added reviewed version of paper

This commit is contained in:
toni
2018-10-16 10:01:26 +02:00
parent 9c8bc5984e
commit b9676b304d
62 changed files with 150125 additions and 0 deletions

128
tex_review/bare_conf.tex Normal file
View File

@@ -0,0 +1,128 @@
\documentclass[journal,article,submit,moreauthors,pdftex,10pt,a4paper]{mdpi}
\firstpage{1}
\makeatletter
\setcounter{page}{\@firstpage}
\makeatother
\pubvolume{xx}
\issuenum{1}
\articlenumber{1}
\pubyear{2018}
\copyrightyear{2018}
%\externaleditor{Academic Editor: name}
\history{Received: date; Accepted: date; Published: date}
\usepackage{color, colortbl}
\usepackage{graphicx}
\usepackage{subcaption}
\interdisplaylinepenalty=2500
\usepackage{array}
\usepackage{mdwmath}
\usepackage{mdwtab}
\usepackage{eqparbox}
\usepackage{epstopdf}
\usepackage{siunitx}
\usepackage{array}
\usepackage{multirow}
%added for comments to reviewers
\usepackage[draft]{todonotes} %the orange todos
\usepackage{xparse}
\usepackage{tikz}
\usetikzlibrary{calc}
\DeclareDocumentCommand{\hcancel}{mO{0pt}O{0pt}O{0pt}O{0pt}}{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[gray] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}%
%for beautiful decision trees
\usetikzlibrary{shapes,arrows,fit,calc,positioning}
\tikzset{startstop/.style={draw, circle, fill, scale=0.3}}
\tikzset{box/.style={draw, diamond, aspect=2.8, thick, text centered, minimum height=0.5cm, minimum width=1cm}}
\tikzset{activity/.style={draw, rectangle, thick, text centered, minimum height=0.5cm, minimum width=1cm}}
\tikzset{line/.style={draw, thick, -latex'}}
%\updates{yes} % If there is an update available, un-comment this line
\Title{Smartphone-based Indoor Localization within a 13th Century Historic Building}
% Author Orchid ID: enter ID or remove command
\newcommand{\orcidauthorA}{0000-0002-4698-8232} % Add \orcidA{} behind the author's name
\newcommand{\orcidauthorB}{0000-0002-8249-8783} % Add \orcidB{} behind the author's name
\newcommand{\orcidauthorC}{0000-0001-7213-1024} % Add \orcidC{} behind the author's name
% Authors, for the paper (add full first names)
\Author{Toni Fetzer$^{1,*}$\orcidB{}, Frank Ebner$^{1}$\orcidA{}, Markus Bullmann$^{1}$\orcidC{}, Frank Deinzer$^{1}$ and Marcin Grzegorzek$^{2}$}
% Authors, for metadata in PDF
\AuthorNames{Toni Fetzer, Frank Ebner, Markus Bullmann, Frank Deinzer and Marcin Grzegorzek}
\keyword{indoor localization; Wi-Fi; PDR; sensor fusion; smartphone; particle filter; sample impoverishment; estimation; historic buildings; navigation mesh}
% Affiliations / Addresses (Add [1] after \address if there is only one affiliation.)
\address{%
$^{1}$ \quad University of Applied Sciences W\"urzburg-Schweinfurt - Faculty of Computer Science and Business Information Systems; \textit{firstname.surname}@fhws.de\\
$^{2}$ \quad University of Siegen - Pattern Recognition Group; marcin.grzegorzek@uni-siegen.de}
% Contact information of the corresponding author
\corres{Correspondence: toni.fetzer@fhws.de}
% missing math operators
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator*{\argmax}{arg\,max}
% vector and matrix typesetting
\renewcommand{\vec}[1]{\boldsymbol{#1}} % italic and greek symbols
\newcommand{\mat}[1]{\vec{#1}} % the same as vec
% gfx include folder
%\graphicspath{{gfx/}}
% input stuff
\input{misc/keywords}
\input{misc/functions}
% footnote hack for thanks
\newcommand{\blfootnote}[1]{%
\begingroup
\renewcommand\thefootnote{}\footnote{#1}%
\addtocounter{footnote}{-1}%
\endgroup
}
\graphicspath{{gfx/}{gfx/groundTruth/}{gfx/wifiOptGlobalFloor/}{gfx/errorOverTimeWalk3/}{gfx/estimationPath2/}{gfx/optimization/}{gfx/optimization/side/}{gfx/transEval/}}
\input{chapters/abstract}
\begin{document}
\maketitle
\input{chapters/introduction}
\input{chapters/relatedwork}
\input{chapters/system}
\input{chapters/transition}
\input{chapters/eval}
\input{chapters/misc}
\input{chapters/experiments}
\input{chapters/conclusion}
\externalbibliography{yes}
\bibliography{egbib}
\end{document}

View File

@@ -0,0 +1,26 @@
\abstract{
Within this work we present an updated version of our \del{award-winning} indoor localization system for smartphones.
The \add{pedestrian's} position is given by means of recursive state estimation using a particle filter to incorporate different probabilistic sensor models.
Our \del{rapid computation} \add{recently presented approximation} scheme of the kernel density estimation allows to find an exact estimation of the current position\add{, instead of classical methods like weighted-average}.
