huge commit

- worked on about everything
- grid walker using plugable modules
- wifi models
- new distributions
- worked on geometric data-structures
- added typesafe timestamps
- worked on grid-building
- added sensor-classes
- added sensor analysis (step-detection, turn-detection)
- offline data reader
- many test-cases
This commit is contained in:
2016-08-29 08:18:44 +02:00
parent 99ee95ce7b
commit a2c9e575a2
94 changed files with 8298 additions and 257 deletions

View File

@@ -54,7 +54,10 @@ public:
/** no-copy */
Grid(const Grid& o) = delete;
/** reset the grid (empty) */
/**
* reset (clear) the grid
* remove all nodes, hashes, ..
*/
void reset() {
nodes.clear();
hashes.clear();
@@ -211,10 +214,23 @@ public:
*
*/
UID getUID(const GridPoint& p) const {
const uint64_t x = std::round(p.x_cm / (float)gridSize_cm);
const uint64_t y = std::round(p.y_cm / (float)gridSize_cm);
const uint64_t z = std::round(p.z_cm / (float)gridSize_cm * 5); // z is usually much lower and not always aligned -> allow more room for hashes
// sanity check (region between -1^19 and +1^19
const int32_t max = 1 << 19;
Assert::isBetween((int32_t)p.x_cm, -max, +max, "x out of bounds");
Assert::isBetween((int32_t)p.y_cm, -max, +max, "y out of bounds");
Assert::isBetween((int32_t)p.z_cm, -max, +max, "z out of bounds");
// shift by half of the allowed width of 20 bit to allow negative regions
const uint64_t center = 1 << 19;
// build
const uint64_t x = std::round((p.x_cm+center) / (float)gridSize_cm);
const uint64_t y = std::round((p.y_cm+center) / (float)gridSize_cm);
const uint64_t z = std::round((p.z_cm+center) / (float)gridSize_cm * 5); // z is usually much lower and not always aligned -> allow more room for hashes
return (z << 40) | (y << 20) | (x << 0);
}
/** array access */
@@ -363,63 +379,47 @@ public:
Log::add(name, "memory: " + std::to_string(bytes/1024.0f/1024.0f) + " MB in " + std::to_string(numNodes) + " nodes");
}
// /**
// * remove all nodes, marked for deletion.
// * BEWARE: this will invalidate all indices used externally!
// */
// void cleanupOld() {
// Log::add(name, "running grid cleanup");
public:
// // check every single node
// for (size_t i = 0; i < nodes.size(); ++i) {
/** serialize into the given stream */
void write(std::ostream& out) {
// // is this node marked as "deleted"? (idx == -1)
// if (nodes[i]._idx == -1) {
// serialize static
T::staticSerialize(out);
// // remove this node
// deleteNode(i);
// --i;
// number of nodes
const int numNodes = nodes.size();
out.write((const char*) &numNodes, sizeof(numNodes));
// }
// }
// serialize
for (const T& node : nodes) {
out.write((const char*) &node, sizeof(T));
}
// // rebuild hashes
// Log::add(name, "rebuilding UID hashes", false);
// Log::tick();
// hashes.clear();
// for (size_t idx = 0; idx < nodes.size(); ++idx) {
// hashes[getUID(nodes[idx])] = idx;
// }
// Log::tock();
}
// }
/** deserialize from the given stream */
void read(std::istream& inp) {
private:
// deserialize static
T::staticDeserialize(inp);
// /** hard-delete the given node */
// void deleteNode(const int idx) {
// number of nodes
int numNodes;
inp.read((char*) &numNodes, sizeof(numNodes));
// _assertBetween(idx, 0, nodes.size()-1, "index out of bounds");
// allocate node-space
nodes.resize(numNodes);
// // COMPLEX AND SLOW AS HELL.. BUT UGLY TO REWIRTE TO BE CORRECT
// deserialize
inp.read((char*) nodes.data(), numNodes*sizeof(T));
// // remove him from the node list (reclaim its memory and its index)
// nodes.erase(nodes.begin()+idx);
// update
rebuildHashes();
// // decrement the index for all of the following nodes and adjust neighbor references
// for (size_t i = 0; i < nodes.size(); ++i) {
}
// // decrement the higher indices (reclaim the free one)
// if (nodes[i]._idx >= idx) { --nodes[i]._idx;}
// // adjust the neighbor references (decrement by one)
// for (int n = 0; n < nodes[i]._numNeighbors; ++n) {
// if (nodes[i]._neighbors[n] >= idx) {--nodes[i]._neighbors[n];}
// }
// }
// }
public:

