ref #39 smoothing is refactored
KDE smoothing algorithmisch mal geschrieben, jetzt noch testen
This commit is contained in:
@@ -6,6 +6,7 @@
|
||||
#include <memory>
|
||||
|
||||
#include "BackwardFilterTransition.h"
|
||||
#include "ForwardFilterHistory.h"
|
||||
|
||||
#include "../sampling/ParticleTrajectorieSampler.h"
|
||||
|
||||
@@ -16,6 +17,7 @@
|
||||
#include "../filtering/ParticleFilterEvaluation.h"
|
||||
#include "../filtering/ParticleFilterInitializer.h"
|
||||
|
||||
|
||||
#include "../../Assertions.h"
|
||||
|
||||
|
||||
@@ -25,7 +27,19 @@ namespace SMC {
|
||||
class BackwardFilter {
|
||||
|
||||
public:
|
||||
virtual State update(std::vector<Particle<State>> const& forwardParticles) = 0;
|
||||
|
||||
/**
|
||||
* @brief updating the backward filter (smoothing) using the informations made in the forward step (filtering)
|
||||
* @param forwardFilter is a given ForwardFilterHistory containing all Filtering steps made.
|
||||
* @return return the last smoothed estimation ordered backwards in time direction.
|
||||
*/
|
||||
virtual State update(ForwardFilterHistory<State, Control, Observation>& forwardFilter, int lag = 0) = 0;
|
||||
|
||||
/**
|
||||
* @brief getEstimations
|
||||
* @return vector with all estimations running backward in time. T -> 0
|
||||
*/
|
||||
virtual std::vector<State> getEstimations() = 0;
|
||||
|
||||
/** access to all backward / smoothed particles */
|
||||
virtual const std::vector<std::vector<Particle<State>>>& getbackwardParticles() = 0;
|
||||
@@ -48,9 +62,6 @@ namespace SMC {
|
||||
/** get the used transition method */
|
||||
virtual BackwardFilterTransition<State, Control>* getTransition() = 0;
|
||||
|
||||
/** reset */
|
||||
virtual void reset() {};
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
@@ -46,8 +46,8 @@ namespace SMC {
|
||||
/** all smoothed particles T -> 1*/
|
||||
std::vector<std::vector<Particle<State>>> backwardParticles;
|
||||
|
||||
/** container for particles */
|
||||
std::vector<Particle<State>> smoothedParticles;
|
||||
/** all estimations calculated */
|
||||
std::vector<State> estimatedStates;
|
||||
|
||||
/** the estimation function to use */
|
||||
std::unique_ptr<ParticleFilterEstimation<State>> estimation;
|
||||
@@ -77,26 +77,13 @@ namespace SMC {
|
||||
BackwardSimulation(int numRealizations) {
|
||||
this->numRealizations = numRealizations;
|
||||
backwardParticles.reserve(numRealizations);
|
||||
smoothedParticles.reserve(numRealizations);
|
||||
firstFunctionCall = true;
|
||||
}
|
||||
|
||||
/** dtor */
|
||||
~BackwardSimulation() {
|
||||
;
|
||||
}
|
||||
|
||||
/** reset **/
|
||||
void reset(){
|
||||
this->numRealizations = numRealizations;
|
||||
|
||||
backwardParticles.clear();
|
||||
backwardParticles.reserve(numRealizations);
|
||||
|
||||
smoothedParticles.clear();
|
||||
smoothedParticles.reserve(numRealizations);
|
||||
|
||||
firstFunctionCall = true;
|
||||
estimatedStates.clear();
|
||||
}
|
||||
|
||||
/** access to all backward / smoothed particles */
|
||||
@@ -140,118 +127,154 @@ namespace SMC {
|
||||
}
|
||||
|
||||
/**
|
||||
* perform update: transition -> correction -> approximation
|
||||
* gets the weighted sample set of a standard condensation
|
||||
* particle filter in REVERSED order!
