This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/misc/KNNArray.h
kazu 9947dced15 added several grid-walks
added new helper methods/classes (e.g. for heading)
new test cases
optimize the dijkstra
cleanups/refactoring
added timed-benchmarks to the log
many more...
2016-01-24 18:59:06 +01:00

60 lines
1.5 KiB
C++

#ifndef KNNARRAY_H
#define KNNARRAY_H
/**
* this wrapper class provides all methods needed for nanoflanns KNN-search.
* in order for this wrapper class to work, your data-structure must provide
* the following methods:
*
* PointList:
* size() - return the number of contained points
* operator [] - access points via their index
* Point
* operator [] - access each dimension via its index
*
* example:
* std::vector<Point3> points;
* KNNArray<std::vector<Point3>> arr(points);
* KNN<KNNArray<std::vector<Point3>>, 3> knn(arr);
*/
template <typename T> class KNNArray {
private:
/** the underlying data structure */
const T& elem;
public:
/** ctor with the underlying data structure */
KNNArray(const T& elem) : elem(elem) {
;
}
/** get the number of elements to search throrugh */
inline int kdtree_get_point_count() const {
return elem.size();
}
/** use nanoflanns default bbox */
template <class BBOX> inline bool kdtree_get_bbox(BBOX& bb) const {
(void) bb; return false;
}
/** get the idx-th element's dim-th coordinate */
inline float kdtree_get_pt(const size_t idx, const int dim) const {
return elem[idx][dim];
}
/** get the SQUARED distance between the given coordinates and the provided element */
inline float kdtree_distance(const float* p1, const size_t idx_p2, size_t) const {
const float d0 = p1[0] - elem[idx_p2][0];
const float d1 = p1[1] - elem[idx_p2][1];
const float d2 = p1[2] - elem[idx_p2][2];
return (d0*d0) + (d1*d1) + (d2*d2);
}
};
#endif // KNNARRAY_H