added several grid-walks

added new helper methods/classes (e.g. for heading)
new test cases
optimize the dijkstra
cleanups/refactoring
added timed-benchmarks to the log
many more...
This commit is contained in:
2016-01-24 18:59:06 +01:00
parent cdf97322f8
commit 9947dced15
30 changed files with 1406 additions and 94 deletions

View File

@@ -4,23 +4,37 @@
#include <string>
#include <iostream>
#include <iomanip>
#include "Time.h"
class Log {
public:
static void add(const char* comp, const std::string what) {
addComp(comp);
std::cout << what << std::endl;
std::cout << what;
addTime();
std::cout << std::endl;
}
static void add(const std::string& component, const std::string what) {
addComp(component.c_str());
std::cout << what << std::endl;
std::cout << what;
addTime();
std::cout << std::endl;
}
private:
static void addTime() {
static auto last = Time::tick();
const auto cur = Time::tick();
std::cout << " (+" << Time::diffMS(last, cur) << "ms)";
last = cur;
}
static void addComp(const char* component) {
std::cout << "[" << std::setw(12) << std::setfill(' ') << component << "] ";
}

View File

@@ -2,6 +2,7 @@
#define KNN_H
#include "../lib/nanoflann/nanoflann.hpp"
#include "Debug.h"
/**
* helper class to extract k-nearest-neighbors
@@ -9,14 +10,16 @@
* uses nanoflann
*
* usage:
* KNN<float, Grid<20, T>, T, 3> knn(theGrid);
* float search[] = {0,0,0};
* std::vector<T> elems = knn.get(search, 3);
* Grid<30, T> theGrid;
* KNN<Grid<20, T>, 3, float> knn(theGrid);
* std::vector<T> elems = knn.get({0,0,0}, 10);
*/
template <typename Scalar, typename DataStructure, typename Element, int dim> class KNN {
template <typename DataStructure, int dim, typename Scalar = float> class KNN {
private:
static constexpr const char* name = "KNN";
/** type-definition for the nanoflann KD-Tree used for searching */
typedef nanoflann::KDTreeSingleIndexAdaptor<nanoflann::L2_Simple_Adaptor<Scalar, DataStructure>, DataStructure, dim> Tree;
@@ -33,11 +36,15 @@ public:
/** ctor */
KNN(DataStructure& data) : tree(dim, data, nanoflann::KDTreeSingleIndexAdaptorParams(maxLeafs)), data(data) {
Log::add(name, "building kd-tree for " + std::to_string(data.kdtree_get_point_count()) + " elements");
tree.buildIndex();
Log::add(name, "done");
}
/** get the k-nearest-neighbors for the given input point */
std::vector<Element> get(const Scalar* point, const int numNeighbors, const float maxDistSquared = 99999) const {
template <typename Element> std::vector<Element> get(const Scalar* point, const int numNeighbors, const float maxDistSquared = 99999) const {
// buffer for to-be-fetched neighbors
size_t indices[numNeighbors];
@@ -56,6 +63,11 @@ public:
}
/** get the k-nearest-neighbors for the given input point */
template <typename Element> std::vector<Element> get(std::initializer_list<Scalar> point, const int numNeighbors, const float maxDistSquared = 99999) const {
return get(point.begin(), numNeighbors, maxDistSquared);
}
/** get the nearest neighbor and its distance */
void getNearest(const Scalar* point, size_t& idx, float& distSquared) {
@@ -64,6 +76,30 @@ public:
}
/** get the index of the element nearest to the given point */
size_t getNearestIndex(const Scalar* point) {
size_t idx;
float distSquared;
tree.knnSearch(point, 1, &idx, &distSquared);
return idx;
}
/** get the index of the element nearest to the given point */
size_t getNearestIndex(const std::initializer_list<Scalar> lst) {
size_t idx;
float distSquared;
tree.knnSearch(lst.begin(), 1, &idx, &distSquared);
return idx;
}
/** get the distance to the element nearest to the given point */
float getNearestDistance(const std::initializer_list<Scalar> lst) {
size_t idx;
float distSquared;
tree.knnSearch(lst.begin(), 1, &idx, &distSquared);
return std::sqrt(distSquared);
}
void get(const Scalar* point, const int numNeighbors, size_t* indices, float* squaredDist) {
// find k-nearest-neighbors

59
misc/KNNArray.h Normal file
View File

@@ -0,0 +1,59 @@
#ifndef KNNARRAY_H
#define KNNARRAY_H
/**
* this wrapper class provides all methods needed for nanoflanns KNN-search.
* in order for this wrapper class to work, your data-structure must provide
* the following methods:
*
* PointList:
* size() - return the number of contained points
* operator [] - access points via their index
* Point
* operator [] - access each dimension via its index
*
* example:
* std::vector<Point3> points;
* KNNArray<std::vector<Point3>> arr(points);
* KNN<KNNArray<std::vector<Point3>>, 3> knn(arr);
*/
template <typename T> class KNNArray {
private:
/** the underlying data structure */
const T& elem;
public:
/** ctor with the underlying data structure */
KNNArray(const T& elem) : elem(elem) {
;
}
/** get the number of elements to search throrugh */
inline int kdtree_get_point_count() const {
return elem.size();
}
/** use nanoflanns default bbox */
template <class BBOX> inline bool kdtree_get_bbox(BBOX& bb) const {
(void) bb; return false;
}
/** get the idx-th element's dim-th coordinate */
inline float kdtree_get_pt(const size_t idx, const int dim) const {
return elem[idx][dim];
}
/** get the SQUARED distance between the given coordinates and the provided element */
inline float kdtree_distance(const float* p1, const size_t idx_p2, size_t) const {
const float d0 = p1[0] - elem[idx_p2][0];
const float d1 = p1[1] - elem[idx_p2][1];
const float d2 = p1[2] - elem[idx_p2][2];
return (d0*d0) + (d1*d1) + (d2*d2);
}
};
#endif // KNNARRAY_H

21
misc/Time.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef TIME_H
#define TIME_H
#include <chrono>
class Time {
public:
static std::chrono::system_clock::time_point tick() {
return std::chrono::system_clock::now();
}
static int diffMS(std::chrono::system_clock::time_point tick1, std::chrono::system_clock::time_point tick2) {
return std::chrono::duration_cast<std::chrono::milliseconds>(tick2 - tick1).count();
}
};
#endif // TIME_H