#39 #40 git add for last commit

This commit is contained in:
toni
2017-11-15 17:46:06 +01:00
parent c8063bc862
commit 95a5c8f34f
49 changed files with 4661 additions and 0 deletions

View File

@@ -0,0 +1,24 @@
#ifndef ARTIFICIALDISTRIBUTION_H
#define ARTIFICIALDISTRIBUTION_H
#include <vector>
#include "../Particle.h"
namespace SMC {
/**
* interface for artificial distributions
*/
template <typename State>
class ArtificialDistribution {
public:
/** calculate the probability/density*/
virtual double calculate(Particle<State> const& particle) = 0;
};
}
#endif // ARTIFICIALDISTRIBUTION_H

View File

@@ -0,0 +1,57 @@
#ifndef BACKWARDFILTER_H
#define BACKWARDFILTER_H
#include <vector>
#include <memory>
#include "BackwardFilterTransition.h"
#include "../sampling/ParticleTrajectorieSampler.h"
#include "../Particle.h"
#include "../filtering/resampling/ParticleFilterResampling.h"
#include "../filtering/estimation/ParticleFilterEstimation.h"
#include "../filtering/ParticleFilterEvaluation.h"
#include "../filtering/ParticleFilterInitializer.h"
#include "../../Assertions.h"
namespace SMC {
template <typename State, typename Control, typename Observation>
class BackwardFilter {
public:
virtual State update(std::vector<Particle<State>> const& forwardParticles) = 0;
/** access to all backward / smoothed particles */
virtual const std::vector<std::vector<Particle<State>>>& getbackwardParticles() = 0;
/** set the estimation method to use */
virtual void setEstimation(std::unique_ptr<ParticleFilterEstimation<State>> estimation) = 0;
/** set the transition method to use */
virtual void setTransition(std::unique_ptr<BackwardFilterTransition<State, Control>> transition) = 0;
/** set the resampling method to use */
virtual void setResampling(std::unique_ptr<ParticleFilterResampling<State>> resampler) = 0;
/** set the resampling threshold as the percentage of efficient particles */
virtual void setNEffThreshold(const double thresholdPercent) = 0;
/** set sampler */
virtual void setSampler(std::unique_ptr<ParticleTrajectorieSampler<State>> sampler) { (void) sampler; };
/** get the used transition method */
virtual BackwardFilterTransition<State, Control>* getTransition() = 0;
/** reset */
virtual void reset() {};
};
}
#endif // BACKWARDFILTER_H

View File

@@ -0,0 +1,33 @@
#ifndef BACKWARDFILTERTRANSITION_H
#define BACKWARDFILTERTRANSITION_H
#include <vector>
#include "../Particle.h"
namespace SMC {
/**
* interface for the user-defined backward filter transition.
* the transition describes the probability of a state change during the transition phase p(q_t+1 | q_t)
*/
template <typename State, typename Control>
class BackwardFilterTransition {
public:
/**
* @brief perform the transition p(q_t+1 | q_t) for all particles and possibilities
* if you do not use this abstract function, do not forget to throw an error if the user does
*/
virtual std::vector<std::vector<double>> transition(std::vector<Particle<State>> const& toBeSmoothedParticles_qt, std::vector<Particle<State>>const& alreadySmoothedParticles_qt1) = 0;
/**
* @brief perform a forward transition based on the to be smoothed particles at time q_t and sample particles at time q_t+1, also gets an vector with controls c_1:T
* if you do not use this abstract function, do not forget to throw an error if the user does
*/
virtual std::vector<Particle<State>> transition(std::vector<Particle<State>> const& toBeSmoothedParticles_qt, std::vector<Control> const& controls_1T) = 0;
};
}
#endif // BACKWARDFILTERTRANSITION_H

