many changes
added new helper class for 3x3 matrices and vec3 added magnetometer data added compass detection refactored pose-estimation (single class) refactored debug plots (move to own class) minor changes
This commit is contained in:
175
math/Matrix3.h
Normal file
175
math/Matrix3.h
Normal file
@@ -0,0 +1,175 @@
|
|||||||
|
#ifndef INDOOR_MATH_MATRIX3_H
|
||||||
|
#define INDOOR_MATH_MATRIX3_H
|
||||||
|
|
||||||
|
|
||||||
|
#include <initializer_list>
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
|
class Matrix3 {
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
float data[9];
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
Matrix3(std::initializer_list<float> lst) {
|
||||||
|
int idx = 0;
|
||||||
|
for (float f : lst) {
|
||||||
|
data[idx] = f; ++idx;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static Matrix3 identity() {
|
||||||
|
return Matrix3( {1,0,0, 0,1,0, 0,0,1} );
|
||||||
|
}
|
||||||
|
|
||||||
|
// static Matrix3 getRotationDeg(const float degX, const float degY, const float degZ) {
|
||||||
|
// return getRotationRad(degX/180.0f*M_PI, degY/180.0f*M_PI, degZ/180.0f*M_PI);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// static Matrix4 getRotationRad(const float radX, const float radY, const float radZ) {
|
||||||
|
|
||||||
|
// const float g = radX; const float b = radY; const float a = radZ;
|
||||||
|
// const float a11 = std::cos(a)*std::cos(b);
|
||||||
|
// const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g);
|
||||||
|
// const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g);
|
||||||
|
// const float a21 = std::sin(a)*std::cos(b);
|
||||||
|
// const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g);
|
||||||
|
// const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g);
|
||||||
|
// const float a31 = -std::sin(b);
|
||||||
|
// const float a32 = std::cos(b)*std::sin(g);
|
||||||
|
// const float a33 = std::cos(b)*std::cos(g);
|
||||||
|
// return Matrix4({
|
||||||
|
// a11, a12, a13, 0,
|
||||||
|
// a21, a22, a23, 0,
|
||||||
|
// a31, a32, a33, 0,
|
||||||
|
// 0, 0, 0, 1
|
||||||
|
// });
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
static Matrix3 getTranslation(const float x, const float y) {
|
||||||
|
return Matrix3({
|
||||||
|
1, 0, x,
|
||||||
|
0, 1, y,
|
||||||
|
0, 0, 1,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
static Matrix3 getScale(const float x, const float y) {
|
||||||
|
return Matrix3({
|
||||||
|
x, 0, 0,
|
||||||
|
0, y, 0,
|
||||||
|
0, 0, 1,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
float operator [] (const int idx) const {return data[idx];}
|
||||||
|
|
||||||
|
bool operator == (const Matrix3& o) const {
|
||||||
|
for (int i = 0; i < 9; ++i) {
|
||||||
|
if (data[i] != o.data[i]) {return false;}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
Matrix3 operator * (const float v) const {
|
||||||
|
return Matrix3({
|
||||||
|
data[0]*v, data[1]*v, data[2]*v,
|
||||||
|
data[3]*v, data[4]*v, data[5]*v,
|
||||||
|
data[6]*v, data[7]*v, data[8]*v,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
Matrix3 operator + (const Matrix3& m) const {
|
||||||
|
return Matrix3({
|
||||||
|
data[0]+m.data[0], data[1]+m.data[1], data[2]+m.data[2],
|
||||||
|
data[3]+m.data[3], data[4]+m.data[4], data[5]+m.data[5],
|
||||||
|
data[6]+m.data[6], data[7]+m.data[7], data[8]+m.data[8],
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
Matrix3 operator * (const Matrix3& m) const {
|
||||||
|
return Matrix3({
|
||||||
|
data[0]*m.data[0] + data[1]*m.data[3] + data[2]*m.data[6], data[0]*m.data[1] + data[1]*m.data[4] + data[2]*m.data[7], data[0]*m.data[2] + data[1]*m.data[5] + data[2]*m.data[8],
|
||||||
|
data[3]*m.data[0] + data[4]*m.data[3] + data[5]*m.data[6], data[3]*m.data[1] + data[4]*m.data[4] + data[5]*m.data[7], data[3]*m.data[2] + data[4]*m.data[5] + data[5]*m.data[8],
|
||||||
|
data[6]*m.data[0] + data[7]*m.data[3] + data[8]*m.data[6], data[6]*m.data[1] + data[7]*m.data[4] + data[8]*m.data[7], data[6]*m.data[2] + data[7]*m.data[5] + data[8]*m.data[8],
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Vector3 {
|
||||||
|
|
||||||
|
float x,y,z;
|
||||||
|
|
||||||
|
Vector3() : x(0), y(0), z(0) {;}
|
||||||
|
|
||||||
|
Vector3(float x, float y, float z) : x(x), y(y), z(z) {;}
|
||||||
|
|
||||||
|
Vector3 operator + (const Vector3 o) const {
|
||||||
|
return Vector3(x+o.x, y+o.y, z+o.z);
|
||||||
|
}
|
||||||
|
Vector3 operator - (const Vector3 o) const {
|
||||||
|
return Vector3(x-o.x, y-o.y, z-o.z);
|
||||||
|
}
|
||||||
|
Vector3 operator * (const Vector3 o) const {
|
||||||
|
return Vector3(x*o.x, y*o.y, z*o.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Vector3 operator * (const float v) const {
|
||||||
|
return Vector3(x*v, y*v, z*v);
|
||||||
|
}
|
||||||
|
Vector3 operator / (const float v) const {
|
||||||
|
return Vector3(x/v, y/v, z/v);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool operator == (const Vector3 o) const {
|
||||||
|
return (x==o.x) && (y==o.y) && (z==o.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
float norm() const {
|
||||||
|
return std::sqrt(x*x + y*y + z*z);
|
||||||
|
}
|
||||||
|
|
||||||
|
Vector3 normalized() const {
|
||||||
|
const float n = norm();
|
||||||
|
return Vector3(x/n, y/n, z/n);
|
||||||
|
}
|
||||||
|
|
||||||
|
Vector3 cross(const Vector3 o) const {
|
||||||
|
return Vector3(
|
||||||
|
y*o.z - z*o.y,
|
||||||
|
z*o.x - x*o.z,
|
||||||
|
x*o.y - y*o.x
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
float dot(const Vector3 o) const {
|
||||||
|
return (x*o.x) + (y*o.y) + (z*o.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
inline Vector3 operator * (const Matrix3& mat, const Vector3& vec) {
|
||||||
|
|
||||||
|
return Vector3(
|
||||||
|
(mat[ 0]*vec.x + mat[ 1]*vec.y + mat[ 2]*vec.z),
|
||||||
|
(mat[ 3]*vec.x + mat[ 4]*vec.y + mat[ 5]*vec.z),
|
||||||
|
(mat[ 6]*vec.x + mat[ 7]*vec.y + mat[ 8]*vec.z)
|
||||||
|
);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
//inline Matrix4 operator * (const Matrix4& m1, const Matrix4& m2) {
|
||||||
|
// return Matrix4({
|
||||||
|
// m1[ 0]*m2[ 0] + m1[ 1]*m2[ 4] + m1[ 2]*m2[ 8] + m1[ 3]*m2[12], m1[ 0]*m2[ 1] + m1[ 1]*m2[ 5] + m1[ 2]*m2[ 9] + m1[ 3]*m2[13], m1[ 0]*m2[ 2] + m1[ 1]*m2[ 6] + m1[ 2]*m2[10] + m1[ 3]*m2[14], m1[ 0]*m2[ 3] + m1[ 1]*m2[ 7] + m1[ 2]*m2[11] + m1[ 3]*m2[15],
|
||||||
|
// m1[ 4]*m2[ 0] + m1[ 5]*m2[ 4] + m1[ 6]*m2[ 8] + m1[ 7]*m2[12], m1[ 4]*m2[ 1] + m1[ 5]*m2[ 5] + m1[ 6]*m2[ 9] + m1[ 7]*m2[13], m1[ 4]*m2[ 2] + m1[ 5]*m2[ 6] + m1[ 6]*m2[10] + m1[ 7]*m2[14], m1[ 4]*m2[ 3] + m1[ 5]*m2[ 7] + m1[ 6]*m2[11] + m1[ 7]*m2[15],
|
||||||
|
// m1[ 8]*m2[ 0] + m1[ 9]*m2[ 4] + m1[10]*m2[ 8] + m1[11]*m2[12], m1[ 8]*m2[ 1] + m1[ 9]*m2[ 5] + m1[10]*m2[ 9] + m1[11]*m2[13], m1[ 8]*m2[ 2] + m1[ 9]*m2[ 6] + m1[10]*m2[10] + m1[11]*m2[14], m1[ 8]*m2[ 3] + m1[ 9]*m2[ 7] + m1[10]*m2[11] + m1[11]*m2[15],
|
||||||
|
// m1[12]*m2[ 0] + m1[13]*m2[ 4] + m1[14]*m2[ 8] + m1[15]*m2[12], m1[12]*m2[ 1] + m1[13]*m2[ 5] + m1[14]*m2[ 9] + m1[15]*m2[13], m1[12]*m2[ 2] + m1[13]*m2[ 6] + m1[14]*m2[10] + m1[15]*m2[14], m1[12]*m2[ 3] + m1[13]*m2[ 7] + m1[14]*m2[11] + m1[15]*m2[15]
|
||||||
|
// });
|
||||||
|
//}
|
||||||
|
|
||||||
|
#endif // INDOOR_MATH_MATRIX3_H
|
||||||
@@ -41,9 +41,9 @@ public:
|
|||||||
|
|
||||||
// get the median
|
// get the median
|
||||||
if (values.size() % 2 != 0) {
|
if (values.size() % 2 != 0) {
|
||||||
return values[(values.size() + 0) / 2];
|
return copy[(copy.size() + 0) / 2];
|
||||||
} else {
|
} else {
|
||||||
return (values[values.size() / 2 - 1] + values[values.size() / 2 + 0]) / 2;
|
return (copy[copy.size() / 2 - 1] + copy[copy.size() / 2 + 0]) / 2;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
74
math/MovingMedianTS.h
Normal file
74
math/MovingMedianTS.h
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
#ifndef MOVINGMEDIANTS_H
|
||||||
|
#define MOVINGMEDIANTS_H
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <algorithm>
|
||||||
|
#include "../data/Timestamp.h"
|
||||||
|
|
||||||
|
template <typename T> class MovingMedianTS {
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
/** timestamp -> value combination */
|
||||||
|
struct Entry {
|
||||||
|
Timestamp ts;
|
||||||
|
T value;
|
||||||
|
Entry(const Timestamp ts, const T& value) : ts(ts), value(value) {;}
|
||||||
|
};
|
||||||
|
|
||||||
|
/** the regional window to use */
|
||||||
|
Timestamp window;
|
||||||
|
|
||||||
|
/** the value history for the window-size */
|
||||||
|
std::vector<Entry> history;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
/** ctor with the window-size to use */
|
||||||
|
MovingMedianTS(const Timestamp window) : window(window) {
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/** add a new value */
|
||||||
|
void add(const Timestamp ts, const T data) {
|
||||||
|
|
||||||
|
// append to history
|
||||||
|
history.push_back(Entry(ts, data));
|
||||||
|
|
||||||
|
// remove too-old history entries
|
||||||
|
const Timestamp oldest = ts - window;
|
||||||
|
while(history.front().ts < oldest) {
|
||||||
|
|
||||||
|
// remove from history
|
||||||
|
history.erase(history.begin());
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/** get the current median */
|
||||||
|
T get() const {
|
||||||
|
|
||||||
|
const auto comp = [] (const Entry& a, const Entry& b) {
|
||||||
|
return a.value < b.value;
|
||||||
|
};
|
||||||
|
|
||||||
|
// create a sorted copy (slow, but works)
|
||||||
|
std::vector<Entry> copy = history;
|
||||||
|
std::sort(copy.begin(), copy.end(), comp);
|
||||||
|
|
||||||
|
// get the median
|
||||||
|
if (copy.size() % 2 != 0) {
|
||||||
|
return copy[(copy.size() + 0) / 2].value;
|
||||||
|
} else {
|
||||||
|
return (copy[copy.size() / 2 - 1].value + copy[copy.size() / 2 + 0].value) / 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // MOVINGMEDIANTS_H
|
||||||
112
sensors/imu/CompassDetection.h
Normal file
112
sensors/imu/CompassDetection.h
Normal file
@@ -0,0 +1,112 @@
|
|||||||
|
#ifndef INDOOR_IMU_COMPASSDETECTION_H
|
||||||
|
#define INDOOR_IMU_COMPASSDETECTION_H
|
||||||
|
|
||||||
|
#include "MagnetometerData.h"
|
||||||
|
#include "PoseDetection.h"
|
||||||
|
|
||||||
|
#include "../../data/Timestamp.h"
|
||||||
|
#include "../../math/MovingAverageTS.h"
|
||||||
|
#include "../../math/MovingStdDevTS.h"
|
||||||
|
#include "../../geo/Point3.h"
|
||||||
|
#include "../../Assertions.h"
|
||||||
|
|
||||||
|
#include "CompassDetectionPlot.h"
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* custom compass implementation, similar to turn-detection
|
||||||
|
*/
|
||||||
|
class CompassDetection {
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
CompassDetectionPlot plot;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// struct {
|
||||||
|
// Eigen::Matrix3f rotationMatrix = Eigen::Matrix3f::Identity();
|
||||||
|
// bool isKnown = false;
|
||||||
|
// Timestamp lastEstimation;
|
||||||
|
// } orientation;
|
||||||
|
|
||||||
|
MovingAverageTS<MagnetometerData> avgIn = MovingAverageTS<MagnetometerData>(Timestamp::fromMS(150), MagnetometerData(0,0,0));
|
||||||
|
|
||||||
|
//MovingStdDevTS<MagnetometerData> stdDev = MovingStdDevTS<MagnetometerData>(Timestamp::fromMS(2000), MagnetometerData(0,0,0));
|
||||||
|
MovingStdDevTS<float> stdDev = MovingStdDevTS<float>(Timestamp::fromMS(1500), 0);
|
||||||
|
|
||||||
|
PoseDetection* pose = nullptr;
|
||||||
|
int numMagReadings = 0;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
/** ctor */
|
||||||
|
CompassDetection(PoseDetection* pose) : pose(pose) {
|
||||||
|
;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** add magnetometer readings, returns the current heading, or NAN (if unstable/unknown) */
|
||||||
|
float addMagnetometer(const Timestamp& ts, const MagnetometerData& mag) {
|
||||||
|
|
||||||
|
++numMagReadings;
|
||||||
|
|
||||||
|
// get the current magnetometer-reading as vector
|
||||||
|
//Eigen::Vector3f vec; vec << mag.x, mag.y, mag.z;
|
||||||
|
const Vector3 vec(mag.x, mag.y, mag.z);
|
||||||
|
|
||||||
|
// rotate it into our desired coordinate system, where the smartphone lies flat on the ground
|
||||||
|
//Eigen::Vector3f _curMag = pose->getMatrix() * vec;
|
||||||
|
const Vector3 _curMag = pose->getMatrix() * vec;
|
||||||
|
|
||||||
|
//avgIn.add(ts, MagnetometerData(_curMag(0), _curMag(1), _curMag(2)));
|
||||||
|
avgIn.add(ts, MagnetometerData(_curMag.x, _curMag.y, _curMag.z));
|
||||||
|
const MagnetometerData curMag = avgIn.get();
|
||||||
|
//const MagnetometerData curMag =MagnetometerData(_curMag.x, _curMag.y, _curMag.z);
|
||||||
|
|
||||||
|
// calculate standard-deviation
|
||||||
|
//stdDev.add(ts, curMag);
|
||||||
|
//const float dev = std::max(stdDev.get().x, stdDev.get().y);
|
||||||
|
|
||||||
|
|
||||||
|
// calculate angle
|
||||||
|
// https://aerocontent.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
|
||||||
|
const float mx = curMag.x;
|
||||||
|
const float my = curMag.y;
|
||||||
|
const float tmp = std::atan2(my, mx);
|
||||||
|
//const float tmp = (my > 0) ? (M_PI*0.5 - std::atan(mx/my)) : (M_PI*1.5 - atan(mx/my));
|
||||||
|
|
||||||
|
// http://www.magnetic-declination.com/
|
||||||
|
// http://davidegironi.blogspot.de/2013/01/avr-atmega-hmc5883l-magnetometer-lib-01.html
|
||||||
|
const float declination = 3.0f / 180.0f * M_PI; // GERMANY!
