added graphics and text to experiments

This commit is contained in:
toni
2018-07-01 11:09:32 +02:00
parent 1e909acb5d
commit d30d8cbe73
10 changed files with 2283 additions and 39 deletions

View File

@@ -106,6 +106,7 @@ Nevertheless, our method also allows to distribute beacons in the whole building
\subsection{Activity Recognition}
\label{sec:activity}
To enable continuous floor changes we use a simple activity recognition based on the smartphone's barometer and accelerometer.
The method distinguishes between the following: standing, walking, walking up or walking down.

View File

@@ -19,11 +19,11 @@ The computation of the state estimation as well as the \docWifi{} optimization a
However, similar to our previous, award-winning system, the setup is able to run completely on commercial smartphones as well as it uses C++ code \cite{torres2017smartphone}.
%Sensor measurements are recorded using a simple mobile application that implements the standard Android SensorManager.
The experiments are separated into three sections:
The experiments are separated into four sections:
At first, we discuss the performance of the novel transition model and compare it to a grid-based approach.
In section \ref{sec:exp:opti} we have a look at \docWIFI{} optimization and how the real \docAPshort{} positions differ from it.
Following, we conducted several test walks throughout the building to examine the estimation accuracy (in \SI{}{\meter}) of the localisation system.
We try to resolve sample impoverishment with the here presented method and compare the different estimation methods as presented in section \ref{sec:estimation}.
Following, we conducted several test walks throughout the building to examine the estimation accuracy (in \SI{}{\meter}) of the localisation system and try to resolve sample impoverishment with the here presented methods.
Finally, the different estimation methods are compared in section \ref{sec:exp:est}.
\subsection{Transition}
@@ -57,7 +57,7 @@ Other transmitters like smart TVs or smartphone hotspots are ignored as they mig
%was kommt bei der optimierung raus. vergleichen mit ground truth. auch den fehler gegenüberstellen.
%man sollte sehen das ohne optimierung gar nichts geht.
\subsection{Location Estimation Error}
\subsection{Localization Error}
\begin{figure}[ht]
\centering
@@ -66,40 +66,33 @@ Other transmitters like smart TVs or smartphone hotspots are ignored as they mig
\label{fig:floorplan}
\end{figure}
%
The 4 chosen walking paths can be seen in fig. \ref{fig:floorplan}.
The 4 chosen walking paths can be seen in fig. \ref{fig:floorplan}.
\todo{wie lang sind die walks meter und zeit?}
They were carried out be 4 different male testers using either a Samsung Note 2, Google Pixel One or Motorola Nexus 6 for recording the measurements.
All in all, we recorded \SI{28}{} distinct measurement series, \SI{7}{} for each walk.
The picked walks contain erroneous situations, in which many of the above treated problems occur.
The picked walks intentionally contain erroneous situations, in which many of the above treated problems occur.
Thus we are able to discuss everything in detail.
A walk is indicated by a set of numbered markers, fixed to the ground.
Small icons on those markers give the direction of the next marker and in some cases provide instructions to pause walking for a certain time.
The intervals for pausing vary between \SI{10}{\second} to \SI{60}{\second}.
The ground truth is then measured by recording a timestamp while passing a marker.
For this, the tester clicks a button on the smartphone application.
Between two consecutive points, a constant movement speed is assumed.
Between two consecutive points, a constant movement speed is assumed.
Thus, the ground truth might not be \SI{100}{\percent} accurate, but fair enough for error measurements.
The approximation error is then calculated by comparing the interpolated ground truth position with the current estimation \cite{Fetzer-16}.
An estimation on the wrong floor has a great impact on the location awareness of an pedestrian, but only provides a relatively small error.
Therefore, errors in $z$-direction are penalized by tripling the $z$-value.
%computation und monte carlo runs
For each walk we deployed 100 runs using \SI{5000}{particles}.
Instead of an initial position and heading, all walks start with a uniform distribution (random position and heading) as prior.
The overall localisation results can be see in table \ref{table:overall}.
Here, we differ between the respective impoverishment techniques presented in chapter \ref{sec:impo}.
Here, we differ between the respective anti-impoverishment techniques presented in chapter \ref{sec:impo}.
The simple anti-impoverishment method is added to the resampling step and thus uses the transition method presented in chapter \ref{sec:transition}.
In contrast, the $D_\text{KL}$-based method extends the transition and thus uses a standard cumulative resampling step.
We set $l_\text{max} =$ \SI{-75}{dBm} and $l_\text{min} =$ \SI{-90}{dBm}.
For a better overview, we only used the KDE-based estimation, as the errors compared to the weighted average estimation differ by only a few centimetres.
a simple filter (weighted average estimation + simple impoverishment solution) and an advanced filter (KDE estimation + $D_\text{KL}$-based impoverishment solution).
It can be seen that...
the results include also all failed walks, to show the benefits of using an anti impoverishment method. in walk 0 at walk 1 20 percent of walks failed ...
of course it would be possible to resets the system at this point, but thats not our anspruch...
we want to show a real worst case scenario!
\todo{providing a penalty for wrong floors. sonst haben wir das problem das der overall error einfach nicht unterschiedlich genug ist. }
\newcommand{\STAB}[1]{\begin{tabular}{@{}c@{}}#1\end{tabular}}
\begin{table}[t]
@@ -110,36 +103,61 @@ we want to show a real worst case scenario!
\hline
& $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ \\
\hline \hline