%
Absolute positioning information is given by a comparison between recent \docWIFI{} measurements of nearby access points and signal strength predictions.
Instead of using time-consuming approaches like classic fingerprinting or measuring the exact positions of access points, we use an optimization scheme based on a few reference measurements to estimate a corresponding \docWIFI{} model.
%
\add{This work provides three major contributions to the system.}
\add{The most essential contribution is the novel state transition based on continuous walks along a navigation mesh, modeling only the building's walkable areas.}
\add{The localization system is further updated by replacing the previous activity recognition with a threshold-based algorithm using barometer and accelerometer readings, allowing for continuous and smooth floor changes.}
\add{Within the scope of this work,} we tackle \del{advanced} problems like multimodal densities and sample impoverishment (system gets stuck) by introducing different countermeasures \del{, leading to a more robust localization}.
\add{For the latter, a simplification of our previous solution is presented for the first time, which does not involve any major changes to the particle filter.}
%
%TODO: additional contributions in den experimenten.
\newline
The goal of this work is to propose a fast to deploy \del{and low-cost} localization solution, that
provides reasonable results in a high variety of situations.
To stress our system, we have chosen a very challenging test scenario.
All experiments were conducted within a 13th century historic building, formerly a convent and today a museum.
The system is evaluated using 28 distinct measurement series on four different test walks, up to \SI{310}{\meter} length and \SI{10}{\minute} duration.
It can be shown, that the here presented localization solution is able to provide a small positioning error, even under difficult conditions and faulty measurements.
\del{Our advanced} \add{The introduced} filtering methods allow for a real fail-safe system, while the optimization scheme enables a setup-time of under \SI{120}{\minute} for the \del{complete} \add{\SI{2500}{\square\meter}} building.
%We are able to resolve sample impoverishment whenever it occurs and thus provide a real fail-safe system.
%finally compare the standard weighted-average estimator with our kernel density approach.
}

View File

@@ -0,0 +1,28 @@
\section{Conclusion}
%what you have seen
Within this work we provided an extensive overview of our smartphone-based indoor localization system.
The thorough evaluation demonstrated the good performance under multiple scenarios within a complex environment.
The system is able to handle problems like sample impoverishment and multimodal densities, occurring through the use of a particle filtering scheme.
The main advantage of our approach is its suitability for practical use.
Compared to other state-of-the-art solutions, the setup time is only a few hours and does not require any expert knowledge or hardware.
The localization runs solely an a commercial smartphone, thus no connection to a server or the Wi-Fi infrastructure is required.
By using navigation meshes we are able to reduce the map sizes to only a few megabytes for a complete building.
Nevertheless, there is still room for further improvements and future work.
Through the change from a graph to a mesh, we lost the ability to easily find the shortest path for navigation purposes as described in \cite{Ebner-16}.
By means of barycentric coordinates, this should however be easily adaptable to the triangular structure.
The threshold-based activity recognition is not able to distinguished between different types of elevation, namely elevator, escalator and stairs.
Especially in buildings where elevators pass many floors, the transition fails to move particles in the according speed.
Here, we need to incorporate special environmental knowledge about elevators and escalators or again integrate a probabilistic sensor model for the barometer as already done in previous works \cite{Ebner-15}.
A crucial point to further increase the accuracy of the system is the choice of the signal strength prediction model.
Currently we consider only the attenuation per floor, however by including information about walls and other obstacles, we should be able to decrease the error at the cost of additional computations.
Instead of providing those additional environmental informations by manual measurements, the optimization scheme could be used to approximate the respective model and material parameters.
Special data-structures for pre-computation combined with online interpolation might then be a viable choice for utmost accuracy that is still able to run on a commercial smartphone in real-time.
Finally, the \del{rapid computation} \add{approximation} scheme for the KDE opens up completely new possibilities when handling particle sets.
Within this paper we used it to find the real global maxima for a state estimation and to accurately calculate the Kullback-Leibler divergence.
However, many other estimation schemes are thinkable, for example a trajectory based one, with multiple path-hypotheses, each weighted based on a-priori knowledge.
The KDE approach could also be used to develop better suited resampling techniques, by enabling to draw particles from the underlying density, instead of just reproducing known owns.

View File

@@ -0,0 +1,63 @@
\subsection{State Estimation}
\label{sec:estimation}
% 1/2 bis 3/4 Seite
% particles describe posterior as samples
% (MAP) estimate => max particle
% very jumpy
% MMSE estimate => weighted average
% most of the time very good
% goes out of the window with multi modalities
% estimation of the pdf could help
% computational cheap methods are based on a parametric family
% not neccesserly given in our case
% non parametric => slow
% solution boxKDE
% Problems: larger error compared to WA and bandwidth selection
Each particle is a realization of one possible system state, here, the position of a pedestrian within a building.
The set of all particles represents the posterior of the system.
In other words, the particle filter naturally generates a sample based representation of the posterior.
With this representation a point estimator can directly be applied to the sample data to derive a sample statistic serving as a \qq{best guess}.
A popular point estimate, which can be directly obtained from the sample set, is the minimum mean squared error (MMSE) estimate.