|
||||||
|
const float curHeading = - tmp + declination;
|
||||||
|
float resHeading;
|
||||||
|
bool stable = true;
|
||||||
|
|
||||||
|
// calculate standard-deviation within a certain timeframe
|
||||||
|
stdDev.add(ts, curHeading);
|
||||||
|
|
||||||
|
// if the standard-deviation is too high,
|
||||||
|
// the compass is considered unstable
|
||||||
|
if (numMagReadings < 250 || stdDev.get() > 0.30) {
|
||||||
|
resHeading = NAN;
|
||||||
|
stable = false;
|
||||||
|
} else {
|
||||||
|
resHeading = curHeading;
|
||||||
|
stable = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
plot.add(ts, curHeading, stable, mag, curMag);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// done
|
||||||
|
return resHeading;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // INDOOR_IMU_COMPASSDETECTION_H
|
||||||
123
sensors/imu/CompassDetectionPlot.h
Normal file
123
sensors/imu/CompassDetectionPlot.h
Normal file
@@ -0,0 +1,123 @@
|
|||||||
|
#ifndef INDOOR_IMU_COMPASSDETECTIONPLOT_H
|
||||||
|
#define INDOOR_IMU_COMPASSDETECTIONPLOT_H
|
||||||
|
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
|
||||||
|
#include <KLib/misc/gnuplot/Gnuplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotPlot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotMultiplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotPlotElementPoints.h>
|
||||||
|
|
||||||
|
#include "MagnetometerData.h"
|
||||||
|
#include "../../data/Timestamp.h"
|
||||||
|
#include "../../math/Matrix3.h"
|
||||||
|
|
||||||
|
class CompassDetectionPlot {
|
||||||
|
|
||||||
|
Timestamp plotRef;
|
||||||
|
Timestamp lastPlot;
|
||||||
|
|
||||||
|
K::Gnuplot gp1;
|
||||||
|
K::Gnuplot gp2;
|
||||||
|
K::GnuplotMultiplot multiplot = K::GnuplotMultiplot(1,2);
|
||||||
|
|
||||||
|
K::GnuplotPlot plotMagRaw;
|
||||||
|
K::GnuplotPlotElementLines lineMagRawX;
|
||||||
|
K::GnuplotPlotElementLines lineMagRawY;
|
||||||
|
K::GnuplotPlotElementLines lineMagRawZ;
|
||||||
|
K::GnuplotPlotElementLines lineMagRawMagnitude;
|
||||||
|
|
||||||
|
K::GnuplotPlot plotMagFix;
|
||||||
|
K::GnuplotPlotElementLines lineMagFixX;
|
||||||
|
K::GnuplotPlotElementLines lineMagFixY;
|
||||||
|
K::GnuplotPlotElementLines lineMagFixZ;
|
||||||
|
|
||||||
|
K::GnuplotPlot plotMagScatter;
|
||||||
|
K::GnuplotPlotElementPoints scatterPoints;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
CompassDetectionPlot() {
|
||||||
|
|
||||||
|
gp1 << "set autoscale xfix\n";
|
||||||
|
gp2 << "set size ratio -1\n";
|
||||||
|
|
||||||
|
multiplot.add(&plotMagRaw);
|
||||||
|
multiplot.add(&plotMagFix);
|
||||||
|
|
||||||
|
plotMagRaw.setTitle("Magnetometer (raw)");
|
||||||
|
plotMagRaw.add(&lineMagRawX); lineMagRawX.getStroke().getColor().setHexStr("#ff0000"); lineMagRawX.setTitle("x");
|
||||||
|
plotMagRaw.add(&lineMagRawY); lineMagRawY.getStroke().getColor().setHexStr("#00ff00"); lineMagRawY.setTitle("y");
|
||||||
|
plotMagRaw.add(&lineMagRawZ); lineMagRawZ.getStroke().getColor().setHexStr("#0000ff"); lineMagRawZ.setTitle("z");
|
||||||
|
plotMagRaw.add(&lineMagRawMagnitude); lineMagRawMagnitude.getStroke().getColor().setHexStr("#000000"); lineMagRawMagnitude.setTitle("magnitude");
|
||||||
|
|
||||||
|
plotMagFix.setTitle("Magnetometer (re-aligned)");
|
||||||
|
plotMagFix.add(&lineMagFixX); lineMagFixX.getStroke().getColor().setHexStr("#ff0000"); lineMagFixX.setTitle("x");
|
||||||
|
plotMagFix.add(&lineMagFixY); lineMagFixY.getStroke().getColor().setHexStr("#00ff00"); lineMagFixY.setTitle("y");
|
||||||
|
plotMagFix.add(&lineMagFixZ); lineMagFixZ.getStroke().getColor().setHexStr("#0000ff"); lineMagFixZ.setTitle("z");
|
||||||
|
|
||||||
|
plotMagScatter.add(&scatterPoints);
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void add(Timestamp ts, float curHeading, bool stable, const MagnetometerData& mag, const MagnetometerData& curMag) {
|
||||||
|
|
||||||
|
if (plotRef.isZero()) {plotRef = ts;}
|
||||||
|
const Timestamp tsPlot = (ts-plotRef);
|
||||||
|
const Timestamp tsOldest = tsPlot - Timestamp::fromMS(5000);
|
||||||
|
|
||||||
|
// raw gyro
|
||||||
|
lineMagRawX.add( K::GnuplotPoint2(tsPlot.ms(), mag.x) );
|
||||||
|
lineMagRawY.add( K::GnuplotPoint2(tsPlot.ms(), mag.y) );
|
||||||
|
lineMagRawZ.add( K::GnuplotPoint2(tsPlot.ms(), mag.z) );
|
||||||
|
lineMagRawMagnitude.add( K::GnuplotPoint2(tsPlot.ms(), mag.magnitude()) );
|
||||||
|
|
||||||
|
// adjusted mag
|
||||||
|
lineMagFixX.add( K::GnuplotPoint2(tsPlot.ms(), curMag.x) );
|
||||||
|
lineMagFixY.add( K::GnuplotPoint2(tsPlot.ms(), curMag.y) );
|
||||||
|
lineMagFixZ.add( K::GnuplotPoint2(tsPlot.ms(), curMag.z) );
|
||||||
|
|
||||||
|
const float len = 1;//curMag.magnitude();// std::sqrt(curMag.x*curMag.x + curMag.y*curMag.y);
|
||||||
|
scatterPoints.add(K::GnuplotPoint2(curMag.x/len, curMag.y/len));
|
||||||
|
|
||||||
|
if (lastPlot + Timestamp::fromMS(50) < tsPlot) {
|
||||||
|
|
||||||
|
lastPlot = tsPlot;
|
||||||
|
|
||||||
|
auto remove = [tsOldest] (const K::GnuplotPoint2 pt) {return pt.x < tsOldest.ms();};
|
||||||
|
lineMagRawX.removeIf(remove);
|
||||||
|
lineMagRawY.removeIf(remove);
|
||||||
|
lineMagRawZ.removeIf(remove);
|
||||||
|
lineMagRawMagnitude.removeIf(remove);
|
||||||
|
lineMagFixX.removeIf(remove);
|
||||||
|
lineMagFixY.removeIf(remove);
|
||||||
|
lineMagFixZ.removeIf(remove);
|
||||||
|
|
||||||
|
|
||||||
|
const float s = stable ? 0.1 : 0.03;
|
||||||
|
const float ax = 0.85 + std::cos(curHeading)*s;
|
||||||
|
const float ay = 0.85 + std::sin(curHeading)*s;
|
||||||
|
gp1 << "set arrow 1 from screen 0.85,0.85 to screen " << ax << "," << ay << "\n";
|
||||||
|
gp1 << "set object 2 circle at screen 0.85,0.85 radius screen 0.1 \n";
|
||||||
|
|
||||||
|
gp1.draw(multiplot);
|
||||||
|
gp1.flush();
|
||||||
|
|
||||||
|
gp2.draw(plotMagScatter);
|
||||||
|
gp2.flush();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
||||||
81
sensors/imu/MagnetometerData.h
Normal file
81
sensors/imu/MagnetometerData.h
Normal file
@@ -0,0 +1,81 @@
|
|||||||
|
#ifndef INDOOR_IMU_MAGNETOMETERDATA_H
|
||||||
|
#define INDOOR_IMU_MAGNETOMETERDATA_H
|
||||||
|
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* data received from a magnetometer sensor
|
||||||
|
*/
|
||||||
|
struct MagnetometerData {
|
||||||
|
|
||||||
|
float x;
|
||||||
|
float y;
|
||||||
|
float z;
|
||||||
|
|
||||||
|
MagnetometerData() : x(0), y(0), z(0) {;}
|
||||||
|
|
||||||
|
/** ctor from RADIANS */
|
||||||
|
MagnetometerData(const float x, const float y, const float z) : x(x), y(y), z(z) {;}
|
||||||
|
|
||||||
|
std::string asString() const {
|
||||||
|
std::stringstream ss;
|
||||||
|
ss << "(" << x << "," << y << "," << z << ")";
|
||||||
|
return ss.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool isValid() const {
|
||||||
|
return (x == x) && (y == y) && (z == z);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool operator == (const GyroscopeData& o ) const {
|
||||||
|
return EQ_OR_NAN(x, o.x) &&
|
||||||
|
EQ_OR_NAN(y, o.y) &&
|
||||||
|
EQ_OR_NAN(z, o.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
float magnitude() const {
|
||||||
|
return std::sqrt( x*x + y*y + z*z );
|
||||||
|
}
|
||||||
|
|
||||||
|
MagnetometerData& operator += (const MagnetometerData& o) {
|
||||||
|
this->x += o.x;
|
||||||
|
this->y += o.y;
|
||||||
|
this->z += o.z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
MagnetometerData& operator -= (const MagnetometerData& o) {
|
||||||
|
this->x -= o.x;
|
||||||
|
this->y -= o.y;
|
||||||
|
this->z -= o.z;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
MagnetometerData operator * (const MagnetometerData& o) const {
|
||||||
|
return MagnetometerData(x*o.x, y*o.y, z*o.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
MagnetometerData operator - (const MagnetometerData& o) const {
|
||||||
|
return MagnetometerData(x-o.x, y-o.y, z-o.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
MagnetometerData operator / (const float val) const {
|
||||||
|
return MagnetometerData(x/val, y/val, z/val);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
static inline bool EQ_OR_NAN(const float a, const float b) {return (a==b) || ( (a!=a) && (b!=b) );}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace std {
|
||||||
|
MagnetometerData sqrt(const MagnetometerData& o) {
|
||||||
|
return MagnetometerData(std::sqrt(o.x), std::sqrt(o.y), std::sqrt(o.z));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // INDOOR_IMU_MAGNETOMETERDATA_H
|
||||||
480
sensors/imu/PoseDetection.h
Normal file
480
sensors/imu/PoseDetection.h
Normal file
@@ -0,0 +1,480 @@
|
|||||||
|
#ifndef INDOOR_IMU_POSEDETECTION_H
|
||||||
|
#define INDOOR_IMU_POSEDETECTION_H
|
||||||
|
|
||||||
|
#include "AccelerometerData.h"
|
||||||
|
|
||||||
|
#include "../../data/Timestamp.h"
|
||||||
|
|
||||||
|
#include "../../math/MovingAverageTS.h"
|
||||||
|
#include "../../math/MovingMedianTS.h"
|
||||||
|
#include "../../math/Matrix3.h"
|
||||||
|
|
||||||
|
#include "../../geo/Point3.h"
|
||||||
|
|
||||||
|
#include <eigen3/Eigen/Dense>
|
||||||
|
|
||||||
|
#include "PoseDetectionPlot.h"
|
||||||
|
|
||||||
|
/**
|
||||||
|
* estimate the smartphones world-pose,
|
||||||
|
* based on the accelerometer's data
|
||||||
|
*/
|
||||||
|
class PoseDetection {
|
||||||
|
|
||||||
|
// struct LongTermTriggerAverage {
|
||||||
|
|
||||||
|
// Eigen::Vector3f sum;
|
||||||
|
// int cnt;
|
||||||
|
|
||||||
|
// XYZ() {
|
||||||
|
// reset();
|
||||||
|
// }
|
||||||
|
|
||||||
|
// /** add the given accelerometer reading */
|
||||||
|
// void addAcc(const Timestamp ts, const AccelerometerData& acc) {
|
||||||
|
|
||||||
|
// // did NOT improve the result for every smartphone (only some)
|
||||||
|
// //const float deltaMag = std::abs(acc.magnitude() - 9.81);
|
||||||
|
// //if (deltaMag > 5.0) {return;}
|
||||||
|
|
||||||
|
// // adjust sum and count (for average calculation)
|
||||||
|
// Eigen::Vector3f vec; vec << acc.x, acc.y, acc.z;
|
||||||
|
// sum += vec;
|
||||||
|
// ++cnt;
|
||||||
|
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
// AccelerometerData getAvg() const {
|
||||||
|
// return AccelerometerData(sum(0), sum(1), sum(2)) / cnt;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// /** get the current rotation matrix estimation */
|
||||||
|
// Eigen::Matrix3f get() const {
|
||||||
|
|
||||||
|
// // get the current acceleromter average
|
||||||
|
// const Eigen::Vector3f avg = sum / cnt;
|
||||||
|
|
||||||
|
// // rotate average accelerometer into (0,0,1)
|
||||||
|
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
||||||
|
// const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
|
||||||
|
|
||||||
|
// // just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