Walk 0 & \SI{1315}{\centi\meter} & \SI{1136}{\centi\meter} & \SI{2266}{\centi\meter} & \SI{1189}{\centi\meter} & \SI{1092}{\centi\meter} & \SI{2019}{\centi\meter} & \SI{301}{\centi\meter} & \SI{252}{\centi\meter} & \SI{376}{\centi\meter} \\ \hline
Walk 1 & \SI{318}{\centi\meter} & \SI{243}{\centi\meter} & \SI{402}{\centi\meter} & \SI{318}{\centi\meter} & \SI{240}{\centi\meter} & \SI{403}{\centi\meter} & \SI{342}{\centi\meter} & \SI{256}{\centi\meter} & \SI{440}{\centi\meter} \\ \hline
Walk 2 & \SI{589}{\centi\meter} & \SI{403}{\centi\meter} & \SI{843}{\centi\meter} & \SI{321}{\centi\meter} & \SI{210}{\centi\meter} & \SI{431}{\centi\meter} & \SI{342}{\centi\meter} & \SI{219}{\centi\meter} & \SI{455}{\centi\meter} \\ \hline
Walk 3 & \SI{462}{\centi\meter} & \SI{337}{\centi\meter} & \SI{701}{\centi\meter} & \SI{407}{\centi\meter} & \SI{306}{\centi\meter} & \SI{599}{\centi\meter} & \SI{341}{\centi\meter} & \SI{253}{\centi\meter} & \SI{462}{\centi\meter} \\
Walk 0 & \SI{1340}{\centi\meter} & \SI{1115}{\centi\meter} & \SI{2265}{\centi\meter} & \SI{715}{\centi\meter} & \SI{660}{\centi\meter} & \SI{939}{\centi\meter} & \SI{576}{\centi\meter} & \SI{494}{\centi\meter} & \SI{734}{\centi\meter} \\ \hline
Walk 1 & \SI{320}{\centi\meter} & \SI{242}{\centi\meter} & \SI{406}{\centi\meter} & \SI{322}{\centi\meter} & \SI{258}{\centi\meter} & \SI{404}{\centi\meter} & \SI{379}{\centi\meter} & \SI{317}{\centi\meter} & \SI{463}{\centi\meter} \\ \hline
Walk 2 & \SI{834}{\centi\meter} & \SI{412}{\centi\meter} & \SI{1092}{\centi\meter} & \SI{356}{\centi\meter} & \SI{232}{\centi\meter} & \SI{486}{\centi\meter} & \SI{362}{\centi\meter} & \SI{234}{\centi\meter} & \SI{484}{\centi\meter} \\ \hline
Walk 3 & \SI{704}{\centi\meter} & \SI{589}{\centi\meter} & \SI{1350}{\centi\meter} & \SI{538}{\centi\meter} & \SI{469}{\centi\meter} & \SI{782}{\centi\meter} & \SI{476}{\centi\meter} & \SI{431}{\centi\meter} & \SI{648}{\centi\meter} \\
\hline
\end{tabular}
\caption{Overall localization results using the different impoverishment methods. The error is given by the \SI{75}{\percent}-quantil Used only kde for estimation, since kde and avg nehmen sich nicht viel. fehler kleiner als 10 cm im durchschnitt deshalb der übersichtshalber weggelassen. }
\label{table:overall}
\end{table}
All walks, except for walk 1, suffer in some way from sample impoverishment.
We discuss the single results of table \ref{table:overall} starting with walk 0.
Here, the pedestrians started at the top most level, walking down to the lowest point of the building.
The first critical situation occurs immediately after the start.
While walking down the small staircase, many particles are getting dragged into the room to the right due to erroneous Wi-Fi readings.
At this point, the activity "walking down" is recognized, however only a for very short period.
This is caused by the short length of the stairs.
After this period, only a small number of particles changed the floor correctly, while a majority is stuck within the right-hand room.
The activity based evaluation $p(\vec{o}_t \mid \vec{q}_t)_\text{act}$ prevents particles from further walking down the stairs, while the resampling step mainly draws particles in already populated areas.
In \SI{10}{\percent} of the runs using none of the anti-impoverishment methods, the system is unable to recover and thus unable to finish the walk somewhere near the correct position or even on the same floor.
Yet, the other \SI{90}{\percent} of runs suffer from a very high error.
Only by using one of the here presented methods to prevent impoverishment, the system is able to recover in \SI{100}{\percent} of cases.
Fig. \ref{fig:errorOverTimeWalk0} compares the error over time between the different methods for an exemplary run.
The above described situation, causing the system to stuck after \SI{10}{\second}, is clearly visible.
Both, the simple and the $D_\text{KL}$ method are able to recover early and thus decrease the overall error dramatically.
Between \SI{65}{\second} and \SI{74}{\second} the simple method produces high errors due to some uncertain Wi-Fi measurements coming from an \docAP{} below, causing those particles who are randomly drawn near this \docAPshort{} to be rewarded with a very high weight.
This leads to newly sampled particles in this area and therefore a jump of the estimation.
The situation is resolved after entering another room, which is now shielded by stone walls instead of wooden ones.
Walking down the stairs at \SI{80}{\second} does also recover the localization system using none of the methods.
%
\begin{figure}
\centering
\input{gfx/errorOverTimeWalk0/errorOverTime.tex}
\caption{Error development over time of a single Monte Carlo run of walk 0. Between \SI{10}{\second} and \SI{24}{\second} the Wi-Fi signal was highly attenuated, causing the system to get stuck and producing high errors. Both, the simple and the $D_\text{KL}$ anti-impoverishment method are able to recover early. However, between \SI{65}{\second} and \SI{74}{\second} the simple method produces high errors due to the high random factor involved.}
\label{fig:errorOverTimeWalk0}
\end{figure}
%vielleicht die avg / kde unterscheidung weg lassen? dafür avg, std und 75%
A similar behaviour as described above can be seen in walk 3.
Without a method to recover from impoverishment, the system completely lost track in \SI{xx}{\percent} of the runs and produces high errors.
By using the simple method, the overall error can be reduced and the impoverishment resolved. Nevertheless, unpredictable jumps of the estimation are causing the system to be highly uncertain in some situations, even if those jumps do not last to long.
Only the use of the $D_\text{KL}$ method is able to produce reasonable results.
It is clearly visible that bla outperformce blah at path 4.
Exemplary estimation results for walk 4 can be seen in fig. \ref{}.
The 75 quantil gibt aufschluss, über aufgretenedes impoverishment. due the 100 runs, some of the walks, where impoverishment occured are average out.
neff = 0.85
boxkde 0.2 point2(1,1)