In the case of particle filters the MMSE estimate equals to the weighted-average over all samples, \ie{} the sample mean
\begin{equation}
\hat{\mStateVec}_t := \frac{1}{W_t} \sum_{i=1}^{N} w^i_t \vec{X}^i_{t} \, \text{,}
\end{equation}
%\commentByMarkus{Passt die Notation so?}
%\commentByFrank{sieht fuer mich auf den ersten blick nach korrektem weighted average aller partikel aus. was stoert dich?}
where $W_t=\sum_{i=1}^{N}w^i_t$ is the sum of all weights.
While producing an overall good result in many situations, it fails when the posterior is multimodal.
In these situations the weighted-average estimate will find the estimate somewhere between the modes.
Clearly, such a position between modes is extremely unlikely the position of the pedestrian.
The real position is more likely to be found at the position of one of the modes, but virtually never somewhere between.
In the case of a multimodal posterior the system should estimate the position based on the highest mode.
Therefore, the maximum a posteriori (MAP) estimate is a suitable choice for such a situation.
A straightforward approach is to select the particle with the highest weight.
However, this is in fact not necessarily a valid MAP estimate, because only the weight of the particle is taken into account.
In order to compute the true MAP estimate the local density of the particles needs to be considered as well \cite{cappe2007overview}.
\del{It is obvious,} A computation of the probability density function of the posterior could solve the above, but finding such an analytical solution is clearly an intractable problem, which is the reason for applying a sample representation in the first place.
A feasible alternative is to estimate the parameters of a specific parametric model based on the sample set, assuming that the unknown distribution is approximately a parametric distribution or a mixture of parametric distributions, \eg{} Gaussian mixture distributions.
Given the estimated parameters the most probable state can be obtained from the parameterised density function.
%In the case of multi-modalities several parametric distributions can be combined into a mixture distribution.
However, parametric models fail when the assumption does not fit the underlying model.
For our application assuming a parametric distribution is too limiting as the posterior is changing in a non-predictable way over time.
%As a result, those techniques are not able to provide an accurate statement about the most probable state, rather causing misleading or false outcomes.
On the other side a non-parametric approach directly obtains an estimate of the entire density function driven by the structure of the data.
A classic non-parametric method is the kernel density estimator (KDE), where a kernel function with given bandwidth is placed at each particle to approximate the posterior.
While the kernel estimate inherits all the properties of the kernel, usually it is not of crucial matter if a non-optimal kernel was chosen.
As a matter of fact, the quality of the kernel estimate is primarily determined by the bandwidth. % TODO \cite{scott2015} ?
For our system we choose the Gaussian kernel in favour of computational efficiency.
The great flexibility of the KDE comes at the cost of a high computational time, which renders it unpractical for real time scenarios.
The complexity of a naive implementation of the KDE is \landau{MN}, given by $M$ evaluations and $N$ particles as input size.
A fast approximation of the KDE can be applied if the data is stored in equidistant bins as suggested by \cite{silverman1982algorithm}.
Computation of the KDE with a Gaussian kernel on the binned data becomes analogous to applying a Gaussian filter, which can be approximated by iterated box filter in \landau{N} \cite{Bullmann-18}.
Our \del{rapid computation} \add{approximation} scheme of the KDE is fast enough to estimate the density of the posterior in each time step.
This allows us to recover the most prober state from occurring multimodal posterior.

View File

@@ -0,0 +1,230 @@
\section{Evaluation}
\label{sec:evaluation}
The probability density of the state evaluation in \eqref{equ:bayesInt} is given by
%
\begin{equation}
%\begin{split}
p(\vec{o}_t \mid \vec{q}_t) =
p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}
\,p(\vec{o}_t \mid \vec{q}_t)_\text{act}
\enspace ,
%\end{split}
\label{eq:evalBayes}
\end{equation}
%
where every component refers to a probabilistic sensor model which are statistical independent.
The barometer and accelerometer readings are used to determine the current activity $\mObsActivity$, which is then evaluated using $p(\vec{o}_t \mid \vec{q}_t)_\text{act}$.
Absolute positioning information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for \docWIFI{}.
\subsection{\docWIFI{}}
\label{sec:wifi}
As stated in section \ref{sec:relatedWork}, we use the smartphone's \docWIFI{} component to provide an absolute location estimation based on a comparison between recent RSSI measurements of nearby AP's and signal strength predictions. The probability given those measurements $\mRssiVec_\text{wifi}$ and a prediction, corresponding to a well-known location $\mPosVec = (x,y,z)^T$ provided by $\vec{q}_t$, can thus be written as
\begin{equation}
p(\vec{o}_t \mid \vec{q}_t)_\text{wifi} =
p(\mRssiVec_\text{wifi} \mid \mPosVec) =
\prod_{\mRssi_{i} \in \mRssiVec_\text{wifi}} p(\mRssi_{i} \mid \mPosVec),\enskip
%\mPos = (x,y,z)^T
\mPosVec \in \R^3
\enskip .
\label{eq:wifiObs}
\end{equation}
\noindent We assume a statistical independence between the respective AP's.
The comparison between a single RSSI measurement $\mRssi_i$ and the reference is given by
\begin{equation}
p(\mRssi_i \mid \mPosVec) =
\mathcal{N}(\mRssi_i \mid \mu_{i,\mPosVec}, \sigma_{\text{wifi}}^2)
\enskip ,
\label{eq:wifiProb}
\end{equation}
%\commentByFrank{ich wuerde einfach $\sigma_\text{wifi}$ nehmen. es haengt nicht von der pos $\mPosVec$ ab, und wir hatten immer fuer jeden AP das gleiche}
\noindent where $\mu_{i,\mPosVec}$ denotes the (predicted) signal strength for the \docAPshort{} identified by $i$, regarding the location $\mPosVec$.