|
||||
* @brief update
|
||||
* @param forwardHistory
|
||||
* @return
|
||||
*/
|
||||
State update(std::vector<Particle<State>> const& forwardParticles) {
|
||||
State update(ForwardFilterHistory<State, Control, Observation>& forwardHistory, int lag = 666) {
|
||||
|
||||
// sanity checks (if enabled)
|
||||
Assert::isNotNull(transition, "transition MUST not be null! call setTransition() first!");
|
||||
Assert::isNotNull(estimation, "estimation MUST not be null! call setEstimation() first!");
|
||||
|
||||
//storage for single trajectories / smoothed particles
|
||||
smoothedParticles.clear();
|
||||
//init for backward filtering
|
||||
std::vector<Particle<State>> smoothedParticles;
|
||||
smoothedParticles.reserve(numRealizations);
|
||||
firstFunctionCall = true;
|
||||
|
||||
// Choose \tilde x_T = x^(i)_T with probability w^(i)_T
|
||||
// Therefore sample independently from the categorical distribution of weights.
|
||||
if(firstFunctionCall){
|
||||
|
||||
smoothedParticles = sampler->drawTrajectorie(forwardParticles, numRealizations);
|
||||
|
||||
firstFunctionCall = false;
|
||||
backwardParticles.push_back(smoothedParticles);
|
||||
|
||||
const State es = estimation->estimate(smoothedParticles);
|
||||
return es;
|
||||
if(lag == 666){
|
||||
lag = forwardHistory.size() - 1;
|
||||
}
|
||||
|
||||
// compute weights using the transition model
|
||||
// transitionWeigths[numRealizations][numParticles]
|
||||
std::vector<std::vector<double>> transitionWeights = transition->transition(forwardParticles, backwardParticles.back());
|
||||
//check if we have enough data for lag
|
||||
if(forwardHistory.size() <= lag){
|
||||
lag = forwardHistory.size() - 1;
|
||||
}
|
||||
|
||||
//get the next trajectorie for a realisation
|
||||
for(int j = 0; j < numRealizations; ++j){
|
||||
//iterate through all forward filtering steps
|
||||
for(int i = 0; i <= lag; ++i){
|
||||
std::vector<Particle<State>> forwardParticles = forwardHistory.getParticleSet(i);
|
||||
|
||||
//vector for the current smoothedWeights at time t
|
||||
std::vector<Particle<State>> smoothedWeights;
|
||||
smoothedWeights.resize(forwardParticles.size());
|
||||
smoothedWeights = forwardParticles;
|
||||
//storage for single trajectories / smoothed particles
|
||||
smoothedParticles.clear();
|
||||
|
||||
//check if all transitionWeights are zero
|
||||
double weightSumTransition = std::accumulate(transitionWeights[j].begin(), transitionWeights[j].end(), 0.0);
|
||||
Assert::isNot0(weightSumTransition, "all transition weights for smoothing are zero");
|
||||
// Choose \tilde x_T = x^(i)_T with probability w^(i)_T
|
||||
// Therefore sample independently from the categorical distribution of weights.