wifi useregionalopt=true
\todo{fuer eins brauchen wir aber noch estimated path}
\todo{neff = 0.85; boxkde 0.2 point2(1,1); wifi useregionalopt=true}
\todo{
BILD: Von einem Pfad der steckenbleibt und den beiden anderen verfahren mit fehler über die zeit.
BILD: WIFI-Fehler unten bei den Kellern.
BILD: Estimation Fehler
}
%To analyse the drawbacks and benefits of the here presented method to resolve sample impoverishment,
@@ -151,6 +169,8 @@ BILD: Estimation Fehler
%probleme mit impoverishment aufzeigen, wo bringt es was, was macht es kaputt etc pp
%%estimation
\subsection{Estimation Methods}
\label{sec:exp:est}
\begin{figure}
\centering
@@ -159,7 +179,7 @@ BILD: Estimation Fehler
\label{fig:realWorldMulti}
\end{figure}
As discussed in chapter \ref{}, the main advantage of a KDE-based estimation is that it provides the "correct" mode of a density, even under a multimodal setting.
As discussed in section \ref{sec:estimation}, the main advantage of a KDE-based estimation is that it provides the "correct" mode of a density, even under a multimodal setting.
A situation in which the system highly benefits from this is illustrated in fig. \ref{fig:realWorldMulti}.
Here, a set of particles splits apart, due to uncertain measurements and multiple possible walking directions.
Indicated by the black dotted line, the resulting bimodal posterior reaches its maximum distance between the modes at \SI{13.4}{\second}.
@@ -180,7 +200,7 @@ Only with new measurements coming from the hallway or other parts of the buildin
\begin{figure}
\centering
\input{gfx/errorOverTime.tex}
\input{gfx/errorOverTimeWalk1/errorOverTime.tex}
\caption{Error development over time of a single Monte Carlo run of the walk calculated between estimation and ground truth. Between \SI{230}{\second} and \SI{290}{\second} to pedestrian was not moving.}
\label{fig:realWorldTime}
\end{figure}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,118 @@
% GNUPLOT: LaTeX picture with Postscript
\begingroup
\makeatletter
\providecommand\color[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package color not loaded in conjunction with
terminal option `colourtext'%
}{See the gnuplot documentation for explanation.%
}{Either use 'blacktext' in gnuplot or load the package
color.sty in LaTeX.}%
\renewcommand\color[2][]{}%
}%
\providecommand\includegraphics[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package graphicx or graphics not loaded%
}{See the gnuplot documentation for explanation.%
}{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
\renewcommand\includegraphics[2][]{}%
}%
\providecommand\rotatebox[2]{#2}%
\@ifundefined{ifGPcolor}{%
\newif\ifGPcolor
\GPcolorfalse
}{}%
\@ifundefined{ifGPblacktext}{%
\newif\ifGPblacktext
\GPblacktexttrue
}{}%
% define a \g@addto@macro without @ in the name:
\let\gplgaddtomacro\g@addto@macro
% define empty templates for all commands taking text:
\gdef\gplbacktext{}%
\gdef\gplfronttext{}%
\makeatother
\ifGPblacktext
% no textcolor at all
\def\colorrgb#1{}%
\def\colorgray#1{}%
\else
% gray or color?
\ifGPcolor
\def\colorrgb#1{\color[rgb]{#1}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
\expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
\expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
\expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
\expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
\expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
\expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
\expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
\expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
\else
% gray
\def\colorrgb#1{\color{black}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color{black}}%
\expandafter\def\csname LT1\endcsname{\color{black}}%
\expandafter\def\csname LT2\endcsname{\color{black}}%
\expandafter\def\csname LT3\endcsname{\color{black}}%
\expandafter\def\csname LT4\endcsname{\color{black}}%
\expandafter\def\csname LT5\endcsname{\color{black}}%
\expandafter\def\csname LT6\endcsname{\color{black}}%
\expandafter\def\csname LT7\endcsname{\color{black}}%
\expandafter\def\csname LT8\endcsname{\color{black}}%
\fi
\fi
\setlength{\unitlength}{0.0500bp}%
\ifx\gptboxheight\undefined%
\newlength{\gptboxheight}%
\newlength{\gptboxwidth}%
\newsavebox{\gptboxtext}%
\fi%
\setlength{\fboxrule}{0.5pt}%
\setlength{\fboxsep}{1pt}%
\begin{picture}(5328.00,2880.00)%
\gplgaddtomacro\gplbacktext{%
\csname LTb\endcsname%
\put(462,704){\makebox(0,0)[r]{\strut{}\footnotesize{0}}}%
\put(462,943){\makebox(0,0)[r]{\strut{}\footnotesize{5}}}%
\put(462,1182){\makebox(0,0)[r]{\strut{}\footnotesize{10}}}%
\put(462,1421){\makebox(0,0)[r]{\strut{}\footnotesize{15}}}%
\put(462,1660){\makebox(0,0)[r]{\strut{}\footnotesize{20}}}%
\put(462,1898){\makebox(0,0)[r]{\strut{}\footnotesize{25}}}%
\put(462,2137){\makebox(0,0)[r]{\strut{}\footnotesize{30}}}%
\put(462,2376){\makebox(0,0)[r]{\strut{}\footnotesize{35}}}%
\put(462,2615){\makebox(0,0)[r]{\strut{}\footnotesize{40}}}%
\put(594,484){\makebox(0,0){\strut{}\footnotesize{0}}}%
\put(1214,484){\makebox(0,0){\strut{}\footnotesize{20}}}%
\put(1833,484){\makebox(0,0){\strut{}\footnotesize{40}}}%
\put(2453,484){\makebox(0,0){\strut{}\footnotesize{60}}}%
\put(3072,484){\makebox(0,0){\strut{}\footnotesize{80}}}%
\put(3692,484){\makebox(0,0){\strut{}\footnotesize{100}}}%
\put(4311,484){\makebox(0,0){\strut{}\footnotesize{120}}}%
\put(4931,484){\makebox(0,0){\strut{}\footnotesize{140}}}%
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%
\put(48,1659){\rotatebox{-270}{\makebox(0,0){\strut{}\footnotesize{error in meters}}}}%
\put(2762,154){\makebox(0,0){\strut{}\footnotesize{time in seconds}}}%
\csname LTb\endcsname%
\put(4373,2442){\makebox(0,0)[r]{\strut{}\footnotesize{none}}}%
\csname LTb\endcsname%
\put(4373,2222){\makebox(0,0)[r]{\strut{}\footnotesize{simple}}}%
\csname LTb\endcsname%
\put(4373,2002){\makebox(0,0)[r]{\strut{}\footnotesize{$D_\text{KL}$}}}%
}%
\gplbacktext
\put(0,0){\includegraphics{errorOverTimeWalk0/errorOverTime}}%
\gplfronttext
\end{picture}%
\endgroup

