This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/nav/a-star/AStar.h
2016-04-10 19:36:51 +02:00

120 lines
2.7 KiB
C++

#ifndef ASTAR_H
#define ASTAR_H
#include <iostream>
#include <vector>
#include <algorithm>
#include <limits>
#include <queue>
#include <unordered_map>
#include <cassert>
#include "../../grid/Grid.h"
template <typename T> class AStar {
public:
//dijkstra with priority queue O(E log V)
template <typename Access> static std::vector<const T*> get(const T* source, const T* destination, Access acc) {
// track distances from the source to each other node
std::unordered_map<const T*, float> distance;
// track the previous node for each node along the path
std::unordered_map<const T*, const T*> parent;
// all nodes
const std::vector<T>& nodes = acc.getAllNodes();
// priority queue to check which node is to-be-processed next
std::priority_queue<std::pair<T*,float>, std::vector<std::pair<const T*,float>>, Comparator2> Q;
// start with infinite distance
for(const auto& node : nodes){
distance[&node] = std::numeric_limits<float>::max();
}
// start at the source
distance[source] = 0.0f;
Q.push(std::make_pair(source,distance[source]));
// proceed until there are now new nodes to follow
while(!Q.empty()) {
// fetch the next-nearest node from the queue
const T* u = Q.top().first;
// and check whether we reached the destination
if (u == destination) {break;}
// remove from the Queue
Q.pop();
// process all neighbors for the current element
for( const T& v : acc.getNeighbors(*u)) {
// weight (distance) between the current node and its neighbor
//const float w = ((Point3)v - (Point3)*u).length();
const float w = acc.getWeightBetween(v, *u);
// found a better route?
if (distance[&v] > distance[u] + w) {
distance[&v] = distance[u] + w;
parent[&v] = u;
Q.push(std::make_pair(&v, distance[&v] + acc.getHeuristic(v, *source)));
}
}
}
// construct the path
std::vector<const T*> path;
const T* p = destination;
path.push_back(destination);
// until we reached the source-node
while (p!=source) {
if (p) {
p = parent[p];
path.push_back(p);
} else {
return std::vector<const T*>(); //if no path could be found, just return an empty vector.
}
}
// done
return path;
}
// template <typename Access> static std::vector<const T*> getShortestPathAStar(const T* src, const T* dst, Access acc){
// std::vector<const T*> shortestPath;
// //here we could do some preprocessing. e.g. area of interest of nodes
// // call aStar
// shortestPath = aStar(src, dst, acc);
// return shortestPath;
// }
class Comparator2 {
public:
int operator() ( const std::pair<const T*,float>& p1, const std::pair<const T*,float>& p2){
return p1.second > p2.second;
}
};
};
#endif // ASTAR_H