View File

@@ -0,0 +1,258 @@
/*
* CondensationBackwardFilter.h
*
* Created on: Jun 23, 2015
* Author: Toni Fetzer
*/
#ifndef BACKWARDSIMULATION_H_
#define BACKWARDSIMULATION_H_
#include <vector>
#include <memory>
#include <algorithm>
#include "BackwardFilterTransition.h"
#include "BackwardFilter.h"
#include "../Particle.h"
#include "../filtering/resampling/ParticleFilterResampling.h"
#include "../filtering/estimation/ParticleFilterEstimation.h"
#include "../filtering/ParticleFilterEvaluation.h"
#include "../filtering/ParticleFilterInitializer.h"
#include "../sampling/ParticleTrajectorieSampler.h"
#include "../../Assertions.h"
namespace SMC {
/**
* the main-class for the Backward Simulation Filter
* running "backwards" in time, generates multiple backwards trajectories
* (Realizations) by repeating the backward simulation M time.
* it can be started at a random time T of any forward particle filter
* [Monte Carlo smoothing for non-linear time series Godsill et al. '03]
* @param State the (user-defined) state for each particle
* @param numRealizations is the number of backward trajectories starting
*/
template <typename State, typename Control, typename Observation>
class BackwardSimulation : public BackwardFilter<State, Control, Observation>{
private:
/** all smoothed particles T -> 1*/
std::vector<std::vector<Particle<State>>> backwardParticles;
/** container for particles */
std::vector<Particle<State>> smoothedParticles;
/** the estimation function to use */
std::unique_ptr<ParticleFilterEstimation<State>> estimation;
/** the transition function to use */
std::unique_ptr<BackwardFilterTransition<State, Control>> transition;
/** the resampler to use */
std::unique_ptr<ParticleFilterResampling<State>> resampler;
/** the sampler for drawing trajectories */
std::unique_ptr<ParticleTrajectorieSampler<State>> sampler;
/** the percentage-of-efficient-particles-threshold for resampling */
double nEffThresholdPercent = 0.25;
/** number of realizations to be calculated */
int numRealizations;
/** is update called the first time? */
bool firstFunctionCall;
public:
/** ctor */
BackwardSimulation(int numRealizations) {
this->numRealizations = numRealizations;
backwardParticles.reserve(numRealizations);
smoothedParticles.reserve(numRealizations);
firstFunctionCall = true;
}
/** dtor */
~BackwardSimulation() {
;
}
/** reset **/
void reset(){
this->numRealizations = numRealizations;
backwardParticles.clear();
backwardParticles.reserve(numRealizations);
smoothedParticles.clear();
smoothedParticles.reserve(numRealizations);
firstFunctionCall = true;
}
/** access to all backward / smoothed particles */
const std::vector<std::vector<Particle<State>>>& getbackwardParticles() {
return backwardParticles;
}
/** set the estimation method to use */
void setEstimation(std::unique_ptr<ParticleFilterEstimation<State>> estimation) {
Assert::isNotNull(estimation, "setEstimation() MUST not be called with a nullptr!");
this->estimation = std::move(estimation);
}
/** set the transition method to use */
void setTransition(std::unique_ptr<BackwardFilterTransition<State, Control>> transition) {
Assert::isNotNull(transition, "setTransition() MUST not be called with a nullptr!");
this->transition = std::move(transition);
}
/** set the resampling method to use */
void setResampling(std::unique_ptr<ParticleFilterResampling<State>> resampler) {
Assert::isNotNull(resampler, "setResampling() MUST not be called with a nullptr!");
this->resampler = std::move(resampler);
}
/** set the sampler method to use */
void setSampler(std::unique_ptr<ParticleTrajectorieSampler<State>> sampler){
Assert::isNotNull(sampler, "setSampler() MUST not be called with a nullptr!");
this->sampler = std::move(sampler);
}
/** set the resampling threshold as the percentage of efficient particles */
void setNEffThreshold(const double thresholdPercent) {
this->nEffThresholdPercent = thresholdPercent;
}
/** get the used transition method */