View File

@@ -0,0 +1,27 @@
#set terminal pngcairo
#set output "bla.png"
set terminal epslatex size 3.7,2
set output "errorOverTime.tex"
set lmargin 4.5
set xlabel "\\footnotesize{time in seconds}"
set ylabel "\\footnotesize{error in meters}" offset +1.7,0
set format x "\\footnotesize{%h}"
set format y "\\footnotesize{%h}"
set key samplen 0.75
set yrange [0:40]
set xrange [0:140]
#set ytics 0,5,15,20,25,30,35
plot \
"none.csv" using ($1/1000):2 with lines lc rgb "#c8c8c8" lw 2.0 title "\\footnotesize{none}", \
"simple.csv" using ($1/1000):2 with lines lc rgb "#3465A4" lw 1.5 title "\\footnotesize{simple}",\
"kld.csv" using ($1/1000):2 with lines lc rgb "#FCAF3E" lw 1.5 title "\\footnotesize{$D_\text{KL}$}"

View File

@@ -0,0 +1,238 @@
1397 6.19993
2147 6.78905
2780 7.7969
3388 6.55049
3987 4.84575
4582 4.21449
5175 1.53381
5874 1.75186
6315 2.35651
6966 2.51042
7442 4.38597
8199 4.91719
8797 5.89696
9394 6.71402
10218 5.0374
10851 5.06464
11381 4.80261
11813 4.98449
12314 4.41549
12830 4.69235
13416 5.17412
13992 5.73725
14473 6.56611
15079 7.18199
15661 7.57047
16268 8.22196
16860 8.85658
17383 9.4179
17966 10.3206
18576 10.6271
19161 11.8154
19830 12.5396
20336 13.401
21010 13.8512
21582 14.4671
22234 15.4464
22776 16.3047
23388 16.6916
24022 17.6137
24697 18.3659
25212 19.2113
25898 20.1917
26449 21.0578
27008 22.2361
27612 22.8941
28234 24.6063
28893 6.19906
29426 6.27014
30039 6.47876
30654 6.63153
31281 6.47162
31859 6.26004
32468 6.08006
33147 6.30388
33644 6.01234
34340 5.92293
34824 5.88397
35525 5.80075
35996 5.7494
36594 5.76254
37199 5.58176
37867 5.53414
38374 5.52134
39044 5.18934
39622 4.4178
40277 4.35365
40878 4.63079
41511 4.75373
42141 4.73962
42798 4.63192
43506 4.62933
44259 4.86182
44704 4.79622
45350 4.5921
45928 4.47571
46603 4.52197
47157 4.40352
47662 4.35502
48324 4.42961
48851 4.67326
49446 4.49579
50063 4.33231
50674 4.25958
51352 4.028
51852 4.54213
52440 4.37151
53082 4.97475
53708 4.8009
54201 5.07559
54773 4.94695
55408 5.3629
55979 5.41943
56561 5.57568
57250 6.34408
57776 6.47545
58320 6.04443
58895 5.95673
59479 6.51854
60142 7.11018
60725 7.41971
61407 7.67193
62042 8.00574
63244 8.3328
63912 7.88453
64544 6.25515
65178 5.93859
65803 4.03147
66428 3.45293
67040 1.97883
67670 1.19252
68267 1.40188
68883 1.33236
69556 1.45063
70029 1.5529
70640 1.39382
71266 1.66224
71812 1.67483
72393 1.71601
73231 2.1226
73689 2.62162
74433 3.24753
74891 2.26601
75453 2.30805
75980 2.89017
76716 3.62985
77289 4.25463
77771 5.08862
78359 5.68764
78903 7.109
79390 6.82985
79855 6.84766
80377 5.21841
80809 6.1391
81284 6.27306
81725 4.49419
82169 4.2318
82609 4.18421
83131 4.54293
83634 4.8144
84107 5.24581
84619 4.92636
85105 4.6741
85632 4.72616
86204 3.54124
86719 3.18665
87222 3.54664
87693 3.19104
88169 2.67085
88606 2.5957
89014 2.0945
89419 2.08916
89903 1.58865
90370 1.72719
90788 1.43543
91267 1.64245
91803 2.16707
92225 2.60589
92842 3.4312
93555 4.13101
94156 4.54059
94784 4.10089
95424 4.32359
96062 5.28991
96682 5.15141
97246 2.18069
97866 1.52788
98472 1.03667
99100 1.16198
99717 0.996004
100390 0.633698
101006 0.68494
101612 1.08458
102301 1.16119
102773 1.12442
103328 0.59751
103895 1.89686
104607 3.91093
105144 3.75924
105766 3.6703
106223 2.59705
106919 0.663304
107447 0.632868
107936 0.596131
108557 0.520084
109196 0.769137
109712 0.810533
110350 0.920236
110821 0.937047
111384 0.859429
112034 1.01479
112643 1.16702
113101 1.04656
113750 1.16135
114308 1.05461
114868 0.955469
115422 0.859195
116052 1.01831
116532 1.0515
117189 0.840832
117706 0.52223
118290 0.453286
118777 0.364507
119452 0.350548
119994 0.25385
120580 0.377614
121059 0.715532
121786 1.05387
122429 1.49319
122914 0.936442
123426 0.410043
124256 0.968082
124989 1.4312
125589 1.51165
126043 1.67599
126672 2.26866
127223 2.95967
127686 3.21265
128197 3.74563
128610 4.18989
129023 4.42126
129518 5.12133
130040 5.93071
130635 7.17051
131132 8.04091
131665 8.78291
132275 8.16087
132851 8.81123
133458 9.92664
134088 9.80608
134723 10.537
135316 10.3004
135950 9.95346
136625 1.82772
137118 0.864081
137695 1.82202
138278 2.45121
139011 1.85301
139494 1.17228
1 1397 6.19993
2 2147 6.78905
3 2780 7.7969