View File

@@ -4,6 +4,8 @@
#include "GridNodeBBox.h"
#include "GridPoint.h"
#include <functional>
/** forward decl. */
template<typename> class Grid;
@@ -35,7 +37,8 @@ private:
static std::vector<std::function<void(std::ostream&)>> serializers;
static std::vector<std::function<void(std::istream&)>> deserializers;
public:

View File

@@ -35,6 +35,12 @@ struct GridPoint {
return x_cm != o.x_cm || y_cm != o.y_cm || z_cm != o.z_cm;
}
GridPoint operator * (const float f) const {return GridPoint(x_cm*f, y_cm*f, z_cm*f);}
GridPoint& operator += (const GridPoint& o) {x_cm += o.x_cm; y_cm += o.y_cm; z_cm += o.z_cm; return *this;}
GridPoint& operator /= (const float f) {x_cm /= f; y_cm /= f; z_cm /= f; return *this;}
/** get the distance (in meter) betwen this and the given point */
float getDistanceInMeter(const GridPoint& other) const {
return getDistanceInCM(other) / 100.0f;

View File

@@ -0,0 +1,18 @@
#ifndef GRIDNODEIMPORTANCE_H
#define GRIDNODEIMPORTANCE_H
struct GridNodeImportance {
/** importance-weight for dijkstra calculation */
float navImportance;
/** get the node's nav importance */
float getNavImportance() const {return navImportance;}
/** ctor */
GridNodeImportance() : navImportance(1.0f) {;}
};
#endif // GRIDNODEIMPORTANCE_H