|
||||
if(firstFunctionCall){
|
||||
|
||||
int i = 0;
|
||||
for (auto& w : transitionWeights.at(j)) {
|
||||
smoothedParticles = sampler->drawTrajectorie(forwardParticles, numRealizations);
|
||||
|
||||
// multiply the weight of the particles at time t and normalize
|
||||
smoothedWeights.at(i).weight = (smoothedWeights.at(i).weight * w);
|
||||
if(smoothedWeights.at(i).weight != smoothedWeights.at(i).weight) {throw "detected NaN";}
|
||||
firstFunctionCall = false;
|
||||
backwardParticles.push_back(smoothedParticles);
|
||||
|
||||
// iter
|
||||
++i;
|
||||
State est = estimation->estimate(smoothedParticles);
|
||||
estimatedStates.push_back(est);
|
||||
}
|
||||
|
||||
//get the sum of all weights
|
||||
auto lambda = [](double current, const Particle<State>& a){return current + a.weight; };
|
||||
double weightSumSmoothed = std::accumulate(smoothedWeights.begin(), smoothedWeights.end(), 0.0, lambda);
|
||||
// compute weights using the transition model
|
||||
// transitionWeigths[numRealizations][numParticles]
|
||||
std::vector<std::vector<double>> transitionWeights = transition->transition(forwardParticles, backwardParticles.back());
|
||||
|
||||
//normalize the weights
|
||||
if(weightSumSmoothed != 0.0){
|
||||
for (int i = 0; i < smoothedWeights.size(); ++i){
|
||||
smoothedWeights.at(i).weight /= weightSumSmoothed;
|
||||
//get the next trajectorie for a realisation
|
||||
for(int j = 0; j < numRealizations; ++j){
|
||||
|
||||
//vector for the current smoothedWeights at time t
|
||||
std::vector<Particle<State>> smoothedWeights;
|
||||
smoothedWeights.resize(forwardParticles.size());
|
||||
smoothedWeights = forwardParticles;
|
||||
|
||||
//check if all transitionWeights are zero
|
||||
double weightSumTransition = std::accumulate(transitionWeights[j].begin(), transitionWeights[j].end(), 0.0);
|
||||
Assert::isNot0(weightSumTransition, "all transition weights for smoothing are zero");
|
||||
|
||||
int k = 0;
|
||||
for (auto& w : transitionWeights.at(j)) {
|
||||
|
||||
// multiply the weight of the particles at time t and normalize
|
||||
smoothedWeights.at(k).weight = (smoothedWeights.at(k).weight * w);
|
||||
if(smoothedWeights.at(k).weight != smoothedWeights.at(k).weight) {throw "detected NaN";}
|
||||
|
||||
// iter
|
||||
++k;
|
||||
}
|
||||
|
||||
//check if normalization worked
|
||||
double normWeightSum = std::accumulate(smoothedWeights.begin(), smoothedWeights.end(), 0.0, lambda);
|
||||
Assert::isNear(normWeightSum, 1.0, 0.001, "Smoothed weights do not sum to 1");
|
||||
//get the sum of all weights
|
||||
auto lambda = [](double current, const Particle<State>& a){return current + a.weight; };
|
||||
double weightSumSmoothed = std::accumulate(smoothedWeights.begin(), smoothedWeights.end(), 0.0, lambda);
|
||||
|
||||
//normalize the weights
|
||||
if(weightSumSmoothed != 0.0){
|
||||
for (int l = 0; l < smoothedWeights.size(); ++l){
|
||||
smoothedWeights.at(l).weight /= weightSumSmoothed;
|
||||
}
|
||||
|
||||
//check if normalization worked
|
||||
double normWeightSum = std::accumulate(smoothedWeights.begin(), smoothedWeights.end(), 0.0, lambda);
|
||||
Assert::isNear(normWeightSum, 1.0, 0.001, "Smoothed weights do not sum to 1");
|
||||
}
|
||||
|
||||
|
||||
//draw the next trajectorie at time t for a realization and save them
|
||||
smoothedParticles.push_back(sampler->drawSingleParticle(smoothedWeights));
|
||||
|
||||
//throw if weight of smoothedParticle is zero
|
||||
//in practice this is possible, if a particle is completely separated from the rest and is therefore
|
||||
//weighted zero or very very low.
|
||||
Assert::isNot0(smoothedParticles.back().weight, "smoothed particle has zero weight");
|
||||
}
|
||||
|
||||
|
||||
//draw the next trajectorie at time t for a realization and save them
|
||||
smoothedParticles.push_back(sampler->drawSingleParticle(smoothedWeights));
|
||||
if(resampler)
|
||||
{
|
||||
//TODO - does this even make sense?
