added new helper methods/classes (e.g. for heading) new test cases optimize the dijkstra cleanups/refactoring added timed-benchmarks to the log many more...
60 lines
1.5 KiB
C++
60 lines
1.5 KiB
C++
#ifndef KNNARRAY_H
|
|
#define KNNARRAY_H
|
|
|
|
/**
|
|
* this wrapper class provides all methods needed for nanoflanns KNN-search.
|
|
* in order for this wrapper class to work, your data-structure must provide
|
|
* the following methods:
|
|
*
|
|
* PointList:
|
|
* size() - return the number of contained points
|
|
* operator [] - access points via their index
|
|
* Point
|
|
* operator [] - access each dimension via its index
|
|
*
|
|
* example:
|
|
* std::vector<Point3> points;
|
|
* KNNArray<std::vector<Point3>> arr(points);
|
|
* KNN<KNNArray<std::vector<Point3>>, 3> knn(arr);
|
|
*/
|
|
template <typename T> class KNNArray {
|
|
|
|
private:
|
|
|
|
/** the underlying data structure */
|
|
const T& elem;
|
|
|
|
public:
|
|
|
|
/** ctor with the underlying data structure */
|
|
KNNArray(const T& elem) : elem(elem) {
|
|
;
|
|
}
|
|
|
|
/** get the number of elements to search throrugh */
|
|
inline int kdtree_get_point_count() const {
|
|
return elem.size();
|
|
}
|
|
|
|
/** use nanoflanns default bbox */
|
|
template <class BBOX> inline bool kdtree_get_bbox(BBOX& bb) const {
|
|
(void) bb; return false;
|
|
}
|
|
|
|
/** get the idx-th element's dim-th coordinate */
|
|
inline float kdtree_get_pt(const size_t idx, const int dim) const {
|
|
return elem[idx][dim];
|
|
}
|
|
|
|
/** get the SQUARED distance between the given coordinates and the provided element */
|
|
inline float kdtree_distance(const float* p1, const size_t idx_p2, size_t) const {
|
|
const float d0 = p1[0] - elem[idx_p2][0];
|
|
const float d1 = p1[1] - elem[idx_p2][1];
|
|
const float d2 = p1[2] - elem[idx_p2][2];
|
|
return (d0*d0) + (d1*d1) + (d2*d2);
|
|
}
|
|
|
|
};
|
|
|
|
#endif // KNNARRAY_H
|