) < 0.15) ;
}
/** get the importance of the given node depending on its nearest wall */
template <typename T> float getWallImportance(T& nSrc, float dist_m) {
// avoid sticking too close to walls (unlikely)
static K::NormalDistribution avoidWalls(0.0, 0.4);
// favour walking near walls (likely)
static K::NormalDistribution sticToWalls(0.9, 0.5);
// favour walking far away (likely)
static K::NormalDistribution farAway(2.2, 0.5);
if (dist_m > 2.0) {dist_m = 2.0;}
// overall importance
return - avoidWalls.getProbability(dist_m) * 0.30 // avoid walls
+ sticToWalls.getProbability(dist_m) * 0.15 // walk near walls
+ farAway.getProbability(dist_m) * 0.15 // walk in the middle
;
}
};
#endif // GRIDIMPORTANCE_H