|
||||
Assert::doThrow("Warning - Resampling is not yet implemented!");
|
||||
}
|
||||
|
||||
// push_back the smoothedParticles
|
||||
backwardParticles.push_back(smoothedParticles);
|
||||
|
||||
// estimate the current state
|
||||
if(lag == (forwardHistory.size() - 1) ){ //fixed lag
|
||||
State est = estimation->estimate(smoothedParticles);
|
||||
estimatedStates.push_back(est);
|
||||
}
|
||||
else if (i == lag) { //fixed interval
|
||||
State est = estimation->estimate(smoothedParticles);
|
||||
estimatedStates.push_back(est);
|
||||
}
|
||||
|
||||
//throw if weight of smoothedParticle is zero
|
||||
//in practice this is possible, if a particle is completely separated from the rest and is therefore
|
||||
//weighted zero or very very low.
|
||||
Assert::isNot0(smoothedParticles.back().weight, "smoothed particle has zero weight");
|
||||
}
|
||||
|
||||
//return the calculated estimations
|
||||
// TODO: Wir interessieren uns beim fixed-lag smoothing immer nur für die letzte estimation und den letzten satz gesmoothet particle da wir ja weiter vorwärts in der Zeit gehen
|
||||
// und pro zeitschritt ein neues particle set hinzu kommt. also wenn lag = 3, dann smoothen wir t - 3 und sollten auch nur die estimation von t-3 und das particle set von t-3 abspeichern
|
||||
//
|
||||
// beim interval smoothing dagegen interessieren uns alle, da ja keine neuen future informationen kommen und wir einfach sequentiell zurück in die zeit wandern.
|
||||
//
|
||||
// lösungsvorschlag.
|
||||
// - observer-pattern? immer wenn eine neue estimation und ein neues particle set kommt, sende. (wird nix bringen, da keine unterschiedlichen threads?)
|
||||
// - wie vorher machen, also pro update eine estimation aber jedem update einfach alle observations und alle controls mitgeben?!?!?
|
||||
// - ich gebe zusätzlich den lag mit an. dann kann die forwardfilterhistory auch ständig alles halten. dann gibt es halt keine ständigen updates, sondern man muss die eine
|
||||
// berechnung abwarten. eventl. eine art ladebalken hinzufügen. (30 von 120 timestamps done) (ich glaube das ist die beste blackboxigste version) man kann den lag natürlich auch beim
|
||||
// init des backwardsimulation objects mit übergeben. ABER: damit könntem an kein dynamic-lag smoothing mehr machen. also lieber variable lassen :). durch den lag wissen wir einfach was wir
|
||||
// genau in estimatedStates und backwardParticles speichern müssen ohne über das problem oben zu stoßen. haben halt keine ständigen updates. observer-pattern hier nur bei mehrere threads,
|
||||
// das wäre jetzt aber overkill und deshalb einfach ladebalken :):):):)
|
||||
// - oder man macht einfach zwei update funktionen mit den beiden möglichkeiten. halte ich aber für nen dummen kompromiss. )
|
||||
|
||||
if(resampler)
|
||||
{
|
||||
// würde es sinn machen, die estimations auch mit zu speichern?
|
||||
|
||||
//TODO - does this even make sense?