|
||||||
|
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
||||||
|
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
||||||
|
|
||||||
|
// return rotMat;
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
// /** reset the current sum etc. */
|
||||||
|
// void reset() {
|
||||||
|
// cnt = 0;
|
||||||
|
// sum = Eigen::Vector3f::Zero();
|
||||||
|
// }
|
||||||
|
|
||||||
|
|
||||||
|
// };
|
||||||
|
|
||||||
|
|
||||||
|
/** live-pose-estimation using moving average of the smartphone's accelerometer */
|
||||||
|
struct EstMovingAverage {
|
||||||
|
|
||||||
|
// average the accelerometer
|
||||||
|
MovingAverageTS<AccelerometerData> avg;
|
||||||
|
|
||||||
|
EstMovingAverage(const Timestamp window) :
|
||||||
|
avg(MovingAverageTS<AccelerometerData>(window, AccelerometerData())) {
|
||||||
|
|
||||||
|
// start approximately
|
||||||
|
addAcc(Timestamp(), AccelerometerData(0,0,9.81));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/** add the given accelerometer reading */
|
||||||
|
void addAcc(const Timestamp ts, const AccelerometerData& acc) {
|
||||||
|
avg.add(ts, acc);
|
||||||
|
}
|
||||||
|
|
||||||
|
AccelerometerData getBase() const {
|
||||||
|
return avg.get();
|
||||||
|
}
|
||||||
|
|
||||||
|
/** get the current rotation matrix estimation */
|
||||||
|
//Eigen::Matrix3f get() const {
|
||||||
|
Matrix3 get() const {
|
||||||
|
|
||||||
|
// get the current acceleromter average
|
||||||
|
const AccelerometerData avgAcc = avg.get();
|
||||||
|
//const Eigen::Vector3f avg(avgAcc.x, avgAcc.y, avgAcc.z);
|
||||||
|
const Vector3 avg(avgAcc.x, avgAcc.y, avgAcc.z);
|
||||||
|
|
||||||
|
// rotate average-accelerometer into (0,0,1)
|
||||||
|
//Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
||||||
|
const Vector3 zAxis(0,0,1);
|
||||||
|
const Matrix3 rotMat = getRotationMatrix(avg.normalized(), zAxis);
|
||||||
|
//const Matrix3 rotMat = getRotationMatrix(zAxis, avg.normalized()); // INVERSE
|
||||||
|
//const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
|
||||||
|
|
||||||
|
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
|
||||||
|
//Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
||||||
|
const Vector3 aligned = (rotMat * avg).normalized();
|
||||||
|
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
||||||
|
|
||||||
|
return rotMat;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
/** live-pose-estimation using moving median of the smartphone's accelerometer */
|
||||||
|
struct EstMovingMedian {
|
||||||
|
|
||||||
|
// median the accelerometer
|
||||||
|
MovingMedianTS<float> medianX;
|
||||||
|
MovingMedianTS<float> medianY;
|
||||||
|
MovingMedianTS<float> medianZ;
|
||||||
|
|
||||||
|
EstMovingMedian(const Timestamp window) :
|
||||||
|
medianX(window), medianY(window), medianZ(window) {
|
||||||
|
|
||||||
|
// start approximately
|
||||||
|
addAcc(Timestamp(), AccelerometerData(0,0,9.81));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/** add the given accelerometer reading */
|
||||||
|
void addAcc(const Timestamp ts, const AccelerometerData& acc) {
|
||||||
|
medianX.add(ts, acc.x);
|
||||||
|
medianY.add(ts, acc.y);
|
||||||
|
medianZ.add(ts, acc.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
AccelerometerData getBase() const {
|
||||||
|
return AccelerometerData(medianX.get(), medianY.get(), medianZ.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
/** get the current rotation matrix estimation */
|
||||||
|
//Eigen::Matrix3f get() const {
|
||||||
|
Matrix3 get() const {
|
||||||
|
|
||||||
|
const Vector3 base(medianX.get(), medianY.get(), medianZ.get());
|
||||||
|
|
||||||
|
// rotate average-accelerometer into (0,0,1)
|
||||||
|
const Vector3 zAxis(0,0,1);
|
||||||
|
const Matrix3 rotMat = getRotationMatrix(base.normalized(), zAxis);
|
||||||
|
|
||||||
|
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
|
||||||
|
const Vector3 aligned = (rotMat * base).normalized();
|
||||||
|
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
||||||
|
|
||||||
|
return rotMat;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
struct {
|
||||||
|
//Eigen::Matrix3f rotationMatrix = Eigen::Matrix3f::Identity();
|
||||||
|
Matrix3 rotationMatrix = Matrix3::identity();
|
||||||
|
bool isKnown = false;
|
||||||
|
Timestamp lastEstimation;
|
||||||
|
} orientation;
|
||||||
|
|
||||||
|
/** how the pose is estimated */
|
||||||
|
//LongTermMovingAverage est = LongTermMovingAverage(Timestamp::fromMS(1250));
|
||||||
|
EstMovingAverage est = EstMovingAverage(Timestamp::fromMS(300));
|
||||||
|
//EstMovingMedian est = EstMovingMedian(Timestamp::fromMS(400));
|
||||||
|
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
PoseDetectionPlot plot;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
/** ctor */
|
||||||
|
PoseDetection() {
|
||||||
|
;
|
||||||
|
}
|
||||||
|
|
||||||
|
// /** get the smartphone's rotation matrix */
|
||||||
|
// Eigen::Matrix3f getMatrix() const {
|
||||||
|
// return orientation.rotationMatrix;
|
||||||
|
// }
|
||||||
|
|
||||||
|
/** get the smartphone's rotation matrix */
|
||||||
|
const Matrix3& getMatrix() const {
|
||||||
|
return orientation.rotationMatrix;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** is the pose known and stable? */
|
||||||
|
bool isKnown() const {
|
||||||
|
return orientation.isKnown;
|
||||||
|
}
|
||||||
|
|
||||||
|
void addAccelerometer(const Timestamp& ts, const AccelerometerData& acc) {
|
||||||
|
|
||||||
|
// add accelerometer data
|
||||||
|
est.addAcc(ts, acc);
|
||||||
|
|
||||||
|
// update (if needed)
|
||||||
|
orientation.rotationMatrix = est.get();
|
||||||
|
orientation.isKnown = true;
|
||||||
|
orientation.lastEstimation = ts;
|
||||||
|
|
||||||
|
// debug-plot (if configured)
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
plot.add(ts, est.getBase(), orientation.rotationMatrix);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
// /** get a matrix that rotates the vector "from" into the vector "to" */
|
||||||
|
// static Eigen::Matrix3f getRotationMatrix(const Eigen::Vector3f& from, const Eigen::Vector3f to) {
|
||||||
|
|
||||||
|
// // http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
|
||||||
|
|
||||||
|
// const Eigen::Vector3f x = from.cross(to) / from.cross(to).norm();
|
||||||
|
// const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
|
||||||
|
|
||||||
|
// Eigen::Matrix3f A; A <<
|
||||||
|
// 0, -x(2), x(1),
|
||||||
|
// x(2), 0, -x(0),
|
||||||
|
// -x(1), x(0), 0;
|
||||||
|
|
||||||
|
// return Eigen::Matrix3f::Identity() + (std::sin(angle) * A) + ((1-std::cos(angle)) * (A*A));
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
/** get a matrix that rotates the vector "from" into the vector "to" */
|
||||||
|
static Matrix3 getRotationMatrix(const Vector3& from, const Vector3 to) {
|
||||||
|
|
||||||
|
// http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
|
||||||
|
|
||||||
|
const Vector3 v = from.cross(to) / from.cross(to).norm();
|
||||||
|
const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
|
||||||
|
|
||||||
|
Matrix3 A({
|
||||||
|
0.0f, -v.z, v.y,
|
||||||
|
v.z, 0.0f, -v.x,
|
||||||
|
-v.y, v.x, 0.0f
|
||||||
|
});
|
||||||
|
|
||||||
|
return Matrix3::identity() + (A * std::sin(angle)) + ((A*A) * (1-std::cos(angle)));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// /** get a rotation matrix for the given x,y,z rotation (in radians) */
|
||||||
|
// static Eigen::Matrix3f getRotation(const float x, const float y, const float z) {
|
||||||
|
// const float g = x; const float b = y; const float a = z;
|
||||||
|
// const float a11 = std::cos(a)*std::cos(b);
|
||||||
|
// const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g);
|
||||||
|
// const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g);
|
||||||
|
// const float a21 = std::sin(a)*std::cos(b);
|
||||||
|
// const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g);
|
||||||
|
// const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g);
|
||||||
|
// const float a31 = -std::sin(b);
|
||||||
|
// const float a32 = std::cos(b)*std::sin(g);
|
||||||
|
// const float a33 = std::cos(b)*std::cos(g);
|
||||||
|
// Eigen::Matrix3f m;
|
||||||
|
// m <<
|
||||||
|
// a11, a12, a13,
|
||||||
|
// a21, a22, a23,
|
||||||
|
// a31, a32, a33;
|
||||||
|
// ;
|
||||||
|
// return m;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// /** estimate the smartphones current holding position */
|
||||||
|
// void estimateHolding2() {
|
||||||
|
|
||||||
|
|
||||||
|
// // z-axis points through the device and is the axis we are interested in
|
||||||
|
// // http://www.kircherelectronics.com/blog/index.php/11-android/sensors/15-android-gyroscope-basics
|
||||||
|
|
||||||
|
// avgAcc = Eigen::Vector3f::Zero();
|
||||||
|
|
||||||
|
// for (const AccelerometerData& acc : accData) {
|
||||||
|
// //for (const GyroscopeData& acc : gyroData) {
|
||||||
|
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
||||||
|
// // Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
||||||
|
// avgAcc += vec;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// //avgAcc /= accData.size();
|
||||||
|
// avgAcc = avgAcc.normalized();
|
||||||
|
|
||||||
|
// Eigen::Vector3f rev; rev << 0,0,1;
|
||||||
|
|
||||||
|
// rotMat = getRotationMatrix(avgAcc, rev);
|
||||||
|
|
||||||
|
|
||||||
|
// //Assert::isTrue(avgAcc(2) > avgAcc(0), "z is not the gravity axis");
|
||||||
|
// //Assert::isTrue(avgAcc(2) > avgAcc(1), "z is not the gravity axis");
|
||||||
|
//// Eigen::Vector3f re = rotMat * avgAcc;
|
||||||
|
//// Eigen::Vector3f diff = rev-re;
|
||||||
|
//// Assert::isTrue(diff.norm() < 0.001, "rotation error");
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
// struct RotationMatrixEstimationUsingAccAngle {
|
||||||
|
|
||||||
|
// Eigen::Vector3f lastAvg;
|
||||||
|
// Eigen::Vector3f avg;
|
||||||
|
// int cnt;
|
||||||
|
|
||||||
|
// RotationMatrixEstimationUsingAccAngle() {
|
||||||
|
// reset();
|
||||||
|
// }
|
||||||
|
|
||||||
|
// void add(const float x, const float y, const float z) {
|
||||||
|
|
||||||
|
// Eigen::Vector3f vec; vec << x,y,z;
|
||||||
|
// avg += vec;
|
||||||
|
// ++cnt;
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
// void reset() {
|
||||||
|
// cnt = 0;
|
||||||
|
// avg = Eigen::Vector3f::Zero();
|
||||||
|
// }
|
||||||
|
|
||||||
|
// Eigen::Matrix3f get() {
|
||||||
|
|
||||||
|
// // http://www.hobbytronics.co.uk/accelerometer-info
|
||||||
|
|
||||||
|
// avg /= cnt;
|
||||||
|
// lastAvg = avg;
|
||||||
|
|
||||||
|
// //const float mag = avg.norm();
|
||||||
|
|
||||||
|
// const float baseX = 0;
|
||||||
|
// const float baseY = 0;
|
||||||
|
// const float baseZ = 0; // mag?