A certain noise is allowed by the corresponding standard deviation $\sigma_{\text{wifi}}$.
Within this work $\mu_{\mPosVec}$ is calculated by a modified version of the wall-attenuation-factor model as presented in \cite{Ebner-17}.
\add{We only consider floors and ceilings in order to avoid computation-intensive intersection-tests with every wall along the line-of-sight.
Especially for a building like the one discussed in this paper, this assumption is reasonable due to the complex and historically grown architecture as well as the many different wall materials to be determined.}
Therefore, the prediction depends on the 3D distance $d$ between the \docAPshort{} in question and the location $\mPosVec$ as well as the number of floors $\Delta f$ between them:
\begin{equation}
\mu_{\mPosVec} = \mTXP - 10 \mPLE \log_{10}{\frac{\mMdlDist}{\mMdlDist_0}} + \Delta{f} \mWAF
\label{eq:wallAtt}
\end{equation}
%\commentByFrank{
% hier sollte das $i$, das du vorher hattest, wohl wieder mit rein?
% was genau $d$ bzw $d_i$ oder $d_{i,\mPosVec}$ ist, muessten wir vermutlich auch kurz erklären.
% Ich hatte auch immer unterschieden zwischen der fraglichen position (z.B. $\vec{\rho}$)
% und der position des access points (z.B. $\mPosVec_i$). also, zwei verschiedene zeichen, dass das klar wird.
% ich weis aber nicht, ob $\vec{\rho}$ noch frei ist, bzw was auf den folgenden seiten nocht kommt.
% eigentlich gehoert das $i$ dann auch noch ans $P_0$ und $\gamma$ und $d_0$.. aber der einfachheit halber, reicht das ja im text.
% vorschlag wäre etwas wie:
%}
%\begin{equation}
% \mu(i,\vec{\rho}) = \mTXP - 10 \mPLE \log_{10}{\frac{\mMdlDist}{\mMdlDist_0}} + \Delta{f} \mWAF
% ,\enskip
% d = \| \vec{\rho} - \mPosVec_i \|
% \label{eq:wallAtt}
%\end{equation}
\noindent Here, $\mTXP$ is the \docAPshort{}'s signal strength measurable at a known distance $\mMdlDist_0$ (usually \SI{1}{\meter}) and $\mPLE$ denotes the signals depletion over distance, which depends on the \docAPshort{}'s surroundings like walls and other obstacles.
The attenuation per floor is given by $\mWAF$.
For example, a viable choice for steel enforced concrete floors is $\mWAF \approx \SI{-8.0}{dB}$ \cite{Ebner-15}.
Of course, eq. \eqref{eq:wallAtt} needs to be calculated separately for every $i$ and thus available \docAPshort{}.
It should be noted, that we omitted the index $i$ in eq. \eqref{eq:wallAtt} for the sake of clarity and consistency with other literature.
The environmental parameters $\mTXP$, $\mPLE$ and $\mWAF$ need to be known beforehand and often vary greatly between single \docAPshort{}'s.
Nevertheless, for simplicity's sake it is common practice to use some fixed empirically chosen values, the same for every \docAPshort{}.
This might already provide enough accuracy for some use-cases and buildings, but fails in complex scenarios, as discussed in section \ref{sec:intro}.
Therefore, instead of using a pure empiric model, we deploy an optimization scheme to find a well-suited set of parameters ($\mPosAPVec{}, \mTXP{}, \mPLE{}, \mWAF{}$) per \docAPshort{}, where $\mPosAPVec{} = (x,y,z)^T$ denotes the \docAPshort{}'s estimated position.
The optimization is based on a few reference measurements $\vec{s_{\text{opt}}}$ throughout the building, e.g. every \SI{3}{} to \SI{5}{\meter} centred within a corridor and between \SI{1}{} and \SI{4}{} references per room, depending on the room's size.
Compared to classical fingerprinting, where reference measurements are recorded on small grids between \SI{1}{} to \SI{2}{\meter}, this highly reduces their required number and thus the overall setup-time.
The target function to optimize the $6$ model parameters for one \docAPshort{} is given by
\add{\begin{equation}
(\mPosAPVec, \mTXP, \mPLE, \mWAF) =
\argmin_{\mPosAPVec, \mTXP, \mPLE, \mWAF}
\sum_{s_{i} \in \vec{s_{\text{mac}}}}
(s_{i} - \mu_{\mPosVec})^2
\enskip,\enskip\enskip
\mu_{\mPosVec} =
\mTXP{} - 10 \mPLE{} \log_{10} \frac{\| \mPosVec-\mPosAPVec \|}{\mMdlDist_0} + \Delta f \mWAF{}
\enspace .
\label{eq:optTarget}
\end{equation}}
%\commentByFrank{hier muesste dann auch das $i$ rein, bzw die funktion $\mu()$. vorschlag waere dann:}
%\begin{equation}
% (\mPosAPVec, \mTXP, \mPLE, \mWAF)_i =
% \argmin_{\mPosVec, \mTXP, \mPLE, \mWAF}
% \sum_{s_{i,\vec{\rho}} \in \vec{s}_i}
% \big(s_{i,\vec{\rho}} - \mu(i,\mPosVec) \big)^2
%\enspace .