|
||||
std::cout << "Warning - Resampling is not yet implemented!" << std::endl;
|
||||
// //resampling if necessery
|
||||
// double sum = 0.0;
|
||||
// double weightSum = std::accumulate(smoothedParticles.begin().weight, smoothedParticles.end().weight, 0.0);
|
||||
// for (auto& p : smoothedParticles) {
|
||||
// p.weight /= weightSum;
|
||||
// sum += (p.weight * p.weight);
|
||||
// }
|
||||
|
||||
// const double neff = 1.0/sum;
|
||||
// if (neff != neff) {throw "detected NaN";}
|
||||
|
||||
// // if the number of efficient particles is too low, perform resampling
|
||||
// if (neff < smoothedParticles.size() * nEffThresholdPercent) { resampler->resample(smoothedParticles); }
|
||||
}
|
||||
|
||||
// push_back the smoothedParticles
|
||||
backwardParticles.push_back(smoothedParticles);
|
||||
|
||||
// estimate the current state
|
||||
const State est = estimation->estimate(smoothedParticles);
|
||||
|
||||
// done
|
||||
return est;
|
||||
return estimatedStates.back();
|
||||
|
||||
}
|
||||
|
||||
std::vector<State> getEstimations(){
|
||||
return estimatedStates;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
271
smc/smoothing/FastKDESmoothing.h
Normal file
271
smc/smoothing/FastKDESmoothing.h
Normal file
@@ -0,0 +1,271 @@
|
||||
#ifndef FASTKDESMOOTHING_H
|
||||
#define FASTKDESMOOTHING_H
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <algorithm>
|
||||
|
||||
#include "BackwardFilterTransition.h"
|
||||
#include "BackwardFilter.h"
|
||||
|
||||
#include "../Particle.h"
|
||||
|
||||
#include "../../floorplan/v2/FloorplanHelper.h";
|
||||
#include "../../grid/Grid.h";
|
||||
|
||||
#include "../filtering/resampling/ParticleFilterResampling.h"
|
||||
#include "../filtering/estimation/ParticleFilterEstimation.h"
|
||||
#include "../filtering/ParticleFilterEvaluation.h"
|
||||
#include "../filtering/ParticleFilterInitializer.h"
|
||||
#include "../filtering/ParticleFilterTransition.h"
|
||||
|
||||
#include "../sampling/ParticleTrajectorieSampler.h"
|
||||
|
||||
#include "../../math/boxkde/benchmark.h"
|
||||
#include "../../math/boxkde/DataStructures.h"
|
||||
#include "../../math/boxkde/Image2D.h"
|
||||
#include "../../math/boxkde/BoxGaus.h"
|
||||
#include "../../math/boxkde/Grid2D.h"
|
||||
|
||||
#include "../../Assertions.h"
|
||||
namespace SMC {
|
||||
|
||||
template <typename State, typename Control, typename Observation>
|
||||
class FastKDESmoothing : public BackwardFilter<State, Control, Observation>{
|
||||
|
||||
private:
|
||||
|
||||
/** all smoothed particles T -> 1*/
|
||||
std::vector<std::vector<Particle<State>>> backwardParticles;
|
||||
|
||||
/** all estimations calculated */
|
||||
std::vector<State> estimatedStates;
|
||||
|
||||
/** the estimation function to use */
|
||||
std::unique_ptr<ParticleFilterEstimation<State>> estimation;
|
||||
|
||||
/** the transition function to use */
|
||||
std::unique_ptr<ParticleFilterTransition<State, Control>> transition;
|
||||
|
||||
/** the resampler to use */
|
||||
std::unique_ptr<ParticleFilterResampling<State>> resampler;
|
||||
|
||||
/** the sampler for drawing trajectories */
|
||||
std::unique_ptr<ParticleTrajectorieSampler<State>> sampler;
|
||||
|
||||
/** the percentage-of-efficient-particles-threshold for resampling */
|
||||
double nEffThresholdPercent = 0.25;
|
||||
|
||||
/** number of realizations to be calculated */
|
||||
int numParticles;
|
||||
|
||||
/** is update called the first time? */
|
||||
bool firstFunctionCall;
|
||||
|
||||
/** boundingBox for the boxKDE */
|
||||
BoundingBox<float> bb;
|
||||
|
||||
/** histogram/grid holding the particles*/
|
||||
Grid2D<float> grid;
|
||||
|
||||
/** bandwith for KDE */
|
||||
Point2 bandwith;
|
||||
|
||||
public:
|
||||
|
||||
/** ctor */
|
||||
FastKDESmoothing(int numParticles, const Floorplan::IndoorMap* map, const int gridsize_cm, const Point2 bandwith) {
|
||||
this->numParticles = numParticles;
|
||||
backwardParticles.reserve(numParticles);
|
||||
firstFunctionCall = true;
|
||||
|