4 3388 6.55049
5 3987 4.84575
6 4582 4.21449
7 5175 1.53381
8 5874 1.75186
9 6315 2.35651
10 6966 2.51042
11 7442 4.38597
12 8199 4.91719
13 8797 5.89696
14 9394 6.71402
15 10218 5.0374
16 10851 5.06464
17 11381 4.80261
18 11813 4.98449
19 12314 4.41549
20 12830 4.69235
21 13416 5.17412
22 13992 5.73725
23 14473 6.56611
24 15079 7.18199
25 15661 7.57047
26 16268 8.22196
27 16860 8.85658
28 17383 9.4179
29 17966 10.3206
30 18576 10.6271
31 19161 11.8154
32 19830 12.5396
33 20336 13.401
34 21010 13.8512
35 21582 14.4671
36 22234 15.4464
37 22776 16.3047
38 23388 16.6916
39 24022 17.6137
40 24697 18.3659
41 25212 19.2113
42 25898 20.1917
43 26449 21.0578
44 27008 22.2361
45 27612 22.8941
46 28234 24.6063
47 28893 6.19906
48 29426 6.27014
49 30039 6.47876
50 30654 6.63153
51 31281 6.47162
52 31859 6.26004
53 32468 6.08006
54 33147 6.30388
55 33644 6.01234
56 34340 5.92293
57 34824 5.88397
58 35525 5.80075
59 35996 5.7494
60 36594 5.76254
61 37199 5.58176
62 37867 5.53414
63 38374 5.52134
64 39044 5.18934
65 39622 4.4178
66 40277 4.35365
67 40878 4.63079
68 41511 4.75373
69 42141 4.73962
70 42798 4.63192
71 43506 4.62933
72 44259 4.86182
73 44704 4.79622
74 45350 4.5921
75 45928 4.47571
76 46603 4.52197
77 47157 4.40352
78 47662 4.35502
79 48324 4.42961
80 48851 4.67326
81 49446 4.49579
82 50063 4.33231
83 50674 4.25958
84 51352 4.028
85 51852 4.54213
86 52440 4.37151
87 53082 4.97475
88 53708 4.8009
89 54201 5.07559
90 54773 4.94695
91 55408 5.3629
92 55979 5.41943
93 56561 5.57568
94 57250 6.34408
95 57776 6.47545
96 58320 6.04443
97 58895 5.95673
98 59479 6.51854
99 60142 7.11018
100 60725 7.41971
101 61407 7.67193
102 62042 8.00574
103 63244 8.3328
104 63912 7.88453
105 64544 6.25515
106 65178 5.93859
107 65803 4.03147
108 66428 3.45293
109 67040 1.97883
110 67670 1.19252
111 68267 1.40188
112 68883 1.33236
113 69556 1.45063
114 70029 1.5529
115 70640 1.39382
116 71266 1.66224
117 71812 1.67483
118 72393 1.71601
119 73231 2.1226
120 73689 2.62162
121 74433 3.24753
122 74891 2.26601
123 75453 2.30805
124 75980 2.89017
125 76716 3.62985
126 77289 4.25463
127 77771 5.08862
128 78359 5.68764
129 78903 7.109
130 79390 6.82985
131 79855 6.84766
132 80377 5.21841
133 80809 6.1391
134 81284 6.27306
135 81725 4.49419
136 82169 4.2318
137 82609 4.18421
138 83131 4.54293
139 83634 4.8144
140 84107 5.24581
141 84619 4.92636
142 85105 4.6741
143 85632 4.72616
144 86204 3.54124
145 86719 3.18665
146 87222 3.54664
147 87693 3.19104
148 88169 2.67085
149 88606 2.5957
150 89014 2.0945
151 89419 2.08916
152 89903 1.58865
153 90370 1.72719
154 90788 1.43543
155 91267 1.64245
156 91803 2.16707
157 92225 2.60589
158 92842 3.4312
159 93555 4.13101
160 94156 4.54059
161 94784 4.10089
162 95424 4.32359
163 96062 5.28991
164 96682 5.15141
165 97246 2.18069
166 97866 1.52788
167 98472 1.03667
168 99100 1.16198
169 99717 0.996004
170 100390 0.633698
171 101006 0.68494
172 101612 1.08458
173 102301 1.16119
174 102773 1.12442
175 103328 0.59751
176 103895 1.89686
177 104607 3.91093
178 105144 3.75924
179 105766 3.6703
180 106223 2.59705
181 106919 0.663304
182 107447 0.632868
183 107936 0.596131
184 108557 0.520084
185 109196 0.769137
186 109712 0.810533
187 110350 0.920236
188 110821 0.937047
189 111384 0.859429
190 112034 1.01479
191 112643 1.16702
192 113101 1.04656
193 113750 1.16135
194 114308 1.05461
195 114868 0.955469
196 115422 0.859195
197 116052 1.01831
198 116532 1.0515
199 117189 0.840832
200 117706 0.52223
201 118290 0.453286
202 118777 0.364507
203 119452 0.350548
204 119994 0.25385
205 120580 0.377614
206 121059 0.715532
207 121786 1.05387
208 122429 1.49319
209 122914 0.936442
210 123426 0.410043
211 124256 0.968082
212 124989 1.4312
213 125589 1.51165
214 126043 1.67599
215 126672 2.26866
216 127223 2.95967
217 127686 3.21265
218 128197 3.74563
219 128610 4.18989
220 129023 4.42126
221 129518 5.12133
222 130040 5.93071
223 130635 7.17051
224 131132 8.04091
225 131665 8.78291
226 132275 8.16087
227 132851 8.81123
228 133458 9.92664
229 134088 9.80608
230 134723 10.537
231 135316 10.3004
232 135950 9.95346
233 136625 1.82772
234 137118 0.864081
235 137695 1.82202
236 138278 2.45121
237 139011 1.85301
238 139494 1.17228