BackwardFilterTransition<State, Control>* getTransition() {
return this->transition.get();
}
/**
* perform update: transition -> correction -> approximation
* gets the weighted sample set of a standard condensation
* particle filter in REVERSED order!
*/
State update(std::vector<Particle<State>> const& forwardParticles) {
// sanity checks (if enabled)
Assert::isNotNull(transition, "transition MUST not be null! call setTransition() first!");
Assert::isNotNull(estimation, "estimation MUST not be null! call setEstimation() first!");
//storage for single trajectories / smoothed particles
smoothedParticles.clear();
// Choose \tilde x_T = x^(i)_T with probability w^(i)_T
// Therefore sample independently from the categorical distribution of weights.
if(firstFunctionCall){
smoothedParticles = sampler->drawTrajectorie(forwardParticles, numRealizations);
firstFunctionCall = false;
backwardParticles.push_back(smoothedParticles);
const State es = estimation->estimate(smoothedParticles);
return es;
}
// compute weights using the transition model
// transitionWeigths[numRealizations][numParticles]
std::vector<std::vector<double>> transitionWeights = transition->transition(forwardParticles, backwardParticles.back());
//get the next trajectorie for a realisation
for(int j = 0; j < numRealizations; ++j){
//vector for the current smoothedWeights at time t
std::vector<Particle<State>> smoothedWeights;
smoothedWeights.resize(forwardParticles.size());
smoothedWeights = forwardParticles;
//check if all transitionWeights are zero
double weightSumTransition = std::accumulate(transitionWeights[j].begin(), transitionWeights[j].end(), 0.0);
Assert::isNot0(weightSumTransition, "all transition weights for smoothing are zero");
int i = 0;
for (auto& w : transitionWeights.at(j)) {
// multiply the weight of the particles at time t and normalize
smoothedWeights.at(i).weight = (smoothedWeights.at(i).weight * w);
if(smoothedWeights.at(i).weight != smoothedWeights.at(i).weight) {throw "detected NaN";}
// iter
++i;
}
//get the sum of all weights
auto lambda = [](double current, const Particle<State>& a){return current + a.weight; };
double weightSumSmoothed = std::accumulate(smoothedWeights.begin(), smoothedWeights.end(), 0.0, lambda);
//normalize the weights
if(weightSumSmoothed != 0.0){
for (int i = 0; i < smoothedWeights.size(); ++i){
smoothedWeights.at(i).weight /= weightSumSmoothed;
}
//check if normalization worked
double normWeightSum = std::accumulate(smoothedWeights.begin(), smoothedWeights.end(), 0.0, lambda);
Assert::isNear(normWeightSum, 1.0, 0.001, "Smoothed weights do not sum to 1");
}
//draw the next trajectorie at time t for a realization and save them
smoothedParticles.push_back(sampler->drawSingleParticle(smoothedWeights));
//throw if weight of smoothedParticle is zero
//in practice this is possible, if a particle is completely separated from the rest and is therefore
//weighted zero or very very low.
Assert::isNot0(smoothedParticles.back().weight, "smoothed particle has zero weight");
}
if(resampler)
{
//TODO - does this even make sense?
std::cout << "Warning - Resampling is not yet implemented!" << std::endl;
// //resampling if necessery
// double sum = 0.0;
// double weightSum = std::accumulate(smoothedParticles.begin().weight, smoothedParticles.end().weight, 0.0);
// for (auto& p : smoothedParticles) {
// p.weight /= weightSum;
// sum += (p.weight * p.weight);
// }
// const double neff = 1.0/sum;
// if (neff != neff) {throw "detected NaN";}
// // if the number of efficient particles is too low, perform resampling
// if (neff < smoothedParticles.size() * nEffThresholdPercent) { resampler->resample(smoothedParticles); }
}
// push_back the smoothedParticles
backwardParticles.push_back(smoothedParticles);
// estimate the current state
const State est = estimation->estimate(smoothedParticles);
// done
return est;
}
};
}
#endif /* BACKWARDSIMULATION_H_ */