||||
const Point3 maxBB = FloorplanHelper::getBBox(map).getMax();
|
||||
const Point3 minBB = FloorplanHelper::getBBox(map).getMin();
|
||||
bb = BoundingBox<float>(minBB.x, maxBB.x, minBB.y, maxBB.y);
|
||||
|
||||
// Create histogram
|
||||
size_t nBinsX = static_cast<size_t>((maxBB.x - minBB.x) / gridsize_cm);
|
||||
size_t nBinsY = static_cast<size_t>((maxBB.y - minBB.y) / gridsize_cm);
|
||||
grid = Grid2D<float>(bb, nBinsX, nBinsY);
|
||||
|
||||
this->bandwith = bandwith;
|
||||
}
|
||||
|
||||
/** dtor */
|
||||
~FastKDESmoothing() {
|
||||
backwardParticles.clear();
|
||||
estimatedStates.clear();
|
||||
}
|
||||
|
||||
/** access to all backward / smoothed particles */
|
||||
const std::vector<std::vector<Particle<State>>>& getbackwardParticles() {
|
||||
return backwardParticles;
|
||||
}
|
||||
|
||||
/** set the estimation method to use */
|
||||
void setEstimation(std::unique_ptr<ParticleFilterEstimation<State>> estimation) {
|
||||
Assert::isNotNull(estimation, "setEstimation() MUST not be called with a nullptr!");
|
||||
this->estimation = std::move(estimation);
|
||||
}
|
||||
|
||||
/** set the transition method to use */
|
||||
void setTransition(std::unique_ptr<ParticleFilterTransition<State, Control>> transition) {
|
||||
Assert::isNotNull(transition, "setTransition() MUST not be called with a nullptr!");
|
||||
this->transition = std::move(transition);
|
||||
}
|
||||
|
||||
/** set the transition method to use */
|
||||
void setTransition(std::unique_ptr<BackwardFilterTransition<State, Control>> transition) {
|
||||
Assert::doThrow("Do not use a backward transition for fast smoothing! Forward Transition");
|
||||
//TODO: two times setTransition is not the best solution
|
||||
}
|
||||
/** set the resampling method to use */
|
||||
void setResampling(std::unique_ptr<ParticleFilterResampling<State>> resampler) {
|
||||
Assert::isNotNull(resampler, "setResampling() MUST not be called with a nullptr!");
|
||||
this->resampler = std::move(resampler);
|
||||
}
|
||||
|
||||
/** set the sampler method to use */
|
||||
void setSampler(std::unique_ptr<ParticleTrajectorieSampler<State>> sampler){
|
||||
Assert::isNotNull(sampler, "setSampler() MUST not be called with a nullptr!");
|
||||
this->sampler = std::move(sampler);
|
||||
}
|
||||
|
||||
|
||||
/** set the resampling threshold as the percentage of efficient particles */
|
||||
void setNEffThreshold(const double thresholdPercent) {
|
||||
this->nEffThresholdPercent = thresholdPercent;
|
||||
}
|
||||
|
||||
/** get the used transition method */
|
||||
BackwardFilterTransition<State, Control>* getTransition() {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief update
|
||||
* @param forwardHistory
|
||||
* @return
|
||||
*/
|
||||
State update(ForwardFilterHistory<State, Control, Observation>& forwardHistory, int lag = 666) {
|
||||
|
||||
// sanity checks (if enabled)
|
||||
Assert::isNotNull(transition, "transition MUST not be null! call setTransition() first!");
|
||||
Assert::isNotNull(estimation, "estimation MUST not be null! call setEstimation() first!");
|
||||
|
||||
//init for backward filtering
|
||||
std::vector<Particle<State>> smoothedParticles;
|
||||
smoothedParticles.reserve(numParticles);
|
||||
firstFunctionCall = true;
|
||||
|
||||
// if no lag is given, we have a fixed interval smoothing
|
||||
if(lag == 666){
|
||||
lag = forwardHistory.size() - 1;
|
||||
}
|
||||
|
||||
//check if we have enough data for lag
|
||||
if(forwardHistory.size() <= lag){
|
||||
lag = forwardHistory.size() - 1;
|
||||
}
|
||||
|
||||
//iterate through all forward filtering steps
|
||||
for(int i = 0; i <= lag; ++i){
|
||||
std::vector<Particle<State>> forwardParticlesForTransition_t1 = forwardHistory.getParticleSet(i);
|
||||
|
||||
//storage for single trajectories / smoothed particles
|
||||
smoothedParticles.clear();
|
||||
|
||||
// Choose \tilde x_T = x^(i)_T with probability w^(i)_T
|
||||
// Therefore sample independently from the categorical distribution of weights.