% \label{eq:optTarget}
%\end{equation}
%\commentByFrank{argmin liefert die argumente, nicht den fehler. da muesste nur min stehen}
%\commentByFrank{
% hier braucht es drigend eine unterscheidung zwischen den beiden positionen. der vom fingerprint und der vom ap
% $\mPosAPVec$ ist, wegen dem $\hat{ }$ einfach nur die \emph{beste}. aber sie ist halt generell anders als der fingerprint.
% deshalb brauchen wir da zwei formel zeichen.
% und wir muessen einheitlich machen, ob wir das $i$ jetzt mitnehmen, oder nicht. sonst wirkt es verwirrend
%}
\noindent Here, one reduces the squared error between reference measurements $s_{i} \in \vec{s_{\text{mac}}}$ with well-known location $\mPosVec$ and corresponding model predictions $\mu_{\mPosVec}$ (cf. eq. \eqref{eq:wallAtt}).
Whereas $\vec{s_{\text{mac}}}$ is the subset of $\vec{s_{\text{opt}}}$ for the \docAPshort{} in question, identified by its MAC-adress.
The number of floors between $\mPosVec$ and $\mPosAPVec$ is again given by $\Delta f$.
As discussed by \cite{Ebner-17}, optimizing all 6 parameters, especially the unknown \docAPshort{} position $\mPosAPVec$, usually results in optimizing a non-convex, discontinuous function.
A promising way to deal with non-convex functions is using a genetic algorithm, which is inspired by the process of natural selection \cite{goldberg89}.
The here deployed algorithm starts with a initial population, that is uniformly sampled within predefined limits of the to-be-optimized parameters.
The \docAPshort{}'s location $\mPosAPVec$ must be within the building and is therefore limited by its size.
\mTXP{}, \mPLE{} and \mWAF{} are set within a sane interval around empirically chosen values.
During each iteration, the best \SI{25}{\percent} of the population are kept.
The remaining entries are then re-created by modifying the best entries with uniform random values within $\pm$\SI{10}{\percent} of the known limits.
Inspired by {\em cooling} known from simulated annealing \cite{Kirkpatrick83optimizationby}, the result is stabilized by narrowing the allowed modification limits over time and thus decrease in the probability of accepting worse solutions.
%\commentByToni{Wollen wir das mal genauer beschreiben? Also wie genau funktioniert das cooling. Das ist ja alles sehr wischi waschi gehalten}
%\commentByFrank{ich wuerde es so lassen. da gibts genug in der literatur ueber ideen und potentielle ansaetze}
To further improve the results, we optimize a model for each floor of the building instead of a single global one, using only the reference measurements that belong to the corresponding floor.
The reason for this comes from the assumptions made in eq. \eqref{eq:wallAtt}.
Here, no walls are considered and thus we expect erroneous RSSI measurements for regions that are heavily shrouded, e.g. by steel-reenforced concrete or metallized glass.
During evaluation, the $z$-value from $\mPosVec$ in eq. \eqref{eq:wifiProb} is used to select the correct model for this location, what then provides the signal strength prediction.
For example, if a pedestrian walks on a staircase and thus is in-between multiple storeys, the average prediction of all corresponding models is calculated instead.
%man muss zwar messungen machen, dafür muss man aber die position der ap's nicht mehr kennen. daher kostet das jetzt nicht viel mehr zeit.
Basically, any kind of wireless network which allows to measure RSSI can be used for the above.
%\commentByMarkus{Provieded der AP die RSSI? Misst nicht das Smartphone an seiner Antenne?}
However, most buildings do not provide a satisfying and well covered \docWIFI{} infrastructure, e.g. staircases or hallways are often neglected for office spaces.
This applies in particular to historical buildings, as discussed in section \ref{sec:intro}.
To improve $\docWIFI$ coverage we are able to distribute a small number of simple and cheap \docWIFI{} beacons.
As beacons we use a WEMOS D1 mini, which is based on the ESP-8266EX \docWIFI{} chip \cite{Wemos}.
The building considered in this work has no \docWIFI{} infrastructure at all, not even a single \docAPshort{}.
Nevertheless, our method allows to distribute beacons in the whole building by simply plugging them into available power outlets.
\subsection{Activity Recognition}
\label{sec:activity}
To enable continuous floor changes we use a simple activity recognition based on the smartphone's barometer and accelerometer.
The method distinguishes between the following: standing, walking, walking up or walking down.
For each sensor we define two fixed-sized windows: $\vec{\omega}_\text{s}$ (short) and $\vec{\omega}_\text{l}$ (long).
As their naming suggests, the windows differ in size and thus in the number of raw sensor measurements they hold.
Both windows are implemented as real-time queues.
Therefore, if a new sensor measurement is added, the oldest entry will be removed.
To recognize the respective activities, we suggest a very simple threshold-based process.
Defining a threshold $t_\text{acc}$ for acceleration (m/s$^2$) and $t_\text{baro}$ for altitude (hPa).