|
||||||
|
|
||||||
|
// const float x = avg(0) - baseX;
|
||||||
|
// const float y = avg(1) - baseY;
|
||||||
|
// const float z = avg(2) - baseZ;
|
||||||
|
|
||||||
|
// const float ax = std::atan( x / (std::sqrt(y*y + z*z)) );
|
||||||
|
// const float ay = std::atan( y / (std::sqrt(x*x + z*z)) );
|
||||||
|
|
||||||
|
// const Eigen::Matrix3f rotMat = getRotation(ay, -ax, 0); // TODO -ax or +ax?
|
||||||
|
|
||||||
|
// // sanity check
|
||||||
|
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
||||||
|
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
||||||
|
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
||||||
|
// // int i = 0; (void) i;
|
||||||
|
|
||||||
|
// reset();
|
||||||
|
// return rotMat;
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
// } est;
|
||||||
|
|
||||||
|
// struct PCA {
|
||||||
|
|
||||||
|
// Eigen::Vector3f avg;
|
||||||
|
// Eigen::Vector3f lastAvg;
|
||||||
|
// Eigen::Matrix3f covar;
|
||||||
|
// int cnt = 0;
|
||||||
|
|
||||||
|
// PCA() {
|
||||||
|
// reset();
|
||||||
|
// }
|
||||||
|
|
||||||
|
// void add(const float x, const float y, const float z) {
|
||||||
|
|
||||||
|
// Eigen::Vector3f vec; vec << x,y,z;
|
||||||
|
// avg += vec;
|
||||||
|
// covar += vec*vec.transpose();
|
||||||
|
// ++cnt;
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
// Eigen::Matrix3f get() {
|
||||||
|
|
||||||
|
// avg /= cnt;
|
||||||
|
// covar /= cnt;
|
||||||
|
// lastAvg = avg;
|
||||||
|
|
||||||
|
// std::cout << avg << std::endl;
|
||||||
|
|
||||||
|
// Eigen::Matrix3f Q = covar;// - avg*avg.transpose();
|
||||||
|
// for (int i = 0; i < 9; ++i) {Q(i) = std::abs(Q(i));}
|
||||||
|
|
||||||
|
// Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver(Q);
|
||||||
|
// solver.eigenvalues();
|
||||||
|
// solver.eigenvectors();
|
||||||
|
|
||||||
|
// const auto eval = solver.eigenvalues();
|
||||||
|
// const auto evec = solver.eigenvectors();
|
||||||
|
// Assert::isTrue(eval(2) > eval(1) && eval(1) > eval(0), "eigenvalues are not sorted!");
|
||||||
|
|
||||||
|
// Eigen::Matrix3f rotMat;
|
||||||
|
// rotMat.col(0) = evec.col(0);
|
||||||
|
// rotMat.col(1) = evec.col(1);
|
||||||
|
// rotMat.col(2) = evec.col(2); // 0,0,1 (z-axis) belongs to the strongest eigenvalue
|
||||||
|
// rotMat.transposeInPlace();
|
||||||
|
|
||||||
|
// //Eigen::Vector3f gy; gy << 0, 30, 30;
|
||||||
|
// Eigen::Vector3f avg1 = rotMat * avg;
|
||||||
|
// int i = 0; (void) i;
|
||||||
|
|
||||||
|
// reset();
|
||||||
|
|
||||||
|
// return rotMat;
|
||||||
|
|
||||||
|
// }
|
||||||
|
|
||||||
|
// void reset() {
|
||||||
|
// cnt = 0;
|
||||||
|
// avg = Eigen::Vector3f::Zero();
|
||||||
|
// covar = Eigen::Matrix3f::Zero();
|
||||||
|
// }
|
||||||
|
|
||||||
|
|
||||||
|
// } pca1;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// /** estimate the smartphones current holding position */
|
||||||
|
// void estimateHolding() {
|
||||||
|
|
||||||
|
// Eigen::Vector3f avg = Eigen::Vector3f::Zero();
|
||||||
|
// Eigen::Matrix3f covar = Eigen::Matrix3f::Zero();
|
||||||
|
|
||||||
|
// for (const AccelerometerData& acc : accData) {
|
||||||
|
//// for (const GyroscopeData& acc : gyroData) {
|
||||||
|
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
||||||
|
//// Eigen::Vector3f vec; vec << (acc.x), (acc.y), (acc.z);
|
||||||
|
// avg += vec;
|
||||||
|
// covar += vec * vec.transpose();
|
||||||
|
// }
|
||||||
|
|
||||||
|
// avg /= accData.size(); // TODO
|
||||||
|
// covar /= accData.size(); //TODO
|
||||||
|
|
||||||
|
// avgAcc = avg.normalized();
|
||||||
|
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#endif // INDOOR_IMU_POSEDETECTION_H
|
||||||
146
sensors/imu/PoseDetectionPlot.h
Normal file
146
sensors/imu/PoseDetectionPlot.h
Normal file
@@ -0,0 +1,146 @@
|
|||||||
|
#ifndef INDOOR_IMU_POSEDETECTIONPLOT_H
|
||||||
|
#define INDOOR_IMU_POSEDETECTIONPLOT_H
|
||||||
|
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
|
||||||
|
#include <KLib/misc/gnuplot/Gnuplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotPlot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotMultiplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplotElementEmpty.h>
|
||||||
|
|
||||||
|
#include "../../data/Timestamp.h"
|
||||||
|
#include "../../math/Matrix3.h"
|
||||||
|
#include "AccelerometerData.h"
|
||||||
|
|
||||||
|
class PoseDetectionPlot {
|
||||||
|
|
||||||
|
Timestamp plotRef;
|
||||||
|
Timestamp lastPlot;
|
||||||
|
|
||||||
|
K::Gnuplot gp1;
|
||||||
|
K::Gnuplot gp2;
|
||||||
|
|
||||||
|
K::GnuplotPlot plotAcc;
|
||||||
|
K::GnuplotPlotElementLines lineAccX;
|
||||||
|
K::GnuplotPlotElementLines lineAccY;
|
||||||
|
K::GnuplotPlotElementLines lineAccZ;
|
||||||
|
|
||||||
|
K::GnuplotSplot plotPose;
|
||||||
|
K::GnuplotSplotElementLines linePose;
|
||||||
|
//K::GnuplotSplotElementEmpty emptyPose;
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<float>>> pose;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
/** ctor */
|
||||||
|
PoseDetectionPlot() {
|
||||||
|
|
||||||
|
gp1 << "set autoscale xfix\n";
|
||||||
|
gp2 << "set view equal xyz\n";
|
||||||
|
|
||||||
|
plotAcc.setTitle("Accelerometer");
|
||||||
|
plotAcc.add(&lineAccX); lineAccX.getStroke().getColor().setHexStr("#ff0000"); lineAccX.setTitle("gyroX");
|
||||||
|
plotAcc.add(&lineAccY); lineAccY.getStroke().getColor().setHexStr("#00ff00"); lineAccY.setTitle("gyroY");
|
||||||
|
plotAcc.add(&lineAccZ); lineAccZ.getStroke().getColor().setHexStr("#0000ff"); lineAccZ.setTitle("gyroZ");
|
||||||
|
|
||||||
|
plotPose.setTitle("Pose");
|
||||||
|
plotPose.getView().setEnabled(false);
|
||||||
|
plotPose.add(&linePose);
|
||||||
|
//plotPose.add(&emptyPose);
|
||||||
|
|
||||||
|
plotPose.getAxisX().setRange(-8,+8);
|
||||||
|
plotPose.getAxisY().setRange(-8,+8);
|
||||||
|
plotPose.getAxisZ().setRange(-8,+8);
|
||||||
|
|
||||||
|
const float a = 0.05; const float b = 0.95;
|
||||||
|
pose = {
|
||||||
|
{{0, 0, 0},{1, 0, 0},{1, 1, 0},{0, 1, 0},{0, 0, 0}}, // boden
|
||||||
|
{{0, 0, 0},{0, 0, 1},{0, 1, 1},{0, 1, 0},{0, 0, 0}}, // links
|
||||||
|
{{1, 0, 0},{1, 0, 1},{1, 1, 1},{1, 1, 0},{1, 0, 0}}, // rechts
|
||||||
|
{{0, 1, 0},{1, 1, 0},{1, 1, 1},{0, 1, 1},{0, 1, 0}}, // oben
|
||||||
|
{{0, 0, 0},{1, 0, 0},{1, 0, 1},{0, 0, 1},{0, 0, 0}}, // unten
|
||||||
|
{{0, 0, 1},{1, 0, 1},{1, 1, 1},{0, 1, 1},{0, 0, 1}}, // deckel
|
||||||
|
{{a, 0.15, 1},{b, 0.15, 1},{b, 0.95, 1},{a, 0.95, 1},{a, 0.15, 1}}, // display
|
||||||
|
};
|
||||||
|
|
||||||
|
//K::GnuplotStroke stroke(K::GnuplotDashtype::SOLID, 1, K::GnuplotColor::fromHexStr("#000000"));
|
||||||
|
K::GnuplotStroke stroke = K::GnuplotStroke::NONE();
|
||||||
|
K::GnuplotFill fillOut = K::GnuplotFill(K::GnuplotFillStyle::SOLID, K::GnuplotColor::fromHexStr("#999999"));
|
||||||
|
K::GnuplotFill fillSide = K::GnuplotFill(K::GnuplotFillStyle::SOLID, K::GnuplotColor::fromHexStr("#666666"));
|
||||||
|
K::GnuplotFill fillDisp = K::GnuplotFill(K::GnuplotFillStyle::SOLID, K::GnuplotColor::fromHexStr("#333333"));
|
||||||
|
|
||||||
|
plotPose.getObjects().set(1, new K::GnuplotObjectPolygon(fillOut, stroke));
|
||||||
|
plotPose.getObjects().set(2, new K::GnuplotObjectPolygon(fillSide, stroke));
|
||||||
|
plotPose.getObjects().set(3, new K::GnuplotObjectPolygon(fillSide, stroke));
|
||||||
|
plotPose.getObjects().set(4, new K::GnuplotObjectPolygon(fillSide, stroke));
|
||||||
|
plotPose.getObjects().set(5, new K::GnuplotObjectPolygon(fillSide, stroke));
|
||||||
|
plotPose.getObjects().set(6, new K::GnuplotObjectPolygon(fillOut, stroke));
|
||||||
|
plotPose.getObjects().set(7, new K::GnuplotObjectPolygon(fillDisp, stroke));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void add(Timestamp ts, const AccelerometerData& avg, const Matrix3& rotation) {
|
||||||
|
|
||||||
|
if (plotRef.isZero()) {plotRef = ts;}
|
||||||
|
const Timestamp tsPlot = (ts-plotRef);
|
||||||
|
const Timestamp tsOldest = tsPlot - Timestamp::fromMS(5000);
|
||||||
|
|
||||||
|
// acc
|
||||||
|
lineAccX.add( K::GnuplotPoint2(tsPlot.ms(), avg.x) );
|
||||||
|
lineAccY.add( K::GnuplotPoint2(tsPlot.ms(), avg.y) );
|
||||||
|
lineAccZ.add( K::GnuplotPoint2(tsPlot.ms(), avg.z) );
|
||||||
|
|
||||||
|
if (lastPlot + Timestamp::fromMS(50) < tsPlot) {
|
||||||
|
lastPlot = tsPlot;
|
||||||
|
|
||||||
|
// update 3D smartphone model
|
||||||
|
for (size_t i = 0; i < pose.size(); ++i) {
|
||||||
|
K::GnuplotObjectPolygon* gp = (K::GnuplotObjectPolygon*) plotPose.getObjects().get(i+1); gp->clear();
|
||||||
|
for (const std::vector<float>& pts : pose[i]) {
|
||||||
|
const Vector3 vec1(pts[0], pts[1], pts[2]);
|
||||||
|
const Vector3 vec2 = vec1 - Vector3(0.5, 0.5, 0.5); // center cube at 0,0,0
|
||||||
|
const Vector3 vec3 = vec2 * Vector3(7, 15, 1); // stretch cube