View File

@@ -1,6 +1,7 @@
#ifndef IMPORTANCE_H
#define IMPORTANCE_H
#include "../../../geo/Units.h"
#include "../../Grid.h"
#include "../../../misc/KNN.h"
@@ -10,6 +11,8 @@
#include "../../../math/Distributions.h"
class Importance {
private:
@@ -32,9 +35,9 @@ public:
}
/** attach importance-factors to the grid */
template <typename T> static void addImportance(Grid<T>& g, const float z_cm) {
template <typename T> static void addImportance(Grid<T>& g) {
Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm));
Log::add(name, "adding importance information to all nodes");// at height " + std::to_string(z_cm));
// get an inverted version of the grid
Grid<T> inv(g.getGridSize_cm());
@@ -70,7 +73,7 @@ public:
KNNArray<std::vector<T>> knnArrDoors(doors);
KNN<KNNArray<std::vector<T>>, 3> knnDoors(knnArrDoors);
Distribution::Normal<float> favorDoors(0.0f, 0.6f);
Distribution::Normal<float> favorDoors(0.0f, 0.5f);
// process each node again
for (T& n1 : g) {
@@ -90,7 +93,7 @@ public:
neighbors.push_back(&inv[indices[i]]);
}
n1.imp = 1.0f;
n1.navImportance = 1.0f;
//if (n1.getType() == GridNode::TYPE_FLOOR) {
@@ -100,20 +103,20 @@ public:
// get the distance to the nearest door
const float distToDoor_m = Units::cmToM(knnDoors.getNearestDistance( {n1.x_cm, n1.y_cm, n1.z_cm} ));
n1.imp =
n1.navImportance =
1 +
getWallImportance( distToWall_m ) +
favorDoors.getProbability(distToDoor_m);
favorDoors.getProbability(distToDoor_m) * 1.5f;
//}
//addDoor(n1, neighbors);
// importance for this node (based on the distance from the next door)
//n1.imp += favorDoors.getProbability(dist_m) * 0.30;
//n1.navImportance += favorDoors.getProbability(dist_m) * 0.30;
//n1.imp = (dist_m < 0.2) ? (1) : (0.5);
//n1.navImportance = (dist_m < 0.2) ? (1) : (0.5);
}
}
@@ -131,73 +134,73 @@ public:
}
/** is the given node (and its inverted neighbors) a door? */
template <typename T> static bool isDoor( T& nSrc, std::vector<T*> neighbors ) {
// /** is the given node (and its inverted neighbors) a door? */
// template <typename T> static bool isDoor( T& nSrc, std::vector<T*> neighbors ) {
if (nSrc.getType() != GridNode::TYPE_FLOOR) {return false;}
// if (nSrc.getType() != GridNode::TYPE_FLOOR) {return false;}
MiniMat2 m1;
// MiniMat2 m2;
Point3 center = nSrc;
// MiniMat2 m1;
//// MiniMat2 m2;
// Point3 center = nSrc;
// calculate the centroid of the nSrc's nearest-neighbors
Point3 centroid(0,0,0);
for (const T* n : neighbors) {
centroid = centroid + (Point3)*n;
}
centroid /= neighbors.size();
// // calculate the centroid of the nSrc's nearest-neighbors
// Point3 centroid(0,0,0);
// for (const T* n : neighbors) {
// centroid = centroid + (Point3)*n;
// }
// centroid /= neighbors.size();
// if nSrc is too far from the centroid, this does not make sense
if ((centroid-center).length() > 40) {return false;}
// // if nSrc is too far from the centroid, this does not make sense
// if ((centroid-center).length() > 40) {return false;}
// build covariance of the nearest-neighbors
int used = 0;
for (const T* n : neighbors) {
// // build covariance of the nearest-neighbors
// int used = 0;
// for (const T* n : neighbors) {
const Point3 d1 = (Point3)*n - centroid;
if (d1.length() > 100) {continue;} // radius search
m1.addSquared(d1.x, d1.y);
// const Point3 d1 = (Point3)*n - centroid;
// if (d1.length() > 100) {continue;} // radius search
// m1.addSquared(d1.x, d1.y);
// const Point3 d2 = (Point3)*n - center;
// if (d2.length() > 100) {continue;} // radius search
// m2.addSquared(d2.x, d2.y);
//// const Point3 d2 = (Point3)*n - center;
//// if (d2.length() > 100) {continue;} // radius search
//// m2.addSquared(d2.x, d2.y);
++used;
// ++used;
}
// }
// we need at least two points for the covariance
if (used < 6) {return false;}
// // we need at least two points for the covariance
// if (used < 6) {return false;}
// check eigenvalues
MiniMat2::EV ev1 = m1.getEigenvalues();
// MiniMat2::EV ev2 = m2.getEigenvalues();
// // check eigenvalues
// MiniMat2::EV ev1 = m1.getEigenvalues();
//// MiniMat2::EV ev2 = m2.getEigenvalues();
// ensure e1 > e2
if (ev1.e1 < ev1.e2) {std::swap(ev1.e1, ev1.e2);}
// if (ev2.e1 < ev2.e2) {std::swap(ev2.e1, ev2.e2);}
// // ensure e1 > e2
// if (ev1.e1 < ev1.e2) {std::swap(ev1.e1, ev1.e2);}
//// if (ev2.e1 < ev2.e2) {std::swap(ev2.e1, ev2.e2);}
// door?
const float ratio1 = (ev1.e2/ev1.e1);
// const float ratio2 = (ev2.e2/ev2.e1);
// const float ratio3 = std::max(ratio1, ratio2) / std::min(ratio1, ratio2);
// // door?
// const float ratio1 = (ev1.e2/ev1.e1);
//// const float ratio2 = (ev2.e2/ev2.e1);
//// const float ratio3 = std::max(ratio1, ratio2) / std::min(ratio1, ratio2);
return (ratio1 < 0.30 && ratio1 > 0.05) ;
// return (ratio1 < 0.30 && ratio1 > 0.05) ;
}
// }
/** get the importance of the given node depending on its nearest wall */
static float getWallImportance(float dist_m) {
// avoid sticking too close to walls (unlikely)
static Distribution::Normal<float> avoidWalls(0.0, 0.5);
static Distribution::Normal<float> avoidWalls(0.0, 0.35);
// favour walking near walls (likely)
static Distribution::Normal<float> stickToWalls(0.9, 0.5);
//static Distribution::Normal<float> stickToWalls(0.9, 0.7);
// favour walking far away (likely)
static Distribution::Normal<float> farAway(2.2, 0.5);
if (dist_m > 2.0) {dist_m = 2.0;}
//static Distribution::Normal<float> farAway(2.2, 0.5);
//if (dist_m > 2.0) {dist_m = 2.0;}
// overall importance
// return - avoidWalls.getProbability(dist_m) * 0.30 // avoid walls