View File

@@ -0,0 +1,226 @@
/*
* CondensationBackwardFilter.h
*
* Created on: Jun 23, 2015
* Author: Toni Fetzer
*/
#ifndef CONDENSATIONBACKWARDFILTER_H_
#define CONDENSATIONBACKWARDFILTER_H_
#include <vector>
#include <memory>
#include "BackwardFilterTransition.h"
#include "BackwardFilter.h"
#include "../Particle.h"
#include "../filtering/resampling/ParticleFilterResampling.h"
#include "../filtering/estimation/ParticleFilterEstimation.h"
#include "../filtering/ParticleFilterEvaluation.h"
#include "../filtering/ParticleFilterInitializer.h"
#include "../../Assertions.h"
long long count = 0.0;
namespace SMC {
/**
* the main-class for the Condensation Backward Filter
* running "backwards" in time, updating every timestep, no resampling
* it can be started at a random time T of an forward particle filter
* [Smoothing filter for condensation by Isard and Blake '98]
* @param State the (user-defined) state for each particle
*/
template <typename State>
class CondensationBackwardFilter : public BackwardFilter<State> {
private:
/** all smoothed particles 1 -> T*/
std::vector<std::vector<Particle<State>>> backwardParticles;
/** the estimation function to use */
std::unique_ptr<ParticleFilterEstimation<State>> estimation;
/** the transition function to use */
std::unique_ptr<BackwardFilterTransition<State>> transition;
/** the resampler to use */
std::unique_ptr<ParticleFilterResampling<State>> resampler;
/** the percentage-of-efficient-particles-threshold for resampling */
double nEffThresholdPercent = 0.25;
public:
/** ctor */
CondensationBackwardFilter() {
}
/** dtor */
~CondensationBackwardFilter() {
;
}
/** access to all backward / smoothed particles */
const std::vector<std::vector<Particle<State>>>& getbackwardParticles() {
return backwardParticles;
}
/** set the estimation method to use */
void setEstimation(std::unique_ptr<ParticleFilterEstimation<State>> estimation) {
Assert::isNotNull(estimation, "setEstimation() MUST not be called with a nullptr!");
this->estimation = std::move(estimation);
}
/** set the transition method to use */
void setTransition(std::unique_ptr<BackwardFilterTransition<State>> transition) {
Assert::isNotNull(transition, "setTransition() MUST not be called with a nullptr!");
this->transition = std::move(transition);
}
/** set the resampling method to use */
void setResampling(std::unique_ptr<ParticleFilterResampling<State>> resampler) {
Assert::isNotNull(resampler, "setResampling() MUST not be called with a nullptr!");
this->resampler = std::move(resampler);
}
/** set the resampling threshold as the percentage of efficient particles */
void setNEffThreshold(const double thresholdPercent) {
this->nEffThresholdPercent = thresholdPercent;
}
/** get the used transition method */
BackwardFilterTransition<State>* getTransition() {
return this->transition.get();
}
/**
* perform update: transition -> correction -> approximation
* gets the weighted sample set of a standard condensation
* particle filter in REVERSED order!
*/
State update(std::vector<Particle<State>> const& forwardParticles) {
// sanity checks (if enabled)
Assert::isNotNull(transition, "transition MUST not be null! call setTransition() first!");
Assert::isNotNull(estimation, "estimation MUST not be null! call setEstimation() first!");