View File

@@ -0,0 +1,238 @@
1397 6.07953
2147 7.24435
2780 8.4086
3388 6.69965
3987 4.2294
4582 2.3429
5175 1.74756
5874 1.44414
6315 1.73025
6966 4.04963
7442 3.52216
8199 4.10104
8797 5.69802
9394 6.5191
10218 7.89197
10851 4.50313
11381 5.10591
11813 4.50672
12314 4.22083
12830 4.98271
13416 5.61551
13992 5.94671
14473 6.56757
15079 7.2162
15661 7.47552
16268 8.13217
16860 8.85615
17383 9.41824
17966 10.3214
18576 10.974
19161 12.0915
19830 12.8126
20336 13.0921
21010 13.8609
21582 14.7405
22234 15.7052
22776 16.306
23388 17.2407
24022 18.1655
24697 19.4573
25212 20.5652
25898 21.5749
26449 21.8906
27008 22.2175
27612 22.8676
28234 23.0238
28893 24.0101
29426 25.1087
30039 26.0424
30654 26.7048
31281 27.1187
31859 27.732
32468 28.1179
33147 28.8781
33644 28.8522
34340 29.8703
34824 30.4129
35525 31.4452
35996 32.7525
36594 33.1202
37199 34.322
37867 33.6722
38374 34.2197
39044 35.221
39622 35.2139
40277 35.7578
40878 36.0613
41511 36.6057
42141 36.0928
42798 35.2721
43506 35.0644
44259 34.2886
44704 34.5637
45350 32.8852
45928 32.769
46603 32.2086
47157 30.9709
47662 29.928
48324 28.8339
48851 28.4744
49446 28.7032
50063 28.0332
50674 26.9594
51352 26.6709
51852 26.5957
52440 25.4228
53082 24.4144
53708 23.2201
54201 22.8943
54773 21.9364
55408 21.2097
55979 20.7963
56561 19.9762
57250 19.5637
57776 19.2941
58320 18.8994
58895 18.9806
59479 19.6514
60142 20.122
60725 20.433
61407 20.7092
62042 20.771
63244 20.4165
63912 20.4256
64544 20.2185
65178 22.932
65803 21.6826
66428 22.3667
67040 22.4164
67670 23.2254
68267 23.6518
68883 24.2203
69556 24.9578
70029 25.0387
70640 25.6111
71266 26.4509
71812 26.9675
72393 29.3697
73231 30.0618
73689 24.5575
74433 14.4014
74891 15.1919
75453 16.1233
75980 17.0006
76716 17.8202
77289 17.987
77771 17.3785
78359 17.1848
78903 17.2649
79390 17.835
79855 10.3201
80377 16.2376
80809 11.4777
81284 11.1176
81725 9.44099
82169 6.81634
82609 5.10095
83131 4.38929
83634 3.90185
84107 3.94173
84619 3.68766
85105 3.54512
85632 3.6234
86204 3.66396
86719 3.44522
87222 3.50183
87693 3.32335
88169 3.20137
88606 3.26356
89014 2.67688
89419 2.59263
89903 1.88629
90370 1.70802
90788 1.41061
91267 1.62384
91803 2.12587
92225 2.46169
92842 3.20484
93555 3.84387
94156 4.30674
94784 3.64875
95424 4.15272
96062 3.15346
96682 2.32072
97246 1.66047
97866 1.2836
98472 1.04869
99100 0.934567
99717 0.737626
100390 0.516158
101006 0.684788
101612 0.97058
102301 0.560054
102773 0.525761
103328 0.597509
103895 0.747411
104607 4.42276
105144 5.984
105766 5.07643
106223 4.55015
106919 0.303884
107447 0.438016
107936 0.555922
108557 0.265537
109196 0.789443
109712 0.810533
110350 0.920236
110821 0.797816
111384 0.859429
112034 1.01479
112643 0.962713
113101 0.972133
113750 0.954188
114308 1.05461
114868 0.955469
115422 0.859195
116052 1.01831
116532 0.914226
117189 0.840832
117706 0.899663
118290 0.653933
118777 0.48348
119452 0.864926
119994 0.25385
120580 0.411101
121059 0.457417
121786 1.40583
122429 1.8621
122914 0.809491
123426 0.450606
124256 0.832564
124989 1.38906
125589 1.65052
126043 1.5898
126672 2.71638
127223 3.27377
127686 3.44395
128197 3.98112
128610 4.17195
129023 4.64286
129518 5.08412
130040 5.77407
130635 6.65101
131132 7.57272
131665 8.41578
132275 9.33037
132851 10.3646
133458 11.2509
134088 9.99877
134723 10.2642
135316 10.6438
135950 10.5259
136625 10.872
137118 11.3637
137695 10.4616
138278 10.101
139011 10.3559
139494 10.3743
1 1397 6.07953
2 2147 7.24435
3 2780 8.4086
4 3388 6.69965
5 3987 4.2294
6 4582 2.3429
7 5175 1.74756
8 5874 1.44414
9 6315 1.73025
10 6966 4.04963
11 7442 3.52216
12 8199 4.10104
13 8797 5.69802
14 9394 6.5191
15 10218 7.89197
16 10851 4.50313
17 11381 5.10591
18 11813 4.50672
19 12314 4.22083
20 12830 4.98271
21 13416 5.61551
22 13992 5.94671
23 14473 6.56757
24 15079 7.2162
25 15661 7.47552
26 16268 8.13217
27 16860 8.85615
28 17383 9.41824
29 17966 10.3214
30 18576 10.974
31 19161 12.0915
32 19830 12.8126
33 20336 13.0921
34 21010 13.8609
35 21582 14.7405
36 22234 15.7052
37 22776 16.306
38 23388 17.2407
39 24022 18.1655
40 24697 19.4573
41 25212 20.5652
42 25898 21.5749
43 26449 21.8906
44 27008 22.2175
45 27612 22.8676
46 28234 23.0238
47 28893 24.0101
48 29426 25.1087
49 30039 26.0424
50 30654 26.7048
51 31281 27.1187
52 31859 27.732
53 32468 28.1179
54 33147 28.8781
55 33644 28.8522
56 34340 29.8703
57 34824 30.4129
58 35525 31.4452
59 35996 32.7525
60 36594 33.1202
61 37199 34.322
62 37867 33.6722
63 38374 34.2197
64 39044 35.221
65 39622 35.2139
66 40277 35.7578
67 40878 36.0613
68 41511 36.6057
69 42141 36.0928
70 42798 35.2721
71 43506 35.0644
72 44259 34.2886
73 44704 34.5637
74 45350 32.8852
75 45928 32.769
76 46603 32.2086
77 47157 30.9709
78 47662 29.928
79 48324 28.8339
80 48851 28.4744
81 49446 28.7032
82 50063 28.0332
83 50674 26.9594
84 51352 26.6709
85 51852 26.5957
86 52440 25.4228
87 53082 24.4144
88 53708 23.2201
89 54201 22.8943
90 54773 21.9364
91 55408 21.2097
92 55979 20.7963
93 56561 19.9762
94 57250 19.5637
95 57776 19.2941
96 58320 18.8994
97 58895 18.9806
98 59479 19.6514
99 60142 20.122
100 60725 20.433
101 61407 20.7092
102 62042 20.771
103 63244 20.4165
104 63912 20.4256
105 64544 20.2185
106 65178 22.932
107 65803 21.6826
108 66428 22.3667
109 67040 22.4164
110 67670 23.2254
111 68267 23.6518
112 68883 24.2203
113 69556 24.9578
114 70029 25.0387
115 70640 25.6111
116 71266 26.4509
117 71812 26.9675
118 72393 29.3697
119 73231 30.0618
120 73689 24.5575
121 74433 14.4014
122 74891 15.1919
123 75453 16.1233
124 75980 17.0006
125 76716 17.8202
126 77289 17.987
127 77771 17.3785
128 78359 17.1848
129 78903 17.2649
130 79390 17.835
131 79855 10.3201
132 80377 16.2376
133 80809 11.4777
134 81284 11.1176
135 81725 9.44099
136 82169 6.81634
137 82609 5.10095
138 83131 4.38929
139 83634 3.90185
140 84107 3.94173
141 84619 3.68766
142 85105 3.54512
143 85632 3.6234
144 86204 3.66396
145 86719 3.44522
146 87222 3.50183
147 87693 3.32335
148 88169 3.20137
149 88606 3.26356
150 89014 2.67688
151 89419 2.59263
152 89903 1.88629
153 90370 1.70802
154 90788 1.41061
155 91267 1.62384
156 91803 2.12587
157 92225 2.46169
158 92842 3.20484
159 93555 3.84387
160 94156 4.30674
161 94784 3.64875
162 95424 4.15272
163 96062 3.15346
164 96682 2.32072
165 97246 1.66047
166 97866 1.2836
167 98472 1.04869
168 99100 0.934567
169 99717 0.737626
170 100390 0.516158
171 101006 0.684788
172 101612 0.97058
173 102301 0.560054
174 102773 0.525761
175 103328 0.597509
176 103895 0.747411
177 104607 4.42276
178 105144 5.984
179 105766 5.07643
180 106223 4.55015
181 106919 0.303884
182 107447 0.438016
183 107936 0.555922
184 108557 0.265537
185 109196 0.789443
186 109712 0.810533
187 110350 0.920236
188 110821 0.797816
189 111384 0.859429
190 112034 1.01479
191 112643 0.962713
192 113101 0.972133
193 113750 0.954188
194 114308 1.05461
195 114868 0.955469
196 115422 0.859195
197 116052 1.01831
198 116532 0.914226
199 117189 0.840832
200 117706 0.899663
201 118290 0.653933
202 118777 0.48348
203 119452 0.864926
204 119994 0.25385
205 120580 0.411101
206 121059 0.457417
207 121786 1.40583
208 122429 1.8621
209 122914 0.809491
210 123426 0.450606
211 124256 0.832564
212 124989 1.38906
213 125589 1.65052
214 126043 1.5898
215 126672 2.71638
216 127223 3.27377
217 127686 3.44395
218 128197 3.98112
219 128610 4.17195
220 129023 4.64286
221 129518 5.08412
222 130040 5.77407
223 130635 6.65101
224 131132 7.57272
225 131665 8.41578
226 132275 9.33037
227 132851 10.3646
228 133458 11.2509
229 134088 9.99877
230 134723 10.2642
231 135316 10.6438
232 135950 10.5259
233 136625 10.872
234 137118 11.3637
235 137695 10.4616
236 138278 10.101
237 139011 10.3559
238 139494 10.3743