View File

@@ -233,7 +233,8 @@ public:
// no matching node found -> add a new one to the grid
if (iNode.idx == -1) {
iNode.idx = grid.add(iNode.node);
const T* n2 = grid.getNodePtrFor(GridPoint(iNode.node.x_cm, iNode.node.y_cm, iNode.node.z_cm));
iNode.idx = (n2) ? (n2->getIdx()) : (grid.add(iNode.node));
}
// add semantic information

125
grid/walk/v2/GridWalker.h Normal file
View File

@@ -0,0 +1,125 @@
#ifndef GRIDWALKER_H
#define GRIDWALKER_H
#include "../../Grid.h"
#include "../../../math/DrawList.h"
#include "modules/WalkModule.h"
/**
* modular grid-walker that takes various sub-components to determine
* p(e) and thus randomly pick edges
*/
template <typename Node, typename WalkState> class GridWalker {
private:
/** all modules to evaluate */
std::vector<WalkModule<Node, WalkState>*> modules;
DrawList<const Node*> drawer;
public:
/** add the given module */
void addModule(WalkModule<Node, WalkState>* module) {
modules.push_back(module);
}
/** perform the walk based on the configured setup */
WalkState getDestination(Grid<Node>& grid, const WalkState& _startState, float dist_m) {
WalkState startState = _startState;
updateBefore(startState);
// get the node that corresponds to start;
const Node* startNode = grid.getNodePtrFor(startState.startPos);
Assert::isNotNull(startNode, "failed to termine start-node for grid-walk");
// currently examined node
const Node* curNode = startNode;
// until distance is reached
while (dist_m > 0) {
drawer.reset();
// evaluate each neighbor
for (const Node& neighbor : grid.neighbors(*curNode)) {
const double prob = getProbability(startState, *startNode, *curNode, neighbor);
drawer.add(&neighbor, prob);
}
// pick a neighbor
const Node* nextNode = drawer.get();
// inform
step(startState, *curNode, *nextNode);
// update
dist_m -= nextNode->getDistanceInMeter(*curNode);
curNode = nextNode;
}
// output state
WalkState nextState = startState;
nextState.startPos = *curNode;
// update
updateAfter(nextState, *startNode, *curNode);
// done
return nextState;
}
private:
/** update the state before starting the random walk (e.g. based on sensor readings, ..) */
inline void updateBefore(WalkState& state) {
for (WalkModule<Node, WalkState>* mdl : modules) {
mdl->updateBefore(state);
}
}
/** update the WalkState after the random walk (if needed) */
inline void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) {
for (WalkModule<Node, WalkState>* mdl : modules) {
mdl->updateAfter(state, startNode, endNode);
}
}
/** one step taken. inform modules */
inline void step(WalkState& state, const Node& curNode, const Node& nextNode) {
for (WalkModule<Node, WalkState>* mdl : modules) {
mdl->step(state, curNode, nextNode);
}
}
/** get the probability for the given random walk (one edge) */
inline double getProbability(const WalkState& state, const Node& start, const Node& cur, const Node& next) const {
//double prob = 1.0;
double prob = 0;
for (const WalkModule<Node, WalkState>* mdl : modules) {
//prob *= mdl->getProbability(state, start, cur, next);
prob += std::log( mdl->getProbability(state, start, cur, next) );
}
//return prob;
return std::exp(prob);
}
};
#endif // GRIDWALKER_H