\add{The corresponding activity is then detected as described by the decision tree given in fig. \ref{fig:activity} for every incoming barometer measurement.}
\begin{figure}
\begin{center}
\begin{tikzpicture}[auto]
\node [startstop](start){};
\node [box, below=0.5cm of start](x0){$\Delta \bar\omega_\text{acc} < t_\text{acc}$};
\node [activity, below=0.5cm of x0, xshift=-3cm](x1){standing};
%
\node [box, below=0.5cm of x0, xshift=3cm](x2){$|\Delta \bar\omega_\text{baro}| < t_\text{baro}$};
\node [activity, below=0.5cm of x2, xshift=-3cm](x4){walking};
%
\node [box, below=0.5cm of x2, xshift=3cm](x3){$\Delta \bar\omega_\text{baro} > 0$};
\node [activity, below=0.5cm of x3, xshift=-3cm](x3l){walking down};
\node [activity, below=0.5cm of x3, xshift=3cm](x3r){walking up};
%
\path [*->, line] (start) -- (x0);
\path [line] (x0) -| (x2) node [pos=0.25] {no};
\path [line] (x0) -| (x1) node [above, pos=0.25] {yes};
\path [line] (x2) -| (x3) node [pos=0.25] {no};
\path [line] (x3) -| (x3l) node [above, pos=0.25] {yes};
\path [line] (x3) -| (x3r) node [pos=0.25] {no};
\path [line] (x2) -| (x4) node [above, pos=0.25] {yes};
\end{tikzpicture}
\end{center}
\caption{\add{Decision tree describing the threshold-based activity recognition using the smartphones
barometer and accelerometer measurements. The respective thresholds are given by $t_\text{acc}$ and $t_\text{baro}$. For each sensor the sigma of the arithmetic mean $\Delta \bar\omega = \bar\omega_\text{l} - \bar\omega_\text{s}$ of two different fix-sized windows $\vec{\omega}_\text{s}$ (short) and $\vec{\omega}_\text{l}$ (long), holding a set of the most current sensor measurements, is calculated. The process updates with every incoming barometer reading.}}
\label{fig:activity}
\end{figure}
%
%A corresponding activity is chosen by
%
%\begin{equation}
% \mObsActivity =
% \begin{cases}
% \text{standing} & \Delta \bar\omega_\text{acc} < t_\text{acc} \\
% \text{walking} & |\Delta \bar\omega_\text{baro}| < t_\text{baro} \\
% \text{walking down} & \Delta \bar\omega_\text{baro} > 0 \\
% \text{walking up} & \text{otherwise}
% \end{cases}
%\end{equation}
%
Here, $\Delta \bar\omega = \bar\omega_\text{l} - \bar\omega_\text{s}$
%\begin{equation}
% \Delta \bar\omega = \bar\omega_\text{l} - \bar\omega_\text{s}
%\end{equation}
and $\bar\omega$ provides the arithmetic mean of the respective windows and thus represents a moving average.
We set $t_\text{acc} = $ \SI{0.015}{\meter/\square\second} and $t_\text{baro} = $ \del{\SI{0.042}{\meter/\square\second}} \add{\SI{0.042}{\hecto\pascal}}.
For both involved sensors we suggest to set the size of $\vec{\omega}_\text{s}$ between \SI{0.3}{\second} and \SI{0.6}{\second}.
Recognizing if the pedestrian is standing or walking requires less prior data, then climbing stairs.
Therefore, $\vec{\omega}_\text{l, acc}$ is recommended between \SI{1}{\second} and \SI{2}{\second}, while $\vec{\omega}_\text{l, baro}$ between \SI{3}{\second} and \SI{5}{\second}.
It should be noted, that the window size is a classic trade-off between flexibility and robustness.
The larger the window, the slower changes become noticeable and vice versa.
Of course, the above suggested values are dependent upon the particular requirements and used sensors.
However, they should be valid for many modern commercially available smartphones.
%\commentByFrank{hier hast du quotes um die activitites. in der intro noch nicht. vlt einheitlich machen ueber macros?}
The activity is now evaluated using $p(\vec{o}_t \mid \vec{q}_t)_\text{act}$ by providing a probability based on whether the 3D location $\mPosVec$ of the state-in-question is on a staircase, in an elevator or on the floor.
If the current activity $\mObsActivity$ is recognized as "standing", a $\mPosVec$ located on the floor results in a probability given by $\kappa$, otherwise $1 - \kappa$.
The same applies to "walking up" and "walking down", here a $\mPosVec$ located on one of the possible staircases or elevators provides $\kappa$ and those who remain on the floor $1 - \kappa$.
The likelihood for $\kappa$ is chosen empirically.
It is useful to find a reasonable value that is not too restrictive.
In most cases, $\kappa = 0.75$ provides good results by remaining enough room for erroneous classifications.
A significant higher value like $\kappa = 0.99$ could cause the system to be stuck on a staircase or to be unable to change floors.
%\commentByToni{Wir haben im related work schon von particeln gesprochen. hier in der eval nehm ich aber wieder viel state und state-in-question. wie wollen wir es machen?}
%\commentByToni{warum wir die große treeppe so schwer ist: wlan model zieht JEDE decke ab, nicht nur die sichtbaren, weil das model einfach so gebaut wurde. }

View File

@@ -0,0 +1,422 @@
\section{Experiments}
As explained at the very beginning of this work, we wanted to explore the limits of the here presented localization system.