|
||||
if(firstFunctionCall){
|
||||
|
||||
smoothedParticles = sampler->drawTrajectorie(forwardParticlesForTransition_t1, numParticles);
|
||||
|
||||
firstFunctionCall = false;
|
||||
backwardParticles.push_back(smoothedParticles);
|
||||
|
||||
State est = estimation->estimate(smoothedParticles);
|
||||
estimatedStates.push_back(est);
|
||||
return est;
|
||||
}
|
||||
|
||||
// transition p(q_t+1* | q_t): so we are performing again a forward transition step.
|
||||
// we are doing this to track single particles between two timesteps! normaly, resampling would destroy
|
||||
// any identifier given to particles.
|
||||
// Node: at this point we can integrate future observation and control information for better smoothing
|
||||
Control controls = forwardHistory.getControl(i-1);
|
||||
Observation obs = forwardHistory.getObservation(i-1);
|
||||
transition->transition(forwardParticlesForTransition_t1, &controls);
|
||||
|
||||
// KDE auf q_t+1 Samples = p(q_t+1 | o_1:T) - Smoothed samples from the future
|
||||
grid.clear();
|
||||
for (Particle<State> p : backwardParticles.back())
|
||||
{
|
||||
grid.add(p.state.position.x_cm, p.state.position.y_cm, p.weight);
|
||||
}
|
||||
|
||||
int nFilt = 3;
|
||||
float sigmaX = bandwith.x / grid.binSizeX;
|
||||
float sigmaY = bandwith.y / grid.binSizeY;
|
||||
BoxGaus<float> boxGaus;
|
||||
boxGaus.approxGaus(grid.image(), sigmaX, sigmaY, nFilt);
|
||||
|
||||
// Apply Position from Samples from q_t+1* into KDE of p(q_t+1 | o_1:T) to get p(q_t+1* | o_1:T)
|
||||
// Calculate new weight w(q_(t|T)) = w(q_t) * p(q_t+1* | o_1:T) * p(q_t+1* | q_t) * normalisation
|
||||
smoothedParticles = forwardHistory.getParticleSet(i);
|
||||
for(Particle<State> p : smoothedParticles){
|
||||
p.weight = p.weight * grid.fetch(p.state.position.x_cm, p.state.position.y_cm);
|
||||
Assert::isNot0(p.weight, "smoothed particle has zero weight");
|
||||
}
|
||||
|
||||
//normalization
|
||||
auto lambda = [](double current, const Particle<State>& a){return current + a.weight; };
|
||||
double weightSumSmoothed = std::accumulate(smoothedParticles.begin(), smoothedParticles.end(), 0.0, lambda);
|
||||
|
||||
if(weightSumSmoothed != 0.0){
|
||||
|
||||
for (Particle<State> p : smoothedParticles){
|
||||
p.weight /= weightSumSmoothed;
|
||||
}
|
||||
|
||||
//check if normalization worked
|
||||
double normWeightSum = std::accumulate(smoothedParticles.begin(), smoothedParticles.end(), 0.0, lambda);
|
||||
Assert::isNear(normWeightSum, 1.0, 0.001, "Smoothed weights do not sum to 1");
|
||||
} else {
|
||||
Assert::doThrow("Weight Sum of smoothed particles is zero!");
|
||||
}
|
||||
|
||||
|
||||
if(resampler)
|
||||
{
|
||||
//TODO - does this even make sense?