View File

@@ -0,0 +1,159 @@
#ifndef GRIDWALKERMULTI_H
#define GRIDWALKERMULTI_H
#include "../../Grid.h"
#include "../../../math/DrawList.h"
#include "modules/WalkModule.h"
// FOR TESTING
#include "../../../geo/Heading.h"
/**
* modular grid-walker that takes various sub-components to determine
* p(e) and thus randomly pick edges
*/
template <typename Node, typename WalkState> class GridWalkerMulti {
private:
struct Path {
std::vector<const Node*> nodes;
const Node* getSrc() const {return nodes.front();}
const Node* getDst() const {return nodes.back();}
};
private:
/** all modules to evaluate */
std::vector<WalkModule<Node, WalkState>*> modules;
public:
/** add the given module */
void addModule(WalkModule<Node, WalkState>* module) {
modules.push_back(module);
}
/** perform the walk based on the configured setup */
WalkState getDestination(Grid<Node>& grid, const WalkState& _startState, const float dist_m) {
// get the node that corresponds to start;
const Node* const startNode = grid.getNodePtrFor(_startState.startPos);
Assert::isNotNull(startNode, "failed to termine start-node for grid-walk");
const uint64_t seed = (uint64_t) startNode + rand();
DrawList<Path> drawPath;
drawPath.setSeed(seed);
for (int i = 0; i < 1; ++i) {
float dist = dist_m;
// currently examined node
const Node* curNode = startNode;
Path path;
path.nodes.push_back(curNode);
// until distance is reached
while (dist > 0) {
DrawList<const Node*> drawEdge;
drawEdge.setSeed(seed+1);
//if (curNode->getNumNeighbors() < 6) {break;}
// evaluate each neighbor
for (const Node& neighbor : grid.neighbors(*curNode)) {
const double prob = getProb(*startNode, *curNode, neighbor);
drawEdge.add(&neighbor, prob);
}
// pick a neighbor
const Node* nextNode = drawEdge.get();
dist -= nextNode->getDistanceInMeter(*curNode);
curNode = nextNode;
path.nodes.push_back(curNode);
}
const double prob = getProb(path);
drawPath.add(path, prob);
}
const Path& bestPath = drawPath.get();
WalkState nextState = _startState;
nextState.startPos = *(bestPath.getDst());
return nextState;
}
private:
inline double getProb(const Node& n0, const Node& n1, const Node& n2) {
static float angle = 0; angle += 0.05;
angle = std::fmod(angle, 6);
if (&n1 == &n2) {return 1;}
const Heading head1(angle);
const Heading head2(n1.x_cm, n1.y_cm, n2.x_cm, n2.y_cm);
const float diff = head1.getDiffHalfRAD(head2);
return rand() % 32;
}
inline double getProb(const Path& path) {
const Point3 p1 = path.getSrc()->inMeter();
const Point3 p2 = path.getDst()->inMeter();
const float dist = p1.getDistance(p2);
return 1/dist;
}
/** update the state before starting the random walk (e.g. based on sensor readings, ..) */
inline void updateBefore(WalkState& state) {
for (WalkModule<Node, WalkState>* mdl : modules) {
mdl->updateBefore(state);
}
}
/** update the WalkState after the random walk (if needed) */
inline void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) {
for (WalkModule<Node, WalkState>* mdl : modules) {
mdl->updateAfter(state, startNode, endNode);
}
}
/** one step taken. inform modules */
inline void step(WalkState& state, const Node& curNode, const Node& nextNode) {
for (WalkModule<Node, WalkState>* mdl : modules) {
mdl->step(state, curNode, nextNode);
}
}
/** get the probability for the given random walk (one edge) */
inline double getProbability(const WalkState& state, const Node& start, const Node& cur, const Node& next) const {
double prob = 1.0;
for (const WalkModule<Node, WalkState>* mdl : modules) {
prob *= mdl->getProbability(state, start, cur, next);
}
return prob;
}
};
#endif // GRIDWALKERMULTI_H

View File

@@ -0,0 +1,39 @@
#ifndef WALKMODULE_H
#define WALKMODULE_H
#include "../../../Grid.h"
/** base-class for all WalkStates */
struct WalkState {
/** position where the walk starts */
GridPoint startPos;
/** ctor */
WalkState(const GridPoint& startPos) : startPos(startPos) {;}
};
/**
* base-class for all walk-modules that influence p(e)
*/
template <typename Node, typename WalkState> class WalkModule {
public:
/** update the given WalkState before starting the walk. e.g. based on sensor readings */
virtual void updateBefore(WalkState& state) = 0;
/** get the probability p(e) from curNode to potentialNode */
virtual double getProbability(const WalkState& state, const Node& startNode, const Node& curNode, const Node& potentialNode) const = 0;
/** one step (edge) is taken */
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) = 0;
/** update the walk state based on the given transition (if any update is necssary) */
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) = 0;
};
#endif // WALKMODULE_H

