added several grid-walks
added new helper methods/classes (e.g. for heading) new test cases optimize the dijkstra cleanups/refactoring added timed-benchmarks to the log many more...
This commit is contained in:
46
misc/KNN.h
46
misc/KNN.h
@@ -2,6 +2,7 @@
|
||||
#define KNN_H
|
||||
|
||||
#include "../lib/nanoflann/nanoflann.hpp"
|
||||
#include "Debug.h"
|
||||
|
||||
/**
|
||||
* helper class to extract k-nearest-neighbors
|
||||
@@ -9,14 +10,16 @@
|
||||
* uses nanoflann
|
||||
*
|
||||
* usage:
|
||||
* KNN<float, Grid<20, T>, T, 3> knn(theGrid);
|
||||
* float search[] = {0,0,0};
|
||||
* std::vector<T> elems = knn.get(search, 3);
|
||||
* Grid<30, T> theGrid;
|
||||
* KNN<Grid<20, T>, 3, float> knn(theGrid);
|
||||
* std::vector<T> elems = knn.get({0,0,0}, 10);
|
||||
*/
|
||||
template <typename Scalar, typename DataStructure, typename Element, int dim> class KNN {
|
||||
template <typename DataStructure, int dim, typename Scalar = float> class KNN {
|
||||
|
||||
private:
|
||||
|
||||
static constexpr const char* name = "KNN";
|
||||
|
||||
/** type-definition for the nanoflann KD-Tree used for searching */
|
||||
typedef nanoflann::KDTreeSingleIndexAdaptor<nanoflann::L2_Simple_Adaptor<Scalar, DataStructure>, DataStructure, dim> Tree;
|
||||
|
||||
@@ -33,11 +36,15 @@ public:
|
||||
|
||||
/** ctor */
|
||||
KNN(DataStructure& data) : tree(dim, data, nanoflann::KDTreeSingleIndexAdaptorParams(maxLeafs)), data(data) {
|
||||
|
||||
Log::add(name, "building kd-tree for " + std::to_string(data.kdtree_get_point_count()) + " elements");
|
||||
tree.buildIndex();
|
||||
Log::add(name, "done");
|
||||
|
||||
}
|
||||
|
||||
/** get the k-nearest-neighbors for the given input point */
|
||||
std::vector<Element> get(const Scalar* point, const int numNeighbors, const float maxDistSquared = 99999) const {
|
||||
template <typename Element> std::vector<Element> get(const Scalar* point, const int numNeighbors, const float maxDistSquared = 99999) const {
|
||||
|
||||
// buffer for to-be-fetched neighbors
|
||||
size_t indices[numNeighbors];
|
||||
@@ -56,6 +63,11 @@ public:
|
||||
|
||||
}
|
||||
|
||||
/** get the k-nearest-neighbors for the given input point */
|
||||
template <typename Element> std::vector<Element> get(std::initializer_list<Scalar> point, const int numNeighbors, const float maxDistSquared = 99999) const {
|
||||
return get(point.begin(), numNeighbors, maxDistSquared);
|
||||
}
|
||||
|
||||
/** get the nearest neighbor and its distance */
|
||||
void getNearest(const Scalar* point, size_t& idx, float& distSquared) {
|
||||
|
||||
@@ -64,6 +76,30 @@ public:
|
||||
|
||||
}
|
||||
|
||||
/** get the index of the element nearest to the given point */
|
||||
size_t getNearestIndex(const Scalar* point) {
|
||||
size_t idx;
|
||||
float distSquared;
|
||||
tree.knnSearch(point, 1, &idx, &distSquared);
|
||||
return idx;
|
||||
}
|
||||
|
||||
/** get the index of the element nearest to the given point */
|
||||
size_t getNearestIndex(const std::initializer_list<Scalar> lst) {
|
||||
size_t idx;
|
||||
float distSquared;
|
||||
tree.knnSearch(lst.begin(), 1, &idx, &distSquared);
|
||||
return idx;
|
||||
}
|
||||
|
||||
/** get the distance to the element nearest to the given point */
|
||||
float getNearestDistance(const std::initializer_list<Scalar> lst) {
|
||||
size_t idx;
|
||||
float distSquared;
|
||||
tree.knnSearch(lst.begin(), 1, &idx, &distSquared);
|
||||
return std::sqrt(distSquared);
|
||||
}
|
||||
|
||||
void get(const Scalar* point, const int numNeighbors, size_t* indices, float* squaredDist) {
|
||||
|
||||
// find k-nearest-neighbors
|
||||
|
||||
Reference in New Issue
Block a user