// since the algorithm starts at T-1 we need to initialize with the first set of forwardParticels
// psi_T = pi_T
static bool firstFunctionCall = true;
if(firstFunctionCall){
backwardParticles.push_back(forwardParticles);
firstFunctionCall = false;
std::vector<Particle<State>> tt = forwardParticles;
const State es = estimation->estimate(tt);
return es;
}
//weightsume for normalization
double weightSum = 0.0;
// perform the transition step p(x_t+1|x_t)
std::vector<std::vector<double>> predictionProbabilities = transition->transition(forwardParticles, backwardParticles.back());
// calculate the correction factors
std::vector<double> correctionFactors;
for(int m = 0; m < forwardParticles.size(); ++m){
double gamma = 0.0;
for(int k = 0; k < forwardParticles.size(); ++k){
// gamma(m) = sum(pi(k) * alpha(m,k))
gamma += forwardParticles[k].weight * predictionProbabilities[m][k];
if (gamma != gamma) {throw "detected NaN";}
}
correctionFactors.push_back(gamma);
}
// approximate backward variables
std::vector<Particle<State>> smoothedParticles = forwardParticles;
for(int n = 0; n < forwardParticles.size(); ++n){
double delta = 0.0;
for(int m = 0; m < forwardParticles.size(); ++m){
// delta(n) = sum(psi(m) * alpha(m,n) / gamma(m))
//!! THIS IS A HACK !! Gamma is getting zero if the prob is to damn low. This would results in NaN for gamma
//!! Therefore we set alpha(m,n) / gamma(m) = 1.0;
if(correctionFactors[m] == 0.0){
delta += backwardParticles.back().at(m).weight;
std::cout << "Gamma is Zero" << count ++ << std::endl;
}
else
delta += backwardParticles.back().at(m).weight * (predictionProbabilities[m][n] / correctionFactors[m]);
if (delta != delta) {throw "detected NaN";}
}
// Evaluate smoothing weights
// psi(n) = pi(n) * delta(n)
double weight = delta * forwardParticles[n].weight;
smoothedParticles[n].weight = weight;
// fill weightsum
weightSum += weight;
if (forwardParticles[n].weight != forwardParticles[n].weight) {throw "detected NaN";}
if (delta != delta) {throw "detected NaN";}
if (weight != weight) {throw "detected NaN";}
if (weightSum != weightSum) {throw "detected NaN";}
}
// normalize the particle weights and thereby calculate N_eff
double sum = 0.0;
for (auto& p : smoothedParticles) {
p.weight /= weightSum;
sum += (p.weight * p.weight);
// sanity check
// if (p.state.heading != p.state.heading) {throw "detected NaN";}
// if (p.state.z_nr != p.state.z_nr) {throw "detected NaN";}
// if (p.state.x_cm != p.state.x_cm) {throw "detected NaN";}
// if (p.state.y_cm != p.state.y_cm) {throw "detected NaN";}
// if (p.weight != p.weight) {throw "detected NaN";}
}
const double neff = 1.0/sum;
if (neff != neff) {throw "detected NaN";}
// estimate the current state
const State est = estimation->estimate(smoothedParticles);
// if (est.heading != est.heading) {throw "detected NaN";}
// if (est.z_nr != est.z_nr) {throw "detected NaN";}
// if (est.x_cm != est.x_cm) {throw "detected NaN";}
// if (est.y_cm != est.y_cm) {throw "detected NaN";}
if(resampler)
{
// if the number of efficient particles is too low, perform resampling
if (neff < smoothedParticles.size() * nEffThresholdPercent) { resampler->resample(smoothedParticles); }
}
// push_back the smoothedParticles
backwardParticles.push_back(smoothedParticles);
// done
return est;
}
};
}
#endif /* CONDENSATIONBACKWARDFILTER_H_ */