View File

@@ -0,0 +1,238 @@
1397 6.16377
2147 6.21826
2780 7.13779
3388 5.61016
3987 4.64573
4582 4.31845
5175 4.74023
5874 1.14821
6315 2.35651
6966 4.29394
7442 5.30889
8199 5.49899
8797 5.69802
9394 6.32867
10218 7.70248
10851 4.78859
11381 4.86831
11813 5.05386
12314 4.9993
12830 5.52235
13416 5.61495
13992 5.9796
14473 6.56672
15079 7.2176
15661 7.84197
16268 8.22053
16860 8.85622
17383 9.41776
17966 10.0455
18576 10.6988
19161 11.8124
19830 12.5467
20336 13.1208
21010 13.8465
21582 14.4408
22234 15.7055
22776 16.3055
23388 17.2259
24022 17.9261
24697 19.7432
25212 20.2995
25898 21.3156
26449 21.8904
27008 22.2222
27612 22.8892
28234 23.5621
28893 23.7342
29426 25.1028
30039 26.0355
30654 26.6931
31281 27.0725
31859 27.376
32468 9.38476
33147 7.72224
33644 7.56068
34340 7.43044
34824 7.43692
35525 7.58439
35996 7.26041
36594 7.34406
37199 7.16202
37867 7.04702
38374 7.00249
39044 6.92038
39622 6.30994
40277 6.05053
40878 6.35278
41511 6.65524
42141 6.29489
42798 6.29206
43506 6.31286
44259 6.11088
44704 6.44467
45350 5.93542
45928 5.5403
46603 5.87352
47157 5.49551
47662 5.47381
48324 5.55697
48851 5.53246
49446 5.44229
50063 5.0741
50674 4.9989
51352 4.84293
51852 5.19717
52440 5.54891
53082 5.52795
53708 5.6461
54201 5.65448
54773 5.69915
55408 5.88981
55979 5.49737
56561 6.5434
57250 6.39904
57776 6.68204
58320 6.45993
58895 6.34385
59479 6.89618
60142 7.28893
60725 8.17373
61407 8.04965
62042 8.77024
63244 9.70249
63912 9.43347
64544 9.51431
65178 8.20173
65803 4.56468
66428 4.00567
67040 3.89773
67670 2.80159
68267 16.0974
68883 18.3393
69556 19.0651
70029 19.0331
70640 19.1616
71266 18.9929
71812 19.1315
72393 18.8924
73231 10.674
73689 3.82526
74433 3.19427
74891 3.06907
75453 3.16604
75980 3.03632
76716 4.60461
77289 10.1825
77771 10.4252
78359 9.93167
78903 9.41037
79390 8.5019
79855 11.0506
80377 10.5355
80809 5.75933
81284 5.41579
81725 4.40479
82169 3.91701
82609 3.15771
83131 2.73997
83634 1.87847
84107 4.72201
84619 4.54966
85105 4.4035
85632 4.43062
86204 3.43339
86719 3.52772
87222 3.96957
87693 3.86081
88169 4.10634
88606 3.35644
89014 2.67267
89419 2.53557
89903 1.80047
90370 1.78815
90788 1.42822
91267 1.61452
91803 2.10898
92225 2.49944
92842 3.14813
93555 3.71985
94156 4.03309
94784 3.37856
95424 3.67046
96062 2.76271
96682 1.98954
97246 1.66261
97866 1.18761
98472 1.20219
99100 1.18921
99717 0.916861
100390 0.728765
101006 0.684761
101612 0.479858
102301 0.937473
102773 0.755732
103328 0.647493
103895 1.29352
104607 5.64103
105144 6.30242
105766 6.85077
106223 5.1406
106919 0.663304
107447 0.537899
107936 0.961022
108557 0.613557
109196 0.544021
109712 0.810533
110350 0.79129
110821 0.797816
111384 0.859429
112034 1.01479
112643 0.962713
113101 0.805199
113750 1.02816
114308 0.908272
114868 0.578153
115422 0.859195
116052 1.01831
116532 1.0515
117189 1.16121
117706 0.899663
118290 0.826868
118777 0.698487
119452 0.70789
119994 0.760678
120580 0.926466
121059 0.718956
121786 1.3313
122429 2.00934
122914 0.711335
123426 0.740663
124256 0.989774
124989 1.4312
125589 1.5116
126043 1.80982
126672 2.49043
127223 2.97551
127686 3.47888
128197 3.74689
128610 4.22324
129023 4.83875
129518 5.26698
130040 6.0928
130635 7.23405
131132 7.94181
131665 8.8219
132275 7.98559
132851 8.61337
133458 10.2335
134088 10.2648
134723 10.2942
135316 10.2271
135950 10.623
136625 11.0421
137118 11.635
137695 10.1396
138278 10.1016
139011 10.1347
139494 9.93136
1 1397 6.16377
2 2147 6.21826
3 2780 7.13779
4 3388 5.61016
5 3987 4.64573
6 4582 4.31845
7 5175 4.74023
8 5874 1.14821
9 6315 2.35651
10 6966 4.29394
11 7442 5.30889
12 8199 5.49899
13 8797 5.69802
14 9394 6.32867
15 10218 7.70248
16 10851 4.78859
17 11381 4.86831
18 11813 5.05386
19 12314 4.9993
20 12830 5.52235
21 13416 5.61495
22 13992 5.9796
23 14473 6.56672
24 15079 7.2176
25 15661 7.84197
26 16268 8.22053
27 16860 8.85622
28 17383 9.41776
29 17966 10.0455
30 18576 10.6988
31 19161 11.8124
32 19830 12.5467
33 20336 13.1208