By utilizing \del{it to} \add{the proposed technology in} a 13th century historic building, we created a challenging scenario not only because of the various architectural factors, but also because of its function as a museum.
During all experiments, the museum was open to the public and had a varying number of \SI{10}{} to \SI{50}{} visitors while recording.
The \SI{2500}{\square\meter} building consists of \SI{6}{} different levels, which are grouped into 3 floors (see fig. \ref{fig:apfingerprint}).
Thus, the ceiling height is not constant over one floor and varies between \SI{2.6}{\meter} to \SI{3.6}{\meter}.
In the middle of the building is an outdoor area, which is only accessible from one side.
While most of the exterior and ground level walls are made of massive stones, the floors above are half-timbered constructions.
Due to different objects like exhibits, cabinets or signs not all positions within the building were walkable.
For the sake of simplicity we did not incorporate such knowledge into the floorplan.
Thus, the floorplan consists only of walls, ceilings, doors, windows and stairs.
It was created using our 3D map editor software based on architectural drawings from the 1980s.
Sensor measurements are recorded using a simple mobile application that implements the standard Android sensor functionalities.
As smartphones we used either a Samsung Note 2, Google Pixel One or Motorola Nexus 6.
The computation of the state estimation as well as the \docWIFI{} optimization are done offline using an Intel Core i7-4702HQ CPU with a frequency of \SI{2.2}{GHz} running \add{\SI{8}{threads} on \SI{4}{cores}} and \SI{16}{GB} main memory.
However, similar to our \add{previously presented systems}, the setup is able to run completely on commercial smartphones as it written in high performant C++ code \cite{torres2017smartphone}.
%Sensor measurements are recorded using a simple mobile application that implements the standard Android SensorManager.
The experiments are separated into four sections:
At first, we discuss the performance of the novel transition model and compare it to a grid-based approach.
In section \ref{sec:exp:opti} we have a look at \docWIFI{} optimization and how the real \docAPshort{} positions differ from it.
Following, we conducted several test walks throughout the building to examine the estimation accuracy (in \SI{}{\meter}) of the localization system and discuss the here presented solutions for sample impoverishment.
Finally, the respective estimation methods are discussed in section \ref{sec:eval:est}.
\commentByToni{Activity Recognition Experimente. Wie gut ist es?}
\subsection{Transition}
\begin{figure}[t]
\centering
\begin{subfigure}{0.4\textwidth}
\def\svgwidth{\columnwidth}
\input{gfx/transEval/mesh_25_final.eps_tex}
\caption{Mesh after 25 steps}
\label{fig:transitionEval:a}
\end{subfigure}
\hspace{2cm}
\begin{subfigure}{0.4\textwidth}
\def\svgwidth{\columnwidth}
\input{gfx/transEval/grid_25_final.eps_tex}
\caption{Graph after 25 steps}
\label{fig:transitionEval:b}
\end{subfigure}
\begin{subfigure}{0.4\textwidth}
\def\svgwidth{\columnwidth}
\input{gfx/transEval/mesh_180_final.eps_tex}
\caption{Mesh after 180 steps}
\label{fig:transitionEval:c}
\end{subfigure}
\hspace{2cm}
\begin{subfigure}{0.4\textwidth}
\def\svgwidth{\columnwidth}
\input{gfx/transEval/grid_180_final.eps_tex}
\caption{Graph after 180 steps}
\label{fig:transitionEval:d}
\end{subfigure}
\caption{Simple staircase scenario to compare the graph-based model with the navigation mesh. All units are given in meter. The black line indicates the current position and the green line gives the estimated path until 25 or 180 steps, both using weighted average. The particles are colored according to their height. A pedestrian walks up and down the stairs several times in a row. After 25 steps, both methods produce good results, although there are already some outliers (blue particles). After 180 steps, the outliers using the graph have multiplied, leading to a multimodal situation. In contrast, the mesh offers the possibility to remove particles that hit a wall and can thus prevent such a situation.}
\label{fig:transitionEval}
\end{figure}
To compare our old graph-based model with our novel transition model presented within section \ref {sec:transition}, we chose a simple scenario, in which a tester walks up and down a staircase several times.
We used 1000 particles and did not perform an evaluation and resampling step to maintain the pure performance of the transition (step and heading).
The filter starts at a fixed position and is updated after every newly recognized step.
We set $\sigma_\text{step} = 0.1$ and $\sigma_\text{turn} = 0.1$ likewise.
The cells of the gridded graph were \SI{20}{} x \SI{20}{\centi\meter} in size and the transition implemented as described in \cite{Ebner-16}.
As discussed in section \ref {sec:transition}, the mesh demands for a strategy, how to handle unreachable destinations.
We chose a simple, yet effective strategy: whenever a destination is unreachable to a particle, it is removed and the last correct transitioning particle is duplicated.
Of course, the graph does not require for such a rule, since particles are only allowed to move on nodes and search for neighbours.
Fig. \ref{fig:transitionEval:a} and \ref{fig:transitionEval:b} illustrate the results after \SI{25}{steps} for each method.
The particles are colored according to their height and the walking path (green line) is estimated using weighted-average.
It can be seen that both methods provide similar results.