View File

@@ -0,0 +1,142 @@
#ifndef FORWARDFILTERHISTORY_H
#define FORWARDFILTERHISTORY_H
#include <vector>
#include "../Particle.h"
#include "../../data/Timestamp.h"
#include "../../Assertions.h"
namespace SMC {
/**
* @brief Provides a data structur for the data available at a specific timestamp of the forward filtering procedure.
* @brief Timestamp; ParticleSet (After Transition and Update); Controls; Observations
*/
template <typename State, typename Control, typename Observation>
class ForwardFilterHistory {
private:
// NOTE: it would be possible to make some kind of struct for this, but in many upcoming functions and methods, i am not able
// to use all this informations. sometimes if have something like p(q_t+1| q_t, o_t) or p(o_t | q_t, c_t). So keep it flexible!
std::vector<Timestamp> timestamps;
std::vector<std::vector<Particle<State>>> particleSets;
std::vector<Control> controls;
std::vector<Observation> observations;
public:
ForwardFilterHistory(){
//empty ctor
}
void add(Timestamp time, std::vector<std::vector<Particle<State>>> set, Control control, Observation obs){
// Is empty? Null? etc.
Assert::isNotNull(time, "Timestamp is Null");
Assert::isNotNull(set, "Particle Set is Null");
Assert::isNotNull(control, "Control is Null");
Assert::isNotNull(obs, "Observation is Null");
timestamps.push_back(time);
particleSets.push_back(set);
controls.push_back(control);
observations.push_back(obs);
}
void removeLatest(){
particleSets.pop_back();
controls.pop_back();
observations.pop_back();
}
void removeFirst(){
particleSets.erase(particleSets.begin());
controls.erase(controls.begin());
observations.erase(observations.begin());
}
/**
* @brief Return the particles from [latestFilterUpdate - @param idx]
* @return returns vector of particles. note: c11 makes a std::move here
*/
std::vector<Particle<State>> getParticleSet(idx = 0){
return particleSets.at(particleSets.end() - idx);
}
/**
* @brief getControl from [latestFilterUpdate - @param idx]
* @return const controls object
*/
const Control getControl(idx = 0){
return controls.at(controls.end() - idx);
}
/**
* @brief getObservationf rom [latestFilterUpdate - @param idx]
* @return const obervations object
*/
const Observation getObservation (idx = 0){
return observations.at(observations.end() - idx);
}
/**
* @brief Return the timestamp from [latestFilterUpdate - @param idx]
* @return returns a Timstampf object
*/
std::vector<Particle<State>> getTimestamp(idx = 0){
return timestamps.at(particleSets.end() - idx);
}
/**
* @brief getLatestFilterUpdateNum
* @return num of particleSets size
*/
const int getLatestFilterUpdateNum(){
return particleSets.size();
}
/**
* @brief getLatestParticleSet Reference
* @return return particle set Note: c11 std::move by vector
*/
std::vector<Particle<State>> getLatestParticleSet(){
return particleSets.back();
}
/**
* @brief getLatestControls
* @return const control object
*/
const Control getLatestControls(){
return controls.back();
}
/**
* @brief getLatestObservation
* @return const observation object
*/
const Observation getLatestObservation(){
return observations.back();
}
/**
* @brief getLatestTimestamp
* @return const Timestamp object
*/
const Timestamp getLatestTimestamp(){
return timestamps.back();
}
};
}
#endif // FORWARDFILTERHISTORY_H