|
||||||
|
const Vector3 vec4 = rotation * vec3;
|
||||||
|
gp->add(K::GnuplotCoordinate3(vec4.x, vec4.y, vec4.z, K::GnuplotCoordinateSystem::FIRST));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// add coordinate system
|
||||||
|
const Vector3 vx = rotation * Vector3(2,0,0);
|
||||||
|
const Vector3 vy = rotation * Vector3(0,3,0);
|
||||||
|
const Vector3 vz = rotation * Vector3(0,0,5);
|
||||||
|
linePose.clear();
|
||||||
|
linePose.addSegment(K::GnuplotPoint3(0,0,0), K::GnuplotPoint3(vx.x, vx.y, vx.z));
|
||||||
|
linePose.addSegment(K::GnuplotPoint3(0,0,0), K::GnuplotPoint3(vy.x, vy.y, vy.z));
|
||||||
|
linePose.addSegment(K::GnuplotPoint3(0,0,0), K::GnuplotPoint3(vz.x, vz.y, vz.z));
|
||||||
|
|
||||||
|
// remove old accelerometer entries
|
||||||
|
auto remove = [tsOldest] (const K::GnuplotPoint2 pt) {return pt.x < tsOldest.ms();};
|
||||||
|
lineAccX.removeIf(remove);
|
||||||
|
lineAccY.removeIf(remove);
|
||||||
|
lineAccZ.removeIf(remove);
|
||||||
|
|
||||||
|
// raw accelerometer
|
||||||
|
gp1.draw(plotAcc);
|
||||||
|
gp1.flush();
|
||||||
|
|
||||||
|
// 3D pose
|
||||||
|
gp2.draw(plotPose);
|
||||||
|
gp2.flush();
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif // INDOOR_IMU_POSEDETECTIONPLOT_H
|
||||||
@@ -5,23 +5,18 @@
|
|||||||
#include "AccelerometerData.h"
|
#include "AccelerometerData.h"
|
||||||
#include "../../data/Timestamp.h"
|
#include "../../data/Timestamp.h"
|
||||||
#include "../../math/MovingAverageTS.h"
|
#include "../../math/MovingAverageTS.h"
|
||||||
|
#include "../../math/Matrix3.h"
|
||||||
|
|
||||||
#include "../../geo/Point3.h"
|
#include "../../geo/Point3.h"
|
||||||
|
#include "PoseDetection.h"
|
||||||
|
|
||||||
#include <eigen3/Eigen/Dense>
|
#include <eigen3/Eigen/Dense>
|
||||||
|
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
#ifdef WITH_DEBUG_PLOT
|
#include "TurnDetectionPlot.h"
|
||||||
#include <KLib/misc/gnuplot/Gnuplot.h>
|
|
||||||
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
|
||||||
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
|
||||||
#include <KLib/misc/gnuplot/GnuplotPlot.h>
|
|
||||||
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
|
|
||||||
#include <KLib/misc/gnuplot/GnuplotMultiplot.h>
|
|
||||||
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
|
||||||
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "../../Assertions.h"
|
#include "../../Assertions.h"
|
||||||
|
|
||||||
@@ -29,98 +24,29 @@ class TurnDetection {
|
|||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
#ifdef WITH_DEBUG_PLOT
|
PoseDetection* pose = nullptr;
|
||||||
Timestamp plotRef;
|
|
||||||
Timestamp lastPlot;
|
|
||||||
|
|
||||||
K::Gnuplot gp1;
|
|
||||||
K::Gnuplot gp2;
|
|
||||||
|
|
||||||
K::GnuplotMultiplot multiplot = K::GnuplotMultiplot(1,3);
|
|
||||||
|
|
||||||
K::GnuplotPlot plotGyroRaw;
|
|
||||||
K::GnuplotPlotElementLines lineGyroRawX;
|
|
||||||
K::GnuplotPlotElementLines lineGyroRawY;
|
|
||||||
K::GnuplotPlotElementLines lineGyroRawZ;
|
|
||||||
|
|
||||||
K::GnuplotPlot plotGyroFix;
|
|
||||||
K::GnuplotPlotElementLines lineGyroFixX;
|
|
||||||
K::GnuplotPlotElementLines lineGyroFixY;
|
|
||||||
K::GnuplotPlotElementLines lineGyroFixZ;
|
|
||||||
|
|
||||||
K::GnuplotPlot plotAcc;
|
|
||||||
K::GnuplotPlotElementLines lineAccX;
|
|
||||||
K::GnuplotPlotElementLines lineAccY;
|
|
||||||
K::GnuplotPlotElementLines lineAccZ;
|
|
||||||
|
|
||||||
K::GnuplotSplot plotPose;
|
|
||||||
K::GnuplotSplotElementLines linePose;
|
|
||||||
|
|
||||||
float plotCurHead = 0;
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
//std::vector<GyroscopeData> gyroData;
|
//std::vector<GyroscopeData> gyroData;
|
||||||
Eigen::Vector3f prevGyro = Eigen::Vector3f::Zero();
|
//Eigen::Vector3f prevGyro = Eigen::Vector3f::Zero();
|
||||||
|
Vector3 prevGyro = Vector3(0,0,0);
|
||||||
|
|
||||||
Timestamp lastGyroReading;
|
Timestamp lastGyroReading;
|
||||||
|
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
struct {
|
TurnDetectionPlot plot;
|
||||||
Eigen::Matrix3f rotationMatrix = Eigen::Matrix3f::Identity();
|
#endif
|
||||||
bool isKnown = false;
|
|
||||||
Timestamp lastEstimation;
|
|
||||||
} orientation;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
/** ctor */
|
/** ctor */
|
||||||
TurnDetection() {
|
TurnDetection(PoseDetection* pose) : pose(pose) {
|
||||||
|
;
|
||||||
#ifdef WITH_DEBUG_PLOT
|
|
||||||
|
|
||||||
gp1 << "set autoscale xfix\n";
|
|
||||||
gp1 << "set view equal xyz\n";
|
|
||||||
|
|
||||||
multiplot.add(&plotGyroRaw);
|
|
||||||
multiplot.add(&plotGyroFix);
|
|
||||||
multiplot.add(&plotAcc);
|
|
||||||
|
|
||||||
plotGyroRaw.setTitle("Gyroscope (raw)");
|
|
||||||
plotGyroRaw.add(&lineGyroRawX); lineGyroRawX.getStroke().getColor().setHexStr("#ff0000"); lineGyroRawX.setTitle("gyroX");
|
|
||||||
plotGyroRaw.add(&lineGyroRawY); lineGyroRawY.getStroke().getColor().setHexStr("#00ff00"); lineGyroRawY.setTitle("gyroY");
|
|
||||||
plotGyroRaw.add(&lineGyroRawZ); lineGyroRawZ.getStroke().getColor().setHexStr("#0000ff"); lineGyroRawZ.setTitle("gyroZ");
|
|
||||||
|
|
||||||
plotGyroFix.setTitle("Gyroscope (fixed)");
|
|
||||||
plotGyroFix.add(&lineGyroFixX); lineGyroFixX.getStroke().getColor().setHexStr("#ff0000"); lineGyroFixX.setTitle("gyroX");
|
|
||||||
plotGyroFix.add(&lineGyroFixY); lineGyroFixY.getStroke().getColor().setHexStr("#00ff00"); lineGyroFixY.setTitle("gyroY");
|
|
||||||
plotGyroFix.add(&lineGyroFixZ); lineGyroFixZ.getStroke().getColor().setHexStr("#0000ff"); lineGyroFixZ.setTitle("gyroZ");
|
|
||||||
|
|
||||||
plotAcc.setTitle("Accelerometer");
|
|
||||||
plotAcc.add(&lineAccX); lineAccX.getStroke().getColor().setHexStr("#ff0000"); lineAccX.setTitle("gyroX");
|
|
||||||
plotAcc.add(&lineAccY); lineAccY.getStroke().getColor().setHexStr("#00ff00"); lineAccY.setTitle("gyroY");
|
|
||||||
plotAcc.add(&lineAccZ); lineAccZ.getStroke().getColor().setHexStr("#0000ff"); lineAccZ.setTitle("gyroZ");
|
|
||||||
|
|
||||||
plotPose.setTitle("Pose");
|
|
||||||
plotPose.getView().setEnabled(false);
|
|
||||||
plotPose.add(&linePose);
|
|
||||||
plotPose.getAxisX().setRange(-5,+5);
|
|
||||||
plotPose.getAxisY().setRange(-5,+5);
|
|
||||||
plotPose.getAxisZ().setRange(-5,+5);
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// does not seem to help...
|
// does not seem to help...
|
||||||
// struct DriftEstimator {
|
// struct DriftEstimator {
|
||||||
|
|
||||||
|
|
||||||
// MovingAverageTS<Eigen::Vector3f> avg;
|
// MovingAverageTS<Eigen::Vector3f> avg;
|
||||||
|
|
||||||
// DriftEstimator() : avg(Timestamp::fromSec(5.0), Eigen::Vector3f::Zero()) {
|
// DriftEstimator() : avg(Timestamp::fromSec(5.0), Eigen::Vector3f::Zero()) {
|
||||||
@@ -139,12 +65,8 @@ public:
|
|||||||
// } driftEst;
|
// } driftEst;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
float addGyroscope(const Timestamp& ts, const GyroscopeData& gyro) {
|
float addGyroscope(const Timestamp& ts, const GyroscopeData& gyro) {
|
||||||
|
|
||||||
|
|
||||||
// ignore the first reading completely, just remember its timestamp
|
// ignore the first reading completely, just remember its timestamp
|
||||||
if (lastGyroReading.isZero()) {lastGyroReading = ts; return 0.0f;}
|
if (lastGyroReading.isZero()) {lastGyroReading = ts; return 0.0f;}
|
||||||
|
|
||||||
@@ -157,17 +79,20 @@ public:
|
|||||||
|
|
||||||
// ignore readings until the first orientation-estimation is available
|
// ignore readings until the first orientation-estimation is available
|
||||||
// otherwise we would use a wrong rotation matrix which yields wrong results!
|
// otherwise we would use a wrong rotation matrix which yields wrong results!
|
||||||
if (!orientation.isKnown) {return 0.0f;}
|
if (!pose->isKnown()) {return 0.0f;}
|
||||||
|
|
||||||
// get the current gyro-reading as vector
|
// get the current gyro-reading as vector
|
||||||
Eigen::Vector3f vec; vec << gyro.x, gyro.y, gyro.z;
|
//Eigen::Vector3f vec; vec << gyro.x, gyro.y, gyro.z;
|
||||||
|
const Vector3 vec(gyro.x, gyro.y, gyro.z);
|
||||||
|
|
||||||
// rotate it into our desired coordinate system, where the smartphone lies flat on the ground
|
// rotate it into our desired coordinate system, where the smartphone lies flat on the ground
|
||||||
Eigen::Vector3f curGyro = orientation.rotationMatrix * vec;
|
//Eigen::Vector3f curGyro = orientation.rotationMatrix * vec;
|
||||||
|
const Vector3 curGyro = pose->getMatrix() * vec;
|
||||||
//driftEst.removeDrift(ts, curGyro);
|
//driftEst.removeDrift(ts, curGyro);
|
||||||
|
|
||||||
// area
|
// area
|
||||||
const Eigen::Vector3f area =
|
//const Eigen::Vector3f area =
|
||||||
|
const Vector3 area =
|
||||||
|
|
||||||
// Trapezoid rule (should be more accurate but does not always help?!)
