adjusted code and test-cases for fixed-freq-interpolater

This commit is contained in:
k-a-z-u
2018-05-09 10:02:53 +02:00
parent caca1bf219
commit 1af670a0a9
2 changed files with 147 additions and 20 deletions

View File

@@ -4,21 +4,36 @@
#include "Interpolator.h"
#include "../data/Timestamp.h"
#include <functional>
#include "../Assertions.h"
/**
* performs interpolation on provided sensor data
* for sensors that do not send their data at a fixed frequency
* or to adjust the frequency of the data provided by a sensor
* or to adjust the frequency of the data provided by a sensor.
* supports both: up and downscaling
*/
template <typename Entry> class FixedFrequencyInterpolator {
private:
bool first = true;
/** how often to provide output data */
Timestamp outputInterval;
Timestamp lastTS;
Entry lastEntry;
/** track the timestamps when to output the next value */
Timestamp nextOutput;
/** combine value-at-timestamp */
struct Timed {
Timestamp ts;
Entry entry;
Timed(const Timestamp ts, const Entry entry) : ts(ts), entry(entry) {;}
Timed() : ts(), entry() {;}
};
Timed last;
public:
@@ -32,31 +47,74 @@ public:
void add(const Timestamp ts, const Entry& entry, std::function<void(Timestamp, const Entry&)> callback) {
// first value?
if (lastTS.isZero()) {
lastTS = ts;
lastEntry = entry;
if (first) {
first = false;
last = Timed(ts, entry);
nextOutput = last.ts;// + outputInterval;
return;
}
// available timeslice between last and current entry
const Timestamp diff = ts - lastTS;
// new value
Timed cur(ts, entry);
// the region to output
const uint64_t start = std::ceil(lastTS.ms() / (float)outputInterval.ms() + 0.00001f) * outputInterval.ms();
const uint64_t end = std::floor(ts.ms() / (float)outputInterval.ms()) * outputInterval.ms();
// no time-change? -> ignore
if (last.ts == cur.ts) {return;}
// perform output
for (uint64_t t = start; t <= end; t += outputInterval.ms()) {
// output needed?
//if (nextOutput > last.ts) {
const float percent = (t - lastTS.ms()) / (float) (diff.ms());
const Entry res = lastEntry + (entry - lastEntry) * percent;
// available timeslice ybetween last and current entry
const Timestamp diff = cur.ts - last.ts;
callback(Timestamp::fromMS(t), res);
// create outputs
while(nextOutput < cur.ts) {
}
// interpolation rate
const float percent = (nextOutput.ms() - last.ts.ms()) / (float) (diff.ms());
lastEntry = entry;
lastTS = ts;
// sanity checks
Assert::isNotNaN(percent, "detected NaN for interpolation");
Assert::isTrue(percent <= 1, "detected an invalid interpolation value");
const Entry res = last.entry + (cur.entry - last.entry) * percent;
callback(nextOutput, res);
// increment
nextOutput += outputInterval;
}
//}
// next step
last = cur;
// // available timeslice between last and current entry
// const Timestamp diff = ts - lastTS;
// // the region to output
// const uint64_t start = std::ceil(lastTS.ms() / (float)outputInterval.ms() + 0.00001f) * outputInterval.ms();
// const uint64_t end = std::floor(ts.ms() / (float)outputInterval.ms()) * outputInterval.ms();
// // perform output
// for (uint64_t t = start; t <= end; t += outputInterval.ms()) {
// const float percent = (t - lastTS.ms()) / (float) (diff.ms());
// // sanity checks
// Assert::isNotNaN(percent, "detected NaN for interpolation");
// Assert::isTrue(percent <= 1, "detected an invalid interpolation value");
// const Entry res = lastEntry + (entry - lastEntry) * percent;
// callback(Timestamp::fromMS(t), res);
// }
// lastEntry = entry;
// lastTS = ts;
}

View File

@@ -4,8 +4,10 @@
#include "../Tests.h"
#include "../../math/FixedFrequencyInterpolator.h"
#include <fstream>
#include <random>
TEST(FixedFrequencyInterpolator, test) {
/*
TEST(FixedFrequencyInterpolator, testOLD) {
FixedFrequencyInterpolator<float> ffi(Timestamp::fromMS(10));
@@ -55,7 +57,74 @@ TEST(FixedFrequencyInterpolator, test) {
ASSERT_NEAR(data[18], x*240, d);
}
*/
TEST(FixedFrequencyInterpolator, testNEW) {
FixedFrequencyInterpolator<float> ffi(Timestamp::fromMS(9));
// randomly draw points along a line using random intervals
Timestamp pos;
std::minstd_rand gen;
std::uniform_int_distribution<int> dist(2, 65);
auto func = [] (const Timestamp ts) {
return 0.5 * ts.ms() + 12;
};
// compare the randomly drawn points against interpolated fixed-frequency interpolated versions
auto cb = [&] (const Timestamp ts, const float val) {
ASSERT_NEAR(val, func(ts), 0.001); // interpolated vs original position on line
};
// run
for (int i = 0; i < 200; ++i) {
const float y = func(pos);
ffi.add(pos, y, cb);
pos += Timestamp::fromMS(dist(gen));
}
}
TEST(FixedFrequencyInterpolator, testUpsample) {
FixedFrequencyInterpolator<float> ffi(Timestamp::fromMS(10));
int cnt = 0;
auto cb = [&] (const Timestamp ts, const float f) {
if (cnt == 0) {ASSERT_EQ(ts.ms(), 0); ASSERT_NEAR( 0, f, 0.001);}
if (cnt == 1) {ASSERT_EQ(ts.ms(), 10); ASSERT_NEAR( 10, f, 0.001);}
if (cnt == 10) {ASSERT_EQ(ts.ms(),100); ASSERT_NEAR(100, f, 0.001);}
++cnt;
};
// add two entries. one at t=0 one at t=100. must be up-sampled into 11 entries (t=0, t=10, t=100)
ffi.add(Timestamp::fromMS(0), 0, cb);
ffi.add(Timestamp::fromMS(101), 101, cb);
ASSERT_EQ(11, cnt);
}
TEST(FixedFrequencyInterpolator, testDownsample) {
FixedFrequencyInterpolator<float> ffi(Timestamp::fromMS(50));
int cnt = 0;
auto cb = [&] (const Timestamp ts, const float f) {
if (cnt == 0) {ASSERT_EQ(ts.ms(), 0); ASSERT_NEAR( 0, f, 0.001);}
if (cnt == 1) {ASSERT_EQ(ts.ms(), 50); ASSERT_NEAR( 50, f, 0.001);}
if (cnt == 2) {ASSERT_EQ(ts.ms(), 100); ASSERT_NEAR(100, f, 0.001);}
++cnt;
};
// add 100+ entries in 1 ms steps. must be downsampled to 3 entries (t=0, t=50, t=100)
for (int i = 0; i <= 101; ++i) {
ffi.add(Timestamp::fromMS(i), i, cb);
}
ASSERT_EQ(3, cnt);
}
#endif