This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/grid/factory/v2/Importance.h
FrankE a2c9e575a2 huge commit
- worked on about everything
- grid walker using plugable modules
- wifi models
- new distributions
- worked on geometric data-structures
- added typesafe timestamps
- worked on grid-building
- added sensor-classes
- added sensor analysis (step-detection, turn-detection)
- offline data reader
- many test-cases
2016-08-29 08:18:44 +02:00

221 lines
5.8 KiB
C++

#ifndef IMPORTANCE_H
#define IMPORTANCE_H
#include "../../../geo/Units.h"
#include "../../Grid.h"
#include "../../../misc/KNN.h"
#include "../../../misc/KNNArray.h"
#include "../../../math/MiniMat2.h"
#include "../../../math/Distributions.h"
class Importance {
private:
static constexpr const char* name = "GridImp";
public:
template <typename T> static void addOutlineNodes(Grid<T>& dst, Grid<T>& src) {
for (const T& n : src) {
if (n.getNumNeighbors() < 8) {
if (!dst.hasNodeFor(n)) {
dst.add(n);
}
}
}
}
/** attach importance-factors to the grid */
template <typename T> static void addImportance(Grid<T>& g) {
Log::add(name, "adding importance information to all nodes");// at height " + std::to_string(z_cm));
// get an inverted version of the grid
Grid<T> inv(g.getGridSize_cm());
addOutlineNodes(inv, g);
//GridFactory<T> fac(inv);
//fac.addInverted(g, z_cm);
// sanity check
Assert::isFalse(inv.getNumNodes() == 0, "inverted grid is empty!");
// construct KNN search
KNN<Grid<T>, 3> knn(inv);
// the number of neighbors to use
static constexpr int numNeighbors = 12;
// create list of all doors
std::vector<T> doors;
// process each node
for (T& n1 : g) {
// is the current node a door?
//if (isDoor(n1, neighbors)) {doors.push_back(n1);} // OLD
if (n1.getType() == GridNode::TYPE_DOOR) {doors.push_back(n1);} // NEW!
// favor stairs just like doors
//if (isStaircase(g, n1)) {doors.push_back(n1);} // OLD
if (n1.getType() == GridNode::TYPE_STAIR) {doors.push_back(n1);} // NEW
}
KNNArray<std::vector<T>> knnArrDoors(doors);
KNN<KNNArray<std::vector<T>>, 3> knnDoors(knnArrDoors);
Distribution::Normal<float> favorDoors(0.0f, 0.5f);
// process each node again
for (T& n1 : g) {
// skip nodes on other than the requested floor-level
//if (n1.z_cm != z_cm) {continue;}
// get the 10 nearest neighbors and their distance
size_t indices[numNeighbors];
float squaredDist[numNeighbors];
float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm};
knn.get(point, numNeighbors, indices, squaredDist);
// get the neighbors
std::vector<T*> neighbors;
for (int i = 0; i < numNeighbors; ++i) {
neighbors.push_back(&inv[indices[i]]);
}
n1.navImportance = 1.0f;
//if (n1.getType() == GridNode::TYPE_FLOOR) {
// get the distance to the nearest door
const float distToWall_m = Units::cmToM(std::sqrt(squaredDist[0]) + g.getGridSize_cm());
// get the distance to the nearest door
const float distToDoor_m = Units::cmToM(knnDoors.getNearestDistance( {n1.x_cm, n1.y_cm, n1.z_cm} ));
n1.navImportance =
1 +
getWallImportance( distToWall_m ) +
favorDoors.getProbability(distToDoor_m) * 1.5f;
//}
//addDoor(n1, neighbors);
// importance for this node (based on the distance from the next door)
//n1.navImportance += favorDoors.getProbability(dist_m) * 0.30;
//n1.navImportance = (dist_m < 0.2) ? (1) : (0.5);
}
}
/** is the given node connected to a staircase? */
template <typename T> static bool isStaircase(Grid<T>& g, T& node) {
return node.getType() == GridNode::TYPE_STAIR;
// // if this node has a neighbor with a different z, this is a stair
// for (T& neighbor : g.neighbors(node)) {
// if (neighbor.z_cm != node.z_cm) {return true;}
// }
// return false;
}
// /** is the given node (and its inverted neighbors) a door? */
// template <typename T> static bool isDoor( T& nSrc, std::vector<T*> neighbors ) {
// if (nSrc.getType() != GridNode::TYPE_FLOOR) {return false;}
// MiniMat2 m1;
//// MiniMat2 m2;
// Point3 center = nSrc;
// // calculate the centroid of the nSrc's nearest-neighbors
// Point3 centroid(0,0,0);
// for (const T* n : neighbors) {
// centroid = centroid + (Point3)*n;
// }
// centroid /= neighbors.size();
// // if nSrc is too far from the centroid, this does not make sense
// if ((centroid-center).length() > 40) {return false;}
// // build covariance of the nearest-neighbors
// int used = 0;
// for (const T* n : neighbors) {
// const Point3 d1 = (Point3)*n - centroid;
// if (d1.length() > 100) {continue;} // radius search
// m1.addSquared(d1.x, d1.y);
//// const Point3 d2 = (Point3)*n - center;
//// if (d2.length() > 100) {continue;} // radius search
//// m2.addSquared(d2.x, d2.y);
// ++used;
// }
// // we need at least two points for the covariance
// if (used < 6) {return false;}
// // check eigenvalues
// MiniMat2::EV ev1 = m1.getEigenvalues();
//// MiniMat2::EV ev2 = m2.getEigenvalues();
// // ensure e1 > e2
// if (ev1.e1 < ev1.e2) {std::swap(ev1.e1, ev1.e2);}
//// if (ev2.e1 < ev2.e2) {std::swap(ev2.e1, ev2.e2);}
// // door?
// const float ratio1 = (ev1.e2/ev1.e1);
//// const float ratio2 = (ev2.e2/ev2.e1);
//// const float ratio3 = std::max(ratio1, ratio2) / std::min(ratio1, ratio2);
// return (ratio1 < 0.30 && ratio1 > 0.05) ;
// }
/** get the importance of the given node depending on its nearest wall */
static float getWallImportance(float dist_m) {
// avoid sticking too close to walls (unlikely)
static Distribution::Normal<float> avoidWalls(0.0, 0.35);
// favour walking near walls (likely)
//static Distribution::Normal<float> stickToWalls(0.9, 0.7);
// favour walking far away (likely)
//static Distribution::Normal<float> farAway(2.2, 0.5);
//if (dist_m > 2.0) {dist_m = 2.0;}
// overall importance
// return - avoidWalls.getProbability(dist_m) * 0.30 // avoid walls
// + stickToWalls.getProbability(dist_m) * 0.15 // walk near walls
// + farAway.getProbability(dist_m) * 0.15 // walk in the middle
return - avoidWalls.getProbability(dist_m) // avoid walls
//+ stickToWalls.getProbability(dist_m) // walk near walls
//+ farAway.getProbability(dist_m) // walk in the middle
;
}
};
#endif // IMPORTANCE_H