View File

@@ -0,0 +1,68 @@
#ifndef WALKMODULEFOLLOWDESTINATION_H
#define WALKMODULEFOLLOWDESTINATION_H
#include "WalkModule.h"
#include "../../../../nav/dijkstra/Dijkstra.h"
/**
* favour edges p(e) that approach the destination
*/
template <typename Node, typename WalkState> class WalkModuleFollowDestination : public WalkModule<Node, WalkState> {
private:
Dijkstra<Node> dijkstra;
struct DijkstraMapper {
const Grid<Node>& grid;
DijkstraMapper(const Grid<Node>& grid) : grid(grid) {;}
int getNumNeighbors(const Node& n) const {return n.getNumNeighbors();}
const Node* getNeighbor(const Node& n, const int idx) const {return &grid.getNeighbor(n, idx);}
float getWeightBetween(const Node& n1, const Node& n2) const {
return n1.getDistanceInCM(n2) * n2.navImportance;
}
};
public:
/** ctor */
WalkModuleFollowDestination(Grid<Node>& grid, const Node& destination) {
// shortest path calculation
dijkstra.build(&destination, DijkstraMapper(grid));
}
virtual void updateBefore(WalkState& state) override {
(void) state;
}
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) override {
(void) state;
(void) curNode;
(void) nextNode;
}
virtual double getProbability(const WalkState& state, const Node& startNode, const Node& curNode, const Node& potentialNode) const override {
(void) state;
(void) startNode;
const float kappa = 0.8;
const DijkstraNode<Node>* dnCur = dijkstra.getNode(curNode);
const DijkstraNode<Node>* dnNext = dijkstra.getNode(potentialNode);
// probability
return (dnNext->cumWeight < dnCur->cumWeight) ? (kappa) : (1.0 - kappa);
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {
(void) state;
(void) startNode;
(void) endNode;
}
};
#endif // WALKMODULEFOLLOWDESTINATION_H

View File

@@ -0,0 +1,76 @@
#ifndef WALKMODULEHEADING_H
#define WALKMODULEHEADING_H
#include "WalkModule.h"
#include "WalkStateHeading.h"
#include "../../../../geo/Heading.h"
#include "../../../../math/Distributions.h"
/** keep the state's heading */
template <typename Node, typename WalkState> class WalkModuleHeading : public WalkModule<Node, WalkState> {
private:
/** van-Mises distribution */
Distribution::LUT<double> dist;
/** van-Mises draw list */
DrawList<double> draw;
public:
/** ctor */
WalkModuleHeading() : dist(Distribution::VonMises<double>(0.0f, 1.0f).getLUT()), draw(dist.getDrawList()) {
;
}
virtual void updateBefore(WalkState& state) override {
(void) state;
state.startHeading += draw.get();
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {
// if (startNode.x_cm != endNode.x_cm || startNode.y_cm != endNode.y_cm) {
// Heading head(startNode.x_cm, startNode.y_cm, endNode.x_cm, endNode.y_cm);
// state.startHeading = head;
// }
}
/** one step (edge) is taken */
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) override {
// TODO
(void) state;
(void) curNode;
(void) nextNode;
}
double getProbability(const WalkState& state, const Node& startNode, const Node& curNode, const Node& potentialNode) const override {
(void) startNode;
// get the heading between curNode and potentialNode
const Heading head(curNode.x_cm, curNode.y_cm, potentialNode.x_cm, potentialNode.y_cm);
// compare the heading against the state's heading
const Heading stateHead = state.startHeading;
// get the difference
const float angularDiff = head.getDiffHalfRAD(stateHead);//head.getRAD() - stateHead.getRAD();
// determine probability
return dist.getProbability(angularDiff);
}
};
#endif // WALKMODULEHEADING_H

View File

@@ -0,0 +1,78 @@
#ifndef WALKMODULEHEADINGCONTROL_H
#define WALKMODULEHEADINGCONTROL_H
#include "WalkModule.h"
#include "WalkStateHeading.h"
#include "../../../../geo/Heading.h"
#include "../../../../math/Distributions.h"
/** keep the state's heading */
template <typename Node, typename WalkState, typename Control> class WalkModuleHeadingControl : public WalkModule<Node, WalkState> {
private:
/** van-Mises distribution */
Distribution::LUT<double> dist;
/** van-Mises draw list */
DrawList<double> draw;
Control* ctrl;
//std::unordered_map<WalkState*, float> errorTracker;
public:
/** ctor 3.0 should be OK! */
WalkModuleHeadingControl(Control* ctrl) : dist(Distribution::VonMises<double>(0.0f, 1.5).getLUT()), draw(dist.getDrawList()), ctrl(ctrl) {
;
}
virtual void updateBefore(WalkState& state) override {
const float var = draw.get() * 0.15;//0.05;
//const float var = 0;
state.startHeading += ctrl->turnAngle + var;
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {
(void) state;
(void) startNode;
(void) endNode;
}
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) override {
(void) state;
(void) curNode;
(void) nextNode;
}
double getProbability(const WalkState& state, const Node& startNode, const Node& curNode, const Node& potentialNode) const override {
(void) startNode;
// get the heading between curNode and potentialNode
const Heading head(curNode.x_cm, curNode.y_cm, potentialNode.x_cm, potentialNode.y_cm);
// compare the heading against the state's heading - the last error
const Heading stateHead = state.startHeading;
// get the difference
const float angularDiff = head.getDiffHalfRAD(stateHead);
// determine probability
const float prob = dist.getProbability(angularDiff);
return prob;
}
};
#endif // WALKMODULEHEADINGCONTROL_H