|
// Trapezoid rule (should be more accurate but does not always help?!)
|
||||||
//(prevGyro * curDiff.sec()) + // squared region
|
//(prevGyro * curDiff.sec()) + // squared region
|
||||||
@@ -183,485 +108,18 @@ public:
|
|||||||
prevGyro = curGyro;
|
prevGyro = curGyro;
|
||||||
|
|
||||||
// rotation = z-axis only!
|
// rotation = z-axis only!
|
||||||
const float delta = area(2);
|
//const float delta = area(2);
|
||||||
|
const float delta = area.z;
|
||||||
|
|
||||||
#ifdef WITH_DEBUG_PLOT
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
plot.add(ts, delta, gyro, curGyro);
|
||||||
plotCurHead += delta;
|
|
||||||
|
|
||||||
if (plotRef.isZero()) {plotRef = ts;}
|
|
||||||
const Timestamp tsPlot = (ts-plotRef);
|
|
||||||
const Timestamp tsOldest = tsPlot - Timestamp::fromMS(5000);
|
|
||||||
|
|
||||||
// raw gyro
|
|
||||||
lineGyroRawX.add( K::GnuplotPoint2(tsPlot.ms(), gyro.x) );
|
|
||||||
lineGyroRawY.add( K::GnuplotPoint2(tsPlot.ms(), gyro.y) );
|
|
||||||
lineGyroRawZ.add( K::GnuplotPoint2(tsPlot.ms(), gyro.z) );
|
|
||||||
|
|
||||||
// adjusted gyro
|
|
||||||
lineGyroFixX.add( K::GnuplotPoint2(tsPlot.ms(), curGyro(0)) );
|
|
||||||
lineGyroFixY.add( K::GnuplotPoint2(tsPlot.ms(), curGyro(1)) );
|
|
||||||
lineGyroFixZ.add( K::GnuplotPoint2(tsPlot.ms(), curGyro(2)) );
|
|
||||||
|
|
||||||
// adjusted gyro
|
|
||||||
lineAccX.add( K::GnuplotPoint2(tsPlot.ms(), est.getAvg().x) );
|
|
||||||
lineAccY.add( K::GnuplotPoint2(tsPlot.ms(), est.getAvg().y) );
|
|
||||||
lineAccZ.add( K::GnuplotPoint2(tsPlot.ms(), est.getAvg().z) );
|
|
||||||
|
|
||||||
if (lastPlot + Timestamp::fromMS(50) < tsPlot) {
|
|
||||||
|
|
||||||
lastPlot = tsPlot;
|
|
||||||
|
|
||||||
// plot 3D pose
|
|
||||||
std::vector<Point3> pose = {
|
|
||||||
Point3(-1, -2, -0.1), Point3(+1, -2, -0.1), Point3(+1, +2, -0.1), Point3(-1, +2, -0.1),
|
|
||||||
Point3(-1, -2, +0.1), Point3(+1, -2, +0.1), Point3(+1, +2, +0.1), Point3(-1, +2, +0.1),
|
|
||||||
};
|
|
||||||
linePose.clear();
|
|
||||||
for (const Point3 p : pose) {
|
|
||||||
Eigen::Vector3f vec1; vec1 << p.x, p.y, p.z;
|
|
||||||
Eigen::Vector3f vec2 = orientation.rotationMatrix * vec1;
|
|
||||||
K::GnuplotPoint3 gp3(vec2(0), vec2(1), vec2(2));
|
|
||||||
linePose.add(gp3);
|
|
||||||
}
|
|
||||||
|
|
||||||
auto remove = [tsOldest] (const K::GnuplotPoint2 pt) {return pt.x < tsOldest.ms();};
|
|
||||||
lineGyroRawX.removeIf(remove);
|
|
||||||
lineGyroRawY.removeIf(remove);
|
|
||||||
lineGyroRawZ.removeIf(remove);
|
|
||||||
lineGyroFixX.removeIf(remove);
|
|
||||||
lineGyroFixY.removeIf(remove);
|
|
||||||
lineGyroFixZ.removeIf(remove);
|
|
||||||
lineAccX.removeIf(remove);
|
|
||||||
lineAccY.removeIf(remove);
|
|
||||||
lineAccZ.removeIf(remove);
|
|
||||||
|
|
||||||
const float ax = 0.85 + std::cos(plotCurHead)*0.1;
|
|
||||||
const float ay = 0.85 + std::sin(plotCurHead)*0.1;
|
|
||||||
gp1 << "set arrow 1 from screen 0.85,0.85 to screen " << ax << "," << ay << "\n";
|
|
||||||
gp1 << "set object 2 circle at screen 0.85,0.85 radius screen 0.1 \n";
|
|
||||||
|
|
||||||
|
|
||||||
gp1.draw(multiplot);
|
|
||||||
gp1.flush();
|
|
||||||
|
|
||||||
gp2.draw(plotPose);
|
|
||||||
gp2.flush();
|
|
||||||
|
|
||||||
//usleep(100);
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
// done
|
// done
|
||||||
return delta;
|
return delta;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void addAccelerometer(const Timestamp& ts, const AccelerometerData& acc) {
|
|
||||||
|
|
||||||
// add accelerometer data
|
|
||||||
//pca.add(std::abs(acc.x), std::abs(acc.y), std::abs(acc.z));
|
|
||||||
est.addAcc(ts, acc);
|
|
||||||
|
|
||||||
if (1 == 0) {
|
|
||||||
|
|
||||||
// FASTER
|
|
||||||
|
|
||||||
// start with the first available timestamp
|
|
||||||
if (orientation.lastEstimation.isZero()) {orientation.lastEstimation = ts;}
|
|
||||||
|
|
||||||
// if we have at-least 500 ms of acc-data, re-calculate the current smartphone holding
|
|
||||||
if (ts - orientation.lastEstimation > Timestamp::fromMS(1500)) {
|
|
||||||
orientation.rotationMatrix = est.get();
|
|
||||||
orientation.isKnown = true;
|
|
||||||
orientation.lastEstimation = ts;
|
|
||||||
est.reset();
|
|
||||||
}
|
|
||||||
|
|
||||||
} else {
|
|
||||||
|
|
||||||
// MORE ACCURATE
|
|
||||||
|
|
||||||
orientation.rotationMatrix = est.get();
|
|
||||||
orientation.isKnown = true;
|
|
||||||
orientation.lastEstimation = ts;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
|
|
||||||
// /** estimate the smartphones current holding position */
|
|
||||||
// void estimateHolding2() {
|
|
||||||
|
|
||||||
|
|
||||||
// // z-axis points through the device and is the axis we are interested in
|
|
||||||
// // http://www.kircherelectronics.com/blog/index.php/11-android/sensors/15-android-gyroscope-basics
|
|
||||||
|
|
||||||
// avgAcc = Eigen::Vector3f::Zero();
|
|
||||||
|
|
||||||
// for (const AccelerometerData& acc : accData) {
|
|
||||||
// //for (const GyroscopeData& acc : gyroData) {
|
|
||||||
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
|
||||||
// // Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
|
||||||
// avgAcc += vec;
|
|
||||||
// }
|
|
||||||
|
|
||||||
// //avgAcc /= accData.size();
|
|
||||||
// avgAcc = avgAcc.normalized();
|
|
||||||
|
|
||||||
// Eigen::Vector3f rev; rev << 0,0,1;
|
|
||||||
|
|
||||||
// rotMat = getRotationMatrix(avgAcc, rev);
|
|
||||||
|
|
||||||
|
|
||||||
// //Assert::isTrue(avgAcc(2) > avgAcc(0), "z is not the gravity axis");
|
|
||||||
// //Assert::isTrue(avgAcc(2) > avgAcc(1), "z is not the gravity axis");
|
|
||||||
//// Eigen::Vector3f re = rotMat * avgAcc;
|
|
||||||
//// Eigen::Vector3f diff = rev-re;
|
|
||||||
//// Assert::isTrue(diff.norm() < 0.001, "rotation error");
|
|
||||||
|
|
||||||
// }
|
|
||||||
|
|
||||||
public:
|
|
||||||
|
|
||||||
/** get a matrix that rotates the vector "from" into the vector "to" */
|
|
||||||
static Eigen::Matrix3f getRotationMatrix(const Eigen::Vector3f& from, const Eigen::Vector3f to) {
|
|
||||||
|
|
||||||
// http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
|
|
||||||
|
|
||||||
const Eigen::Vector3f x = from.cross(to) / from.cross(to).norm();
|
|
||||||
const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
|
|
||||||
|
|
||||||
Eigen::Matrix3f A; A <<
|
|
||||||
0, -x(2), x(1),
|
|
||||||
x(2), 0, -x(0),
|
|
||||||
-x(1), x(0), 0;
|
|
||||||
|
|
||||||
return Eigen::Matrix3f::Identity() + (std::sin(angle) * A) + ((1-std::cos(angle)) * (A*A));
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
struct XYZ {
|
|
||||||
|
|
||||||
Eigen::Vector3f sum;
|
|
||||||
int cnt;
|
|
||||||
|
|
||||||
XYZ() {
|
|
||||||
reset();
|
|
||||||
}
|
|
||||||
|
|
||||||
/** add the given accelerometer reading */
|
|
||||||
void addAcc(const Timestamp ts, const AccelerometerData& acc) {
|
|
||||||
|
|
||||||
// did NOT improve the result for every smartphone (only some)
|
|
||||||
//const float deltaMag = std::abs(acc.magnitude() - 9.81);
|
|
||||||
//if (deltaMag > 5.0) {return;}
|
|
||||||
|
|
||||||
// adjust sum and count (for average calculation)
|
|
||||||
Eigen::Vector3f vec; vec << acc.x, acc.y, acc.z;
|
|
||||||
sum += vec;
|
|
||||||
++cnt;
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
AccelerometerData getAvg() const {
|
|
||||||
return AccelerometerData(sum(0), sum(1), sum(2)) / cnt;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** get the current rotation matrix estimation */
|
|
||||||
Eigen::Matrix3f get() const {
|
|
||||||
|
|
||||||
// get the current acceleromter average
|
|
||||||
const Eigen::Vector3f avg = sum / cnt;
|
|
||||||
|
|
||||||
// rotate average accelerometer into (0,0,1)
|
|
||||||
Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
|
||||||
const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
|
|
||||||
|
|
||||||
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
|
|
||||||
Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
|
||||||
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
|
||||||
|
|
||||||
return rotMat;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/** reset the current sum etc. */
|
|
||||||
void reset() {
|
|
||||||
cnt = 0;
|
|
||||||
sum = Eigen::Vector3f::Zero();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
struct XYZ2 {
|
|
||||||
|
|
||||||
// average the accelerometer
|
|
||||||
MovingAverageTS<AccelerometerData> avg = MovingAverageTS<AccelerometerData>(Timestamp::fromMS(1250), AccelerometerData());
|
|
||||||
|
|
||||||
XYZ2() {
|
|
||||||
|
|
||||||
// start approximately
|
|
||||||
addAcc(Timestamp(), AccelerometerData(0,0,9.81));
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/** add the given accelerometer reading */
|
|
||||||
void addAcc(const Timestamp ts, const AccelerometerData& acc) {
|
|
||||||
|
|
||||||
// did NOT improve the result for every smartphone (only some)
|
|
||||||
//const float deltaMag = std::abs(acc.magnitude() - 9.81);
|
|
||||||
//if (deltaMag > 5.0) {return;}
|
|
||||||
|
|
||||||
avg.add(ts, acc);
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
AccelerometerData getAvg() const {
|
|
||||||
return avg.get();
|
|
||||||
}
|
|
||||||
|
|
||||||
/** get the current rotation matrix estimation */
|
|
||||||
Eigen::Matrix3f get() const {
|
|
||||||
|
|
||||||
// get the current acceleromter average
|
|
||||||
AccelerometerData avgAcc = getAvg();
|
|
||||||
const Eigen::Vector3f avg(avgAcc.x, avgAcc.y, avgAcc.z);
|
|
||||||
|
|
||||||
// rotate average-accelerometer into (0,0,1)
|
|
||||||
Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
|
||||||
const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
|
|
||||||
|
|
||||||
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
|
|
||||||
Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
|
||||||
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
|
||||||
|
|
||||||
return rotMat;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/** reset the current sum etc. */
|
|
||||||
void reset() {
|
|
||||||
;
|
|
||||||
}
|
|
||||||
|
|
||||||
} est;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// struct RotationMatrixEstimationUsingAccAngle {
|
|
||||||
|
|
||||||
// Eigen::Vector3f lastAvg;
|
|
||||||
// Eigen::Vector3f avg;
|
|
||||||
// int cnt;
|
|
||||||
|
|
||||||
// RotationMatrixEstimationUsingAccAngle() {
|
|
||||||
// reset();
|
|
||||||
// }
|
|
||||||
|
|
||||||
// void add(const float x, const float y, const float z) {
|
|
||||||
|
|
||||||
// Eigen::Vector3f vec; vec << x,y,z;
|
|
||||||
// avg += vec;
|
|
||||||
// ++cnt;
|
|
||||||
|
|
||||||
// }
|
|
||||||
|
|
||||||
// void reset() {
|
|
||||||
// cnt = 0;
|
|
||||||
// avg = Eigen::Vector3f::Zero();
|
|
||||||
// }
|
|
||||||
|
|
||||||
// Eigen::Matrix3f get() {
|
|
||||||
|
|
||||||
// // http://www.hobbytronics.co.uk/accelerometer-info
|
|
||||||
|
|
||||||
// avg /= cnt;
|
|
||||||
// lastAvg = avg;
|
|
||||||
|
|
||||||
// //const float mag = avg.norm();
|
|
||||||
|
|
||||||
// const float baseX = 0;
|
|
||||||
// const float baseY = 0;
|
|
||||||
// const float baseZ = 0; // mag?