|
||||
Assert::doThrow("Warning - Resampling is not yet implemented!");
|
||||
}
|
||||
|
||||
// push_back the smoothedParticles
|
||||
backwardParticles.push_back(smoothedParticles);
|
||||
|
||||
// estimate the current state
|
||||
if(lag == (forwardHistory.size() - 1) ){ //fixed interval
|
||||
State est = estimation->estimate(smoothedParticles);
|
||||
estimatedStates.push_back(est);
|
||||
}
|
||||
else if (i == lag) { //fixed lag
|
||||
State est = estimation->estimate(smoothedParticles);
|
||||
estimatedStates.push_back(est);
|
||||
}
|
||||
|
||||
}
|
||||
return estimatedStates.back();
|
||||
|
||||
}
|
||||
|
||||
std::vector<State> getEstimations(){
|
||||
return estimatedStates;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif // FASTKDESMOOTHING_H
|
||||
@@ -32,13 +32,11 @@ namespace SMC {
|
||||
//empty ctor
|
||||
}
|
||||
|
||||
void add(Timestamp time, std::vector<std::vector<Particle<State>>> set, Control control, Observation obs){
|
||||
void add(Timestamp time, std::vector<Particle<State>> set, Control control, Observation obs){
|
||||
|
||||
// Is empty? Null? etc.
|
||||
Assert::isNotNull(time, "Timestamp is Null");
|
||||
Assert::isNotNull(set, "Particle Set is Null");
|
||||
Assert::isNotNull(control, "Control is Null");
|
||||
Assert::isNotNull(obs, "Observation is Null");
|
||||
// Is empty? Null? 0?`etc.
|
||||
Assert::isNot0(time.ms(), "Timestamp is 0");
|
||||
if(set.empty()){Assert::doThrow("Particle Set is Empty");}
|
||||
|
||||
timestamps.push_back(time);
|
||||
particleSets.push_back(set);
|
||||
@@ -64,39 +62,39 @@ namespace SMC {
|
||||
* @brief Return the particles from [latestFilterUpdate - @param idx]
|
||||
* @return returns vector of particles. note: c11 makes a std::move here
|
||||
*/
|
||||
std::vector<Particle<State>> getParticleSet(idx = 0){
|
||||
return particleSets.at(particleSets.end() - idx);
|
||||
std::vector<Particle<State>> getParticleSet(int idx = 0){
|
||||
return particleSets.at(particleSets.size() - 1 - idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief getControl from [latestFilterUpdate - @param idx]
|
||||
* @return const controls object
|
||||
*/
|
||||
const Control getControl(idx = 0){
|
||||
return controls.at(controls.end() - idx);
|
||||
const Control getControl(int idx = 0){
|
||||
return controls.at(controls.size() - 1 - idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief getObservationf rom [latestFilterUpdate - @param idx]
|
||||
* @return const obervations object
|
||||
*/
|
||||
const Observation getObservation (idx = 0){
|
||||
return observations.at(observations.end() - idx);
|
||||
const Observation getObservation(int idx = 0){
|
||||
return observations.at(observations.size() - 1 - idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the timestamp from [latestFilterUpdate - @param idx]
|
||||
* @return returns a Timstampf object
|
||||
*/
|
||||
std::vector<Particle<State>> getTimestamp(idx = 0){
|
||||
return timestamps.at(particleSets.end() - idx);
|
||||
const Timestamp getTimestamp(int idx = 0){
|
||||
return timestamps.at(timestamps.size() - 1 - idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief getLatestFilterUpdateNum
|
||||
* @brief size
|
||||
* @return num of particleSets size
|
||||
*/
|
||||
const int getLatestFilterUpdateNum(){
|
||||
int size(){
|
||||
return particleSets.size();
|
||||
}
|
||||
|
||||
@@ -133,6 +131,14 @@ namespace SMC {
|
||||
return timestamps.back();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief getFirstimestamp
|
||||
* @return const Timestamp object
|
||||
*/
|
||||
const Timestamp getFirstTimestamp(){
|
||||
return timestamps.front();
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user