View File

@@ -0,0 +1,55 @@
#ifndef WALKMODULENODEIMPORTANCE_H
#define WALKMODULENODEIMPORTANCE_H
#include "WalkModule.h"
#include "WalkStateHeading.h"
/**
* favor edges based on the importance-factor of the next node.
* @see struct GridNodeImportance
*/
template <typename Node, typename WalkState> class WalkModuleNodeImportance : public WalkModule<Node, WalkState> {
private:
public:
/** ctor */
WalkModuleNodeImportance() {
;
}
virtual void updateBefore(WalkState& state) override {
(void) state;
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {
(void) state;
(void) startNode;
(void) endNode;
}
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) override {
(void) state;
(void) curNode;
(void) nextNode;
}
double getProbability(const WalkState& state, const Node& startNode, const Node& curNode, const Node& potentialNode) const override {
(void) state;
(void) startNode;
(void) curNode;
const double prob = potentialNode.getNavImportance();
return std::pow(prob, 10);
//return prob;
}
};
#endif // WALKMODULENODEIMPORTANCE_H

View File

@@ -0,0 +1,162 @@
#ifndef WALKMODULERELATIVEPRESSURE_H
#define WALKMODULERELATIVEPRESSURE_H
#include "WalkModule.h"
#include "WalkStateHeading.h"
#include "../../../../geo/Heading.h"
#include "../../../../math/Distributions.h"
#include "../../../../Assertions.h"
/**
* a walk-state the contains the pressure relative to time t0
*/
struct WalkStateRelativePressure {
/** the pressure level [relative to time t0] one SHOULD messure at this state */
float pressureRelToT0;
int dirLock = 0;
/** ctor */
WalkStateRelativePressure(const float pressureRelToT0) : pressureRelToT0(pressureRelToT0) {;}
};
/**
* uses the pressure relative to t=0 within the control-data
* to estimate the likelyhood for any z-changes during the transition
*/
template <typename Node, typename WalkState, typename Control> class WalkModuleRelativePressureControl : public WalkModule<Node, WalkState> {
private:
Control* ctrl;
/** pressure-change (hPa) per meter */
const float hPaPerMeter = 0.126f; // given an average hPa of 938
public:
/** ctor */
WalkModuleRelativePressureControl(Control* ctrl, const float hPaPerMeter) : ctrl(ctrl), hPaPerMeter(hPaPerMeter) {
;
}
virtual void updateBefore(WalkState& state) override {
(void) state;
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {
// // e.g. walking down from the 3rd to the second floor
// // startZ = 10 meter, endZ = 7 meter -> deltaZ = 3 meter;
// // deltaPressure is POSITIVE (pressure increases) as we walk downstairs
// const int deltaZ_cm = startNode.z_cm - endNode.z_cm;
// const float deltaPressure = (deltaZ_cm / 100.0f) * hPaPerMeter;
// // update the states pressure
// state.pressureRelToT0 += deltaPressure;
// // sanity checks
// Assert::isNotNaN(deltaPressure, "detected NaN!");
// Assert::isNotNaN(state.pressureRelToT0, "detected NaN!");
// static int xx = 0;
// if (++xx % 1024 == 0) {
// ++xx;
// }
}
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) override {
// e.g. walking down from the 3rd to the second floor
// startZ = 10 meter, endZ = 7 meter -> deltaZ = 3 meter;
// deltaPressure is POSITIVE (pressure increases) as we walk downstairs
const int deltaZ_cm = curNode.z_cm - nextNode.z_cm;
const float deltaPressure = (deltaZ_cm / 100.0f) * hPaPerMeter;
const float expectedPressure = state.pressureRelToT0 + deltaPressure;
// update the states pressure
state.pressureRelToT0 = expectedPressure;
// sanity checks
Assert::isNotNaN(deltaPressure, "detected NaN!");
Assert::isNotNaN(state.pressureRelToT0, "detected NaN!");
if(std::abs(state.dirLock) > 0) {
if (state.dirLock > 0) {--state.dirLock;}
if (state.dirLock < 0) {++state.dirLock;}
} else {
if (deltaZ_cm > 0) {state.dirLock = +25;}
if (deltaZ_cm < 0) {state.dirLock = -25;}
}
}
double getProbability(const WalkState& state, const Node& startNode, const Node& curNode, const Node& potentialNode) const override {
(void) startNode;
// get the values from control-data
const float curRelPressure = ctrl->barometer.hPaRelativeToT0;
const float pressureSigma = ctrl->barometer.estimatedSigma * 1.50f;
// not yet available/calibrated/possible -> skip evaluation!
if (pressureSigma == 0) {return 1;}
// e.g. walking down from the 3rd to the second floor
// startZ = 10 meter, endZ = 7 meter -> deltaZ = +3 meter;
// deltaPressure is POSITIVE (pressure increases) as we walk downstairs
const int deltaZ_cm = curNode.z_cm - potentialNode.z_cm;
const float deltaPressure = (deltaZ_cm / 100.0f) * hPaPerMeter;
const float expectedPressure = state.pressureRelToT0 + deltaPressure;
const float oldErr = std::abs(state.pressureRelToT0 - curRelPressure);
const float newErr = std::abs(expectedPressure - curRelPressure);
if (std::abs(state.dirLock) > 0) {
if (state.dirLock > 0) {
if (deltaZ_cm < 0) {return 0;}
if (deltaZ_cm == 0) {return 0.1;}
return 0.9;
} else {
if (deltaZ_cm > 0) {return 0;}
if (deltaZ_cm == 0) {return 0.1;}
return 0.9;
}
}
if (oldErr > pressureSigma) {
if (deltaZ_cm == 0) {return 0.001;}
}
if (newErr > oldErr) {return 0.002;}
if (newErr == oldErr) {return 0.005;}
if (newErr < oldErr) {return 0.99;}
throw 1;
// // compare control-data with potential transition
// double prob = Distribution::Normal<double>::getProbability(curRelPressure, pressureSigma, expectedPressure);
//// prob = std::pow(prob, 20);
// // sanity checks
// Assert::isNotNaN(prob, "detected NaN!");
// Assert::isNotNaN(deltaPressure, "detected NaN!");
// Assert::isNotNaN(expectedPressure, "detected NaN!");
// return prob;
}
};
#endif // WALKMODULERELATIVEPRESSURE_H