|
|
||||||
|
|
||||||
// const float x = avg(0) - baseX;
|
|
||||||
// const float y = avg(1) - baseY;
|
|
||||||
// const float z = avg(2) - baseZ;
|
|
||||||
|
|
||||||
// const float ax = std::atan( x / (std::sqrt(y*y + z*z)) );
|
|
||||||
// const float ay = std::atan( y / (std::sqrt(x*x + z*z)) );
|
|
||||||
|
|
||||||
// const Eigen::Matrix3f rotMat = getRotation(ay, -ax, 0); // TODO -ax or +ax?
|
|
||||||
|
|
||||||
// // sanity check
|
|
||||||
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
|
||||||
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
|
||||||
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
|
||||||
// // int i = 0; (void) i;
|
|
||||||
|
|
||||||
// reset();
|
|
||||||
// return rotMat;
|
|
||||||
|
|
||||||
// }
|
|
||||||
|
|
||||||
// } est;
|
|
||||||
|
|
||||||
|
|
||||||
/** get a rotation matrix for the given x,y,z rotation (in radians) */
|
|
||||||
static Eigen::Matrix3f getRotation(const float x, const float y, const float z) {
|
|
||||||
const float g = x; const float b = y; const float a = z;
|
|
||||||
const float a11 = std::cos(a)*std::cos(b);
|
|
||||||
const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g);
|
|
||||||
const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g);
|
|
||||||
const float a21 = std::sin(a)*std::cos(b);
|
|
||||||
const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g);
|
|
||||||
const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g);
|
|
||||||
const float a31 = -std::sin(b);
|
|
||||||
const float a32 = std::cos(b)*std::sin(g);
|
|
||||||
const float a33 = std::cos(b)*std::cos(g);
|
|
||||||
Eigen::Matrix3f m;
|
|
||||||
m <<
|
|
||||||
a11, a12, a13,
|
|
||||||
a21, a22, a23,
|
|
||||||
a31, a32, a33;
|
|
||||||
;
|
|
||||||
return m;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// struct PCA {
|
|
||||||
|
|
||||||
// Eigen::Vector3f avg;
|
|
||||||
// Eigen::Vector3f lastAvg;
|
|
||||||
// Eigen::Matrix3f covar;
|
|
||||||
// int cnt = 0;
|
|
||||||
|
|
||||||
// PCA() {
|
|
||||||
// reset();
|
|
||||||
// }
|
|
||||||
|
|
||||||
// void add(const float x, const float y, const float z) {
|
|
||||||
|
|
||||||
// Eigen::Vector3f vec; vec << x,y,z;
|
|
||||||
// avg += vec;
|
|
||||||
// covar += vec*vec.transpose();
|
|
||||||
// ++cnt;
|
|
||||||
|
|
||||||
// }
|
|
||||||
|
|
||||||
// Eigen::Matrix3f get() {
|
|
||||||
|
|
||||||
// avg /= cnt;
|
|
||||||
// covar /= cnt;
|
|
||||||
// lastAvg = avg;
|
|
||||||
|
|
||||||
// std::cout << avg << std::endl;
|
|
||||||
|
|
||||||
// Eigen::Matrix3f Q = covar;// - avg*avg.transpose();
|
|
||||||
// for (int i = 0; i < 9; ++i) {Q(i) = std::abs(Q(i));}
|
|
||||||
|
|
||||||
// Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver(Q);
|
|
||||||
// solver.eigenvalues();
|
|
||||||
// solver.eigenvectors();
|
|
||||||
|
|
||||||
// const auto eval = solver.eigenvalues();
|
|
||||||
// const auto evec = solver.eigenvectors();
|
|
||||||
// Assert::isTrue(eval(2) > eval(1) && eval(1) > eval(0), "eigenvalues are not sorted!");
|
|
||||||
|
|
||||||
// Eigen::Matrix3f rotMat;
|
|
||||||
// rotMat.col(0) = evec.col(0);
|
|
||||||
// rotMat.col(1) = evec.col(1);
|
|
||||||
// rotMat.col(2) = evec.col(2); // 0,0,1 (z-axis) belongs to the strongest eigenvalue
|
|
||||||
// rotMat.transposeInPlace();
|
|
||||||
|
|
||||||
// //Eigen::Vector3f gy; gy << 0, 30, 30;
|
|
||||||
// Eigen::Vector3f avg1 = rotMat * avg;
|
|
||||||
// int i = 0; (void) i;
|
|
||||||
|
|
||||||
// reset();
|
|
||||||
|
|
||||||
// return rotMat;
|
|
||||||
|
|
||||||
// }
|
|
||||||
|
|
||||||
// void reset() {
|
|
||||||
// cnt = 0;
|
|
||||||
// avg = Eigen::Vector3f::Zero();
|
|
||||||
// covar = Eigen::Matrix3f::Zero();
|
|
||||||
// }
|
|
||||||
|
|
||||||
|
|
||||||
// } pca1;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// /** estimate the smartphones current holding position */
|
|
||||||
// void estimateHolding() {
|
|
||||||
|
|
||||||
// Eigen::Vector3f avg = Eigen::Vector3f::Zero();
|
|
||||||
// Eigen::Matrix3f covar = Eigen::Matrix3f::Zero();
|
|
||||||
|
|
||||||
// for (const AccelerometerData& acc : accData) {
|
|
||||||
//// for (const GyroscopeData& acc : gyroData) {
|
|
||||||
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
|
||||||
//// Eigen::Vector3f vec; vec << (acc.x), (acc.y), (acc.z);
|
|
||||||
// avg += vec;
|
|
||||||
// covar += vec * vec.transpose();
|
|
||||||
// }
|
|
||||||
|
|
||||||
// avg /= accData.size(); // TODO
|
|
||||||
// covar /= accData.size(); //TODO
|
|
||||||
|
|
||||||
// avgAcc = avg.normalized();
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//// static K::Gnuplot gp;
|
|
||||||
//// gp << "set view equal xyz\n";
|
|
||||||
//// gp << "set xrange[-1:+1]\n";
|
|
||||||
//// gp << "set yrange[-1:+1]\n";
|
|
||||||
//// gp << "set zrange[-1:+1]\n";
|
|
||||||
|
|
||||||
//// K::GnuplotSplot plot;
|
|
||||||
//// K::GnuplotSplotElementLines lines; plot.add(&lines);
|
|
||||||
|
|
||||||
//// K::GnuplotPoint3 p0(0,0,0);
|
|
||||||
//// K::GnuplotPoint3 px(evec(0,0), evec(1,0), evec(2,0)); //px = px * eval(0);
|
|
||||||
//// K::GnuplotPoint3 py(evec(0,1), evec(1,1), evec(2,1)); //py = py * eval(1);
|
|
||||||
//// K::GnuplotPoint3 pz(evec(0,2), evec(1,2), evec(2,2)); //pz = pz * eval(2);
|
|
||||||
|
|
||||||
//// K::GnuplotPoint3 pa(avg(0), avg(1), avg(2));
|
|
||||||
|
|
||||||
//// lines.addSegment(p0, px);
|
|
||||||
//// lines.addSegment(p0, py);
|
|
||||||
//// lines.addSegment(p0, pz);
|
|
||||||
//// lines.addSegment(p0, pa);
|
|
||||||
|
|
||||||
//// gp.draw(plot);
|
|
||||||
//// gp.flush();
|
|
||||||
|
|
||||||
// }
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif // TURNDETECTION_H
|
#endif // TURNDETECTION_H
|
||||||
|
|||||||
118
sensors/imu/TurnDetectionPlot.h
Normal file
118
sensors/imu/TurnDetectionPlot.h
Normal file
@@ -0,0 +1,118 @@
|
|||||||
|
#ifndef INDOOR_IMU_TURNDETECTIONPLOT_H
|
||||||
|
#define INDOOR_IMU_TURNDETECTIONPLOT_H
|
||||||
|
|
||||||
|
#ifdef WITH_DEBUG_PLOT
|
||||||
|
|
||||||
|
#include <KLib/misc/gnuplot/Gnuplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotPlot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotMultiplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
||||||
|
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
||||||
|
|
||||||
|
#include "GyroscopeData.h"
|
||||||
|
#include "../../data/Timestamp.h"
|
||||||
|
#include "../../math/Matrix3.h"
|
||||||
|
|
||||||
|
class TurnDetectionPlot {
|
||||||
|
|
||||||
|
Timestamp plotRef;
|
||||||
|
Timestamp lastPlot;
|
||||||
|
|
||||||
|
K::Gnuplot gp1;
|
||||||
|
|
||||||
|
K::GnuplotMultiplot multiplot = K::GnuplotMultiplot(1,2);
|
||||||
|
|
||||||
|
K::GnuplotPlot plotGyroRaw;
|
||||||
|
K::GnuplotPlotElementLines lineGyroRawX;
|
||||||
|
K::GnuplotPlotElementLines lineGyroRawY;
|
||||||
|
K::GnuplotPlotElementLines lineGyroRawZ;
|
||||||
|
|
||||||
|
K::GnuplotPlot plotGyroFix;
|
||||||
|
K::GnuplotPlotElementLines lineGyroFixX;
|
||||||
|
K::GnuplotPlotElementLines lineGyroFixY;
|
||||||
|
K::GnuplotPlotElementLines lineGyroFixZ;
|
||||||
|
|
||||||
|
K::GnuplotSplot plotPose;
|
||||||
|
K::GnuplotSplotElementLines linePose;
|
||||||
|
|
||||||
|
float plotCurHead = 0;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
TurnDetectionPlot() {
|
||||||
|
|
||||||
|
gp1 << "set autoscale xfix\n";
|
||||||
|
gp1 << "set view equal xyz\n";
|
||||||
|
|
||||||
|
multiplot.add(&plotGyroRaw);
|
||||||
|
multiplot.add(&plotGyroFix);
|
||||||
|
|
||||||
|
plotGyroRaw.setTitle("Gyroscope (raw)");
|
||||||
|
plotGyroRaw.add(&lineGyroRawX); lineGyroRawX.getStroke().getColor().setHexStr("#ff0000"); lineGyroRawX.setTitle("gyroX");
|
||||||
|
plotGyroRaw.add(&lineGyroRawY); lineGyroRawY.getStroke().getColor().setHexStr("#00ff00"); lineGyroRawY.setTitle("gyroY");
|
||||||
|
plotGyroRaw.add(&lineGyroRawZ); lineGyroRawZ.getStroke().getColor().setHexStr("#0000ff"); lineGyroRawZ.setTitle("gyroZ");
|
||||||
|
|
||||||
|
plotGyroFix.setTitle("Gyroscope (fixed)");
|
||||||
|
plotGyroFix.add(&lineGyroFixX); lineGyroFixX.getStroke().getColor().setHexStr("#ff0000"); lineGyroFixX.setTitle("gyroX");
|
||||||
|
plotGyroFix.add(&lineGyroFixY); lineGyroFixY.getStroke().getColor().setHexStr("#00ff00"); lineGyroFixY.setTitle("gyroY");
|
||||||
|
plotGyroFix.add(&lineGyroFixZ); lineGyroFixZ.getStroke().getColor().setHexStr("#0000ff"); lineGyroFixZ.setTitle("gyroZ");
|
||||||
|
|
||||||
|
plotPose.setTitle("Pose");
|
||||||
|
plotPose.getView().setEnabled(false);
|
||||||
|
plotPose.add(&linePose);
|
||||||
|
plotPose.getAxisX().setRange(-5,+5);
|
||||||
|
plotPose.getAxisY().setRange(-5,+5);
|
||||||
|
plotPose.getAxisZ().setRange(-5,+5);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void add(Timestamp ts, const float delta, const GyroscopeData& gyro, const Vector3& gyroFixed) {
|
||||||
|
|
||||||
|
plotCurHead += delta;
|
||||||
|
|
||||||
|
if (plotRef.isZero()) {plotRef = ts;}
|
||||||
|
const Timestamp tsPlot = (ts-plotRef);
|
||||||
|
const Timestamp tsOldest = tsPlot - Timestamp::fromMS(5000);
|
||||||
|
|
||||||
|
// raw gyro
|
||||||
|
lineGyroRawX.add( K::GnuplotPoint2(tsPlot.ms(), gyro.x) );
|
||||||
|
lineGyroRawY.add( K::GnuplotPoint2(tsPlot.ms(), gyro.y) );
|
||||||
|
lineGyroRawZ.add( K::GnuplotPoint2(tsPlot.ms(), gyro.z) );
|
||||||
|
|
||||||
|
// adjusted gyro
|
||||||
|
lineGyroFixX.add( K::GnuplotPoint2(tsPlot.ms(), gyroFixed.x) );
|
||||||
|
lineGyroFixY.add( K::GnuplotPoint2(tsPlot.ms(), gyroFixed.y) );
|
||||||
|
lineGyroFixZ.add( K::GnuplotPoint2(tsPlot.ms(), gyroFixed.z) );