View File

@@ -0,0 +1,187 @@
/*
* CondensationBackwardFilter.h
*
* Created on: Jun 23, 2015
* Author: Toni Fetzer
*/
#ifndef TWOFILTERSMOOTHING_H_
#define TWOFILTERSMOOTHING_H_
#include <vector>
#include <memory>
#include "BackwardFilterTransition.h"
#include "BackwardFilter.h"
#include "ArtificialDistribution.h"
#include "../Particle.h"
#include "../filtering/resampling/ParticleFilterResampling.h"
#include "../filtering/estimation/ParticleFilterEstimation.h"
#include "../filtering/ParticleFilterEvaluation.h"
#include "../filtering/ParticleFilterInitializer.h"
#include "../../Assertions.h"
namespace SMC {
/**
* Smoothing Forward and Backward Filter together.
* Call the Update Function.
* Algorithm taken from [Briers04] Smoothing Algorithms for State-Space Models
*/
template <typename State>
class TwoFilterSmoothing {
private:
/** all smoothed particles 1 -> T*/
std::vector<std::vector<Particle<State>>> smoothedParticles;
/** the estimation function to use */
std::unique_ptr<ParticleFilterEstimation<State>> estimation;
/** the transition function to use */
std::unique_ptr<BackwardFilterTransition<State>> transition;
/** the resampler to use */
std::unique_ptr<ParticleFilterResampling<State>> resampler;
/** artificial distribuation */
std::unique_ptr<ArtificialDistribution<State>> artificialDistribution;
/** the percentage-of-efficient-particles-threshold for resampling */
double nEffThresholdPercent = 0.25;
public:
/** ctor */
TwoFilterSmoothing() {
}
/** dtor */
~TwoFilterSmoothing() {
;
}
/** access to all backward / smoothed particles */
const std::vector<std::vector<Particle<State>>>& getsmoothedParticles() {
return smoothedParticles;
}
/** set the estimation method to use */
void setEstimation(std::unique_ptr<ParticleFilterEstimation<State>> estimation) {
Assert::isNotNull(estimation, "setEstimation() MUST not be called with a nullptr!");
this->estimation = std::move(estimation);
}
/** set the transition method to use */
void setTransition(std::unique_ptr<BackwardFilterTransition<State>> transition) {
Assert::isNotNull(transition, "setTransition() MUST not be called with a nullptr!");
this->transition = std::move(transition);
}
/** set the resampling method to use */
void setResampling(std::unique_ptr<ParticleFilterResampling<State>> resampler) {
Assert::isNotNull(resampler, "setResampling() MUST not be called with a nullptr!");
this->resampler = std::move(resampler);
}
void setArtificialDistribution(std::unique_ptr<ArtificialDistribution<State>> artificialDistribution){
Assert::isNotNull(artificialDistribution, "setArtificialDistribution() MUST not be called with a nullptr!");
this->artificialDistribution = std::move(artificialDistribution);
}
/** set the resampling threshold as the percentage of efficient particles */
void setNEffThreshold(const double thresholdPercent) {
this->nEffThresholdPercent = thresholdPercent;
}
/** get the used transition method */
BackwardFilterTransition<State>* getTransition() {
return this->transition.get();
}
/**
* perform update: transition -> correction -> approximation
* particles from a forwards filter are used to re-weight those from a backwards filter
* so that they represent the target distribution.
* @param: forwardParticles at t-1
* @param: backwardparticles at t
*/
State update(std::vector<Particle<State>> const& forwardParticles, std::vector<Particle<State>> const& backwardParticles) {
// sanity checks (if enabled)
Assert::isNotNull(transition, "transition MUST not be null! call setTransition() first!");
Assert::isNotNull(estimation, "estimation MUST not be null! call setEstimation() first!");
// perform the transition step p(backward_x_t|forward_x_t-1)
std::vector<std::vector<double>> predictionProbabilities = transition->transition(forwardParticles, backwardParticles);
//we are using the forwardparticles to re-weight the backward filter (other direction also possible?)
std::vector<Particle<State>> currentParticles = backwardParticles;
double weightSum = 0.0;
// calculate the correction factors
for(int j = 0; j < backwardParticles.size(); ++j){
double alpha = 0.0;
for(int i = 0; i < backwardParticles.size(); ++i){
// alpha(j) = sum(forward_weight_t-1 * prediction)
alpha += forwardParticles[i].weight * predictionProbabilities[j][i];
if (alpha != alpha) {throw "detected NaN";}
}
double gamma = 1.0;
if(artificialDistribution){
gamma = artificialDistribution->calculate(backwardParticles[j]);
}
//calc the weight
double weight = (currentParticles[j].weight / gamma) * alpha;
currentParticles[j].weight = weight;
weightSum += weight;
}
// normalize the particle weights and thereby calculate N_eff
double sum = 0.0;
for (auto& p : currentParticles) {
p.weight /= weightSum;
sum += (p.weight * p.weight);
}
double neff = 1.0/sum;
if (neff != neff) {neff = 1.0;}
// estimate the current state
const State est = estimation->estimate(currentParticles);
if(resampler)
{
// if the number of efficient particles is too low, perform resampling
if (neff < currentParticles.size() * nEffThresholdPercent) { resampler->resample(currentParticles); }
}
// push_back the smoothedParticles
smoothedParticles.push_back(currentParticles);
// done
return est;
}
};
}
#endif /* TWOFILTERSMOOTHING_H_ */