34 21010 13.8465
35 21582 14.4408
36 22234 15.7055
37 22776 16.3055
38 23388 17.2259
39 24022 17.9261
40 24697 19.7432
41 25212 20.2995
42 25898 21.3156
43 26449 21.8904
44 27008 22.2222
45 27612 22.8892
46 28234 23.5621
47 28893 23.7342
48 29426 25.1028
49 30039 26.0355
50 30654 26.6931
51 31281 27.0725
52 31859 27.376
53 32468 9.38476
54 33147 7.72224
55 33644 7.56068
56 34340 7.43044
57 34824 7.43692
58 35525 7.58439
59 35996 7.26041
60 36594 7.34406
61 37199 7.16202
62 37867 7.04702
63 38374 7.00249
64 39044 6.92038
65 39622 6.30994
66 40277 6.05053
67 40878 6.35278
68 41511 6.65524
69 42141 6.29489
70 42798 6.29206
71 43506 6.31286
72 44259 6.11088
73 44704 6.44467
74 45350 5.93542
75 45928 5.5403
76 46603 5.87352
77 47157 5.49551
78 47662 5.47381
79 48324 5.55697
80 48851 5.53246
81 49446 5.44229
82 50063 5.0741
83 50674 4.9989
84 51352 4.84293
85 51852 5.19717
86 52440 5.54891
87 53082 5.52795
88 53708 5.6461
89 54201 5.65448
90 54773 5.69915
91 55408 5.88981
92 55979 5.49737
93 56561 6.5434
94 57250 6.39904
95 57776 6.68204
96 58320 6.45993
97 58895 6.34385
98 59479 6.89618
99 60142 7.28893
100 60725 8.17373
101 61407 8.04965
102 62042 8.77024
103 63244 9.70249
104 63912 9.43347
105 64544 9.51431
106 65178 8.20173
107 65803 4.56468
108 66428 4.00567
109 67040 3.89773
110 67670 2.80159
111 68267 16.0974
112 68883 18.3393
113 69556 19.0651
114 70029 19.0331
115 70640 19.1616
116 71266 18.9929
117 71812 19.1315
118 72393 18.8924
119 73231 10.674
120 73689 3.82526
121 74433 3.19427
122 74891 3.06907
123 75453 3.16604
124 75980 3.03632
125 76716 4.60461
126 77289 10.1825
127 77771 10.4252
128 78359 9.93167
129 78903 9.41037
130 79390 8.5019
131 79855 11.0506
132 80377 10.5355
133 80809 5.75933
134 81284 5.41579
135 81725 4.40479
136 82169 3.91701
137 82609 3.15771
138 83131 2.73997
139 83634 1.87847
140 84107 4.72201
141 84619 4.54966
142 85105 4.4035
143 85632 4.43062
144 86204 3.43339
145 86719 3.52772
146 87222 3.96957
147 87693 3.86081
148 88169 4.10634
149 88606 3.35644
150 89014 2.67267
151 89419 2.53557
152 89903 1.80047
153 90370 1.78815
154 90788 1.42822
155 91267 1.61452
156 91803 2.10898
157 92225 2.49944
158 92842 3.14813
159 93555 3.71985
160 94156 4.03309
161 94784 3.37856
162 95424 3.67046
163 96062 2.76271
164 96682 1.98954
165 97246 1.66261
166 97866 1.18761
167 98472 1.20219
168 99100 1.18921
169 99717 0.916861
170 100390 0.728765
171 101006 0.684761
172 101612 0.479858
173 102301 0.937473
174 102773 0.755732
175 103328 0.647493
176 103895 1.29352
177 104607 5.64103
178 105144 6.30242
179 105766 6.85077
180 106223 5.1406
181 106919 0.663304
182 107447 0.537899
183 107936 0.961022
184 108557 0.613557
185 109196 0.544021
186 109712 0.810533
187 110350 0.79129
188 110821 0.797816
189 111384 0.859429
190 112034 1.01479
191 112643 0.962713
192 113101 0.805199
193 113750 1.02816
194 114308 0.908272
195 114868 0.578153
196 115422 0.859195
197 116052 1.01831
198 116532 1.0515
199 117189 1.16121
200 117706 0.899663
201 118290 0.826868
202 118777 0.698487
203 119452 0.70789
204 119994 0.760678
205 120580 0.926466
206 121059 0.718956
207 121786 1.3313
208 122429 2.00934
209 122914 0.711335
210 123426 0.740663
211 124256 0.989774
212 124989 1.4312
213 125589 1.5116
214 126043 1.80982
215 126672 2.49043
216 127223 2.97551
217 127686 3.47888
218 128197 3.74689
219 128610 4.22324
220 129023 4.83875
221 129518 5.26698
222 130040 6.0928
223 130635 7.23405
224 131132 7.94181
225 131665 8.8219
226 132275 7.98559
227 132851 8.61337
228 133458 10.2335
229 134088 10.2648
230 134723 10.2942
231 135316 10.2271
232 135950 10.623
233 136625 11.0421
234 137118 11.635
235 137695 10.1396
236 138278 10.1016
237 139011 10.1347
238 139494 9.93136

View File

@@ -106,7 +106,7 @@
\put(4373,2046){\makebox(0,0)[r]{\strut{}\footnotesize{BoxKDE}}}%
}%
\gplbacktext
\put(0,0){\includegraphics{errorOverTime}}%
\put(0,0){\includegraphics{errorOverTimeWalk1/errorOverTime}}%
\gplfronttext
\end{picture}%
\endgroup