View File

@@ -0,0 +1,62 @@
#ifndef WALKMODULESPREAD_H
#define WALKMODULESPREAD_H
#include "WalkModule.h"
#include "WalkStateHeading.h"
/**
* simply try to move away from the starting node as much as possible
*/
template <typename Node, typename WalkState> class WalkModuleSpread : public WalkModule<Node, WalkState> {
private:
Point3 avg;
public:
/** ctor */
WalkModuleSpread() {
;
}
virtual void updateBefore(WalkState& state) override {
(void) state;
avg = avg * 0.999 + state.startPos.inMeter() * 0.001;
}
virtual void updateAfter(WalkState& state, const Node& startNode, const Node& endNode) override {
(void) state;
(void) startNode;
(void) endNode;
}
virtual void step(WalkState& state, const Node& curNode, const Node& nextNode) override {
(void) state;
(void) curNode;
(void) nextNode;
}
double getProbability(const WalkState& state, const Node& startNode, const Node& curNode, const Node& potentialNode) const override {
(void) state;
(void) startNode;
(void) curNode;
const float dOld = avg.getDistance(curNode.inMeter());
const float dNew = avg.getDistance(potentialNode.inMeter());
if (dNew > dOld) {return 0.8;}
if (curNode.z_cm != potentialNode.z_cm) {return 0.8;}
if (dNew == dOld) {return 0.2;}
return 0;
}
};
#endif // WALKMODULESPREAD_H

View File

@@ -0,0 +1,16 @@
#ifndef WALKSTATEHEADING_H
#define WALKSTATEHEADING_H
#include "../../../../geo/Heading.h"
struct WalkStateHeading {
Heading startHeading;
/** ctor */
WalkStateHeading(const Heading& curHeading) : startHeading(curHeading) {;}
};
#endif // WALKSTATEHEADING_H