|
||||||
|
|
||||||
|
if (lastPlot + Timestamp::fromMS(50) < tsPlot) {
|
||||||
|
|
||||||
|
lastPlot = tsPlot;
|
||||||
|
|
||||||
|
auto remove = [tsOldest] (const K::GnuplotPoint2 pt) {return pt.x < tsOldest.ms();};
|
||||||
|
lineGyroRawX.removeIf(remove);
|
||||||
|
lineGyroRawY.removeIf(remove);
|
||||||
|
lineGyroRawZ.removeIf(remove);
|
||||||
|
lineGyroFixX.removeIf(remove);
|
||||||
|
lineGyroFixY.removeIf(remove);
|
||||||
|
lineGyroFixZ.removeIf(remove);
|
||||||
|
|
||||||
|
const float ax = 0.85 + std::cos(plotCurHead)*0.1;
|
||||||
|
const float ay = 0.85 + std::sin(plotCurHead)*0.1;
|
||||||
|
gp1 << "set arrow 1 from screen 0.85,0.85 to screen " << ax << "," << ay << "\n";
|
||||||
|
gp1 << "set object 2 circle at screen 0.85,0.85 radius screen 0.1 \n";
|
||||||
|
|
||||||
|
gp1.draw(multiplot);
|
||||||
|
gp1.flush();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif // INDOOR_IMU_TURNDETECTIONPLOT_H
|
||||||
@@ -109,16 +109,17 @@ namespace Offline {
|
|||||||
|
|
||||||
#warning "some sensors todo:"
|
#warning "some sensors todo:"
|
||||||
switch(e.type) {
|
switch(e.type) {
|
||||||
case Sensor::ACC: listener->onAccelerometer(ts, reader->getAccelerometer()[idx].data); break;
|
case Sensor::ACC: listener->onAccelerometer(ts, reader->getAccelerometer()[idx].data); break;
|
||||||
case Sensor::BARO: listener->onBarometer(ts, reader->getBarometer()[idx].data); break;
|
case Sensor::BARO: listener->onBarometer(ts, reader->getBarometer()[idx].data); break;
|
||||||
case Sensor::BEACON: break;//listener->onBe(ts, reader->getBarometer()[idx].data); break;
|
case Sensor::BEACON: break;//listener->onBe(ts, reader->getBarometer()[idx].data); break;
|
||||||
case Sensor::COMPASS: listener->onCompass(ts, reader->getCompass()[idx].data); break;
|
case Sensor::COMPASS: listener->onCompass(ts, reader->getCompass()[idx].data); break;
|
||||||
case Sensor::GPS: listener->onGPS(ts, reader->getGPS()[idx].data); break;
|
case Sensor::MAGNETOMETER: listener->onMagnetometer(ts, reader->getMagnetometer()[idx].data); break;
|
||||||
case Sensor::GRAVITY: listener->onGravity(ts, reader->getGravity()[idx].data); break;
|
case Sensor::GPS: listener->onGPS(ts, reader->getGPS()[idx].data); break;
|
||||||
case Sensor::GYRO: listener->onGyroscope(ts, reader->getGyroscope()[idx].data); break;
|
case Sensor::GRAVITY: listener->onGravity(ts, reader->getGravity()[idx].data); break;
|
||||||
case Sensor::LIN_ACC: break;//listener->on(ts, reader->getBarometer()[idx].data); break;
|
case Sensor::GYRO: listener->onGyroscope(ts, reader->getGyroscope()[idx].data); break;
|
||||||
case Sensor::WIFI: listener->onWiFi(ts, reader->getWiFiGroupedByTime()[idx].data); break;
|
case Sensor::LIN_ACC: break;//listener->on(ts, reader->getBarometer()[idx].data); break;
|
||||||
default: throw Exception("code error. found not-yet-implemented sensor");
|
case Sensor::WIFI: listener->onWiFi(ts, reader->getWiFiGroupedByTime()[idx].data); break;
|
||||||
|
default: throw Exception("code error. found not-yet-implemented sensor");
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -16,6 +16,7 @@
|
|||||||
#include "../../sensors/beacon/BeaconMeasurements.h"
|
#include "../../sensors/beacon/BeaconMeasurements.h"
|
||||||
#include "../../sensors/gps/GPSData.h"
|
#include "../../sensors/gps/GPSData.h"
|
||||||
#include "../../sensors/imu/CompassData.h"
|
#include "../../sensors/imu/CompassData.h"
|
||||||
|
#include "../../sensors/imu/MagnetometerData.h"
|
||||||
|
|
||||||
#include "../../geo/Point2.h"
|
#include "../../geo/Point2.h"
|
||||||
#include "../../grid/factory/v2/GridFactory.h"
|
#include "../../grid/factory/v2/GridFactory.h"
|
||||||
@@ -51,6 +52,7 @@ namespace Offline {
|
|||||||
std::vector<TS<GravityData>> gravity;
|
std::vector<TS<GravityData>> gravity;
|
||||||
std::vector<TS<GPSData>> gps;
|
std::vector<TS<GPSData>> gps;
|
||||||
std::vector<TS<CompassData>> compass;
|
std::vector<TS<CompassData>> compass;
|
||||||
|
std::vector<TS<MagnetometerData>> magnetometer;
|
||||||
|
|
||||||
/** all entries in linear order as they appeared while recording */
|
/** all entries in linear order as they appeared while recording */
|
||||||
std::vector<Entry> entries;
|
std::vector<Entry> entries;
|
||||||
@@ -88,6 +90,7 @@ namespace Offline {
|
|||||||
barometer.clear();
|
barometer.clear();
|
||||||
lin_acc.clear();
|
lin_acc.clear();
|
||||||
gravity.clear();
|
gravity.clear();
|
||||||
|
magnetometer.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
const std::vector<Entry>& getEntries() const {return entries;}
|
const std::vector<Entry>& getEntries() const {return entries;}
|
||||||
@@ -113,6 +116,8 @@ namespace Offline {
|
|||||||
|
|
||||||
const std::vector<TS<GravityData>>& getGravity() const {return gravity;}
|
const std::vector<TS<GravityData>>& getGravity() const {return gravity;}
|
||||||
|
|
||||||
|
const std::vector<TS<MagnetometerData>>& getMagnetometer() const {return magnetometer;}
|
||||||
|
|
||||||
/** get an interpolateable ground-truth based on the time-clicks during recording */
|
/** get an interpolateable ground-truth based on the time-clicks during recording */
|
||||||
GroundTruth getGroundTruth(const Floorplan::IndoorMap* map, const std::vector<int> groundTruthPoints) const {
|
GroundTruth getGroundTruth(const Floorplan::IndoorMap* map, const std::vector<int> groundTruthPoints) const {
|
||||||
|
|
||||||
@@ -147,7 +152,7 @@ namespace Offline {
|
|||||||
void parse(const std::string& file) {
|
void parse(const std::string& file) {
|
||||||
|
|
||||||
std::ifstream inp(file);
|
std::ifstream inp(file);
|
||||||
if (!inp.is_open() || inp.bad() || inp.eof()) {throw Exception("failed to open file" + file);}
|
if (!inp.is_open() || inp.bad() || inp.eof()) {throw Exception("failed to open file: " + file);}
|
||||||
|
|
||||||
while(!inp.eof() && !inp.bad()) {
|
while(!inp.eof() && !inp.bad()) {
|
||||||
|
|
||||||
@@ -172,6 +177,7 @@ namespace Offline {
|
|||||||
else if (idx == (int)Sensor::GRAVITY) {parseGravity(ts,data);}
|
else if (idx == (int)Sensor::GRAVITY) {parseGravity(ts,data);}
|
||||||
else if (idx == (int)Sensor::COMPASS) {parseCompass(ts,data);}
|
else if (idx == (int)Sensor::COMPASS) {parseCompass(ts,data);}
|
||||||
else if (idx == (int)Sensor::GPS) {parseGPS(ts,data);}
|
else if (idx == (int)Sensor::GPS) {parseGPS(ts,data);}
|
||||||
|
else if (idx == (int)Sensor::MAGNETOMETER) {parseMagnetometer(ts,data);}
|
||||||
|
|
||||||
// TODO: this is a hack...
|
// TODO: this is a hack...
|
||||||
// the loop is called one additional time after the last entry
|
// the loop is called one additional time after the last entry
|
||||||
@@ -343,6 +349,24 @@ namespace Offline {
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void parseMagnetometer(const uint64_t ts, const std::string& data) {
|
||||||
|
|
||||||
|
MagnetometerData mag;
|
||||||
|
Splitter s(data, sep);
|
||||||
|
|
||||||
|
mag.x = s.has(0) ? (s.getFloat(0)) : (NAN);
|
||||||
|
mag.y = s.has(1) ? (s.getFloat(1)) : (NAN);
|
||||||
|
mag.z = s.has(2) ? (s.getFloat(2)) : (NAN);
|
||||||
|
|
||||||
|
TS<MagnetometerData> elem(ts, mag);
|
||||||
|
this->magnetometer.push_back(elem);
|
||||||
|
entries.push_back(Entry(Sensor::MAGNETOMETER, ts, this->magnetometer.size()-1));
|
||||||
|
|
||||||
|
// inform listener
|
||||||
|
//if (listener) {listener->onCompass(Timestamp::fromMS(ts), compass);}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
/** parse the given GPS entry */
|
/** parse the given GPS entry */
|
||||||
void parseGPS(const uint64_t ts, const std::string& data) {
|
void parseGPS(const uint64_t ts, const std::string& data) {
|
||||||
|
|
||||||
|
|||||||
@@ -2,11 +2,15 @@
|
|||||||
#define OFFLINE_LISTENER_H
|
#define OFFLINE_LISTENER_H
|
||||||
|
|
||||||
#include "../gps/GPSData.h"
|
#include "../gps/GPSData.h"
|
||||||
|
|
||||||
|
#include "../pressure/BarometerData.h"
|
||||||
|
|
||||||
#include "../imu/CompassData.h"
|
#include "../imu/CompassData.h"
|
||||||
#include "../imu/GravityData.h"
|
#include "../imu/GravityData.h"
|
||||||
#include "../pressure/BarometerData.h"
|
|
||||||
#include "../imu/GyroscopeData.h"
|
#include "../imu/GyroscopeData.h"
|
||||||
#include "../imu/AccelerometerData.h"
|
#include "../imu/AccelerometerData.h"
|
||||||
|
#include "../imu/MagnetometerData.h"
|
||||||
|
|
||||||
#include "../radio/WiFiMeasurements.h"
|
#include "../radio/WiFiMeasurements.h"
|
||||||
|
|
||||||
namespace Offline {
|
namespace Offline {
|
||||||
@@ -25,6 +29,7 @@ namespace Offline {
|
|||||||
virtual void onBarometer(const Timestamp ts, const BarometerData data) = 0;
|
virtual void onBarometer(const Timestamp ts, const BarometerData data) = 0;
|
||||||
virtual void onGPS(const Timestamp ts, const GPSData data) = 0;
|
virtual void onGPS(const Timestamp ts, const GPSData data) = 0;
|
||||||
virtual void onCompass(const Timestamp ts, const CompassData data) = 0;
|
virtual void onCompass(const Timestamp ts, const CompassData data) = 0;
|
||||||
|
virtual void onMagnetometer(const Timestamp ts, const MagnetometerData data) = 0;
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
@@ -8,6 +8,7 @@ namespace Offline {
|
|||||||
GRAVITY = 1,
|
GRAVITY = 1,
|
||||||
LIN_ACC = 2,
|
LIN_ACC = 2,
|
||||||
GYRO = 3,
|
GYRO = 3,
|
||||||
|
MAGNETOMETER = 4,
|
||||||
BARO = 5,
|
BARO = 5,
|
||||||
COMPASS = 6, // also called "orientatioN"
|
COMPASS = 6, // also called "orientatioN"
|
||||||
WIFI = 8,
|
WIFI = 8,
|
||||||
|
|||||||
Reference in New Issue
Block a user