Due to the discrete grid structure, the purple particles on the graph scatter more strongly, while the mesh provides a truly continuous structure and thus a more compact representation.
It is important to note that outliers have already appeared in both scenarios (blue particles).
Due to the included sensor noise, they covered a too short distance for several times and thus the upcoming left turn leads upwards instead of downwards.
Going straightforward to \SI{180} steps, this phenomenon has multiplied for the graph (cf. fig. \ref{fig:transitionEval:d}), but not for the mesh (cf. fig. \ref{fig:transitionEval:c}).
This is due to the above-mentioned strategy for the mesh.
Compared to this approach, the graph is not able to remove any particles and thus they walk according to the recognized steps and heading changes, even if they theoretically hit a wall several times.
The resulting effects are obvious.
After walking up and down twice, several particle groups have formed, which no longer allows an accurate position estimation.
Of course, a similar strategy could be developed for a graph.
We have already shown how to identify the nodes nearest to walls in one of our previous works \cite{Ebner-16}.
However, the limitation to walk in \SI{45}{\degree} angles as well as the discrete cell sizes lead to restrictions for small rooms, narrow hallways or bigger cells.
For example walking through a door, would result in a strong reduction of differing particles.
If the state evaluation is then used to assign weights to particles, the crucial problem of sample degeneracy often occurs.
With a mesh, on the other hand, walkable destinations can also be located in a room behind a wall.
In combination with the continues movement, this allows for a high versatility of particles even in such situations.
Another method to fix the problems shown in fig. \ref{fig:transitionEval:d}, is by adding an activity recognition (walking up, down straight) or to incorporate a barometer.
Nevertheless, in most cases it is an advantage if a sensor model delivers good results on its own, without further dependencies.
For example, if a sensor is currently unavailable or damaged, the system is still able to provide prober results.
Besides the advantages the mesh offers, it also has a few disadvantages compared to the graph.
The computation time has increased due to the calculation of reachable destinations.
With the graph, only the direct neighbours are of interest, which can be implemented very efficiently using a tree structure.
Further, the graph allows the easily store meta information on its nodes, for example Wi-Fi fingerprints or precalculations for shortest-path methods.
This is more difficult using the mesh and requires the handling of baricentric coordinates.
\subsection{\docWIFI{} Optimization}
\label{sec:exp:opti}
%\commentByToni{Work in Progress... Irgendwie passt die Grafik nicht so wirklich. Im Gegensatz zum 2017 Paper würde ich gerne ein wenig über die geschätzten Positionen reden. Die Unterschiede zwischen Local und Global dabei. Warum machne Schätzungen gar so weit weg von der Realität sind und das es oft auch gar nicht so schlimm ist, falls das passiert. Tipps sind Willkommen. Vielleicht b) weglassen und in a einfach noch die fingerprint positionen mit rein. damit man ein gefühlt dafür bekommt wie viel wir in Vorleistung gehen müssen. An sich erkannt man ja dann das von "oben" das die optimierung manchmal gut und manchmal schlecht ist.}
%wie viele ap sind es insgesamt?
As described in section \ref{sec:wifi} we used \SI{42}{} WEMOS D1 mini to provide a \docWIFI{} infrastructure throughout the building.
Within all Wi-Fi observations, we only consider the beacons, which are identified by their well-known MAC address.
Other transmitters like smart TVs or smartphone hotspots are ignored as they might cause estimation errors.
The references (fingerprints) we used to optimize the Wi-Fi models as well as the real position of the \docAPshort{}s (black dot) can be seen in fig. \ref{fig:apfingerprint} for ground level.
Each reference location was scanned \SI{30}{} times ($\approx \SI{25}{\second}$ scan time) using a Motorola Nexus 6 at \SI{2.4}{GHz} band only.
The resulting measurements were grouped per physical transmitter and aggregated to form the average signal strength per transmitter.
The real position of every installed beacon was measured using a laser scanner.
This allows a comparison with the optimized \docAPshort{} positions, what can also be seen in fig. \ref{fig:apfingerprint}.
%
\begin{figure}[t]
\centering
\def\svgwidth{\columnwidth}
\input{gfx/optimization/wifiOptTopView.eps_tex}
\caption{Ground level of the building in the \add{$xy$-plane} from above. Includes the locations of the reference points, the ground truth and the optimized \docAPshort{}s. The grey line connects an \docAPshort{} with the corresponding optimization. The \add{colored borders} are areas of special interest and are discussed within the text. The corresponding pictures on the right side show the museum in these places.}
\label{fig:apfingerprint}
\end{figure}
%Positionsfehler und wo?
It illustrates the results of the global (blue) and the per-floor (orange) method for all \docAPshort{}'s installed to ground level.
The respective optimized positions $\mPosAPVec$ are connected by a grey line with the corresponding ground truth, providing the position error on the $xz$-plane.
The average distance error (3D) between the \docAPshort{}'s real position and the optimized ones is \SI{5.4}{\meter} ($\mu =$ \SI{5.1}{}) for the per-floor and \SI{4.8}{\meter} ($\mu =$ \SI{5.6}{}) for global strategy.
However, it is easy to see that the results are better in some areas (green) than in others (red and purple).
While the green \add{rectangle} encloses an area that has a high number of \docAPshort{}s with line-of-sight conditions, the \docAPshort{}s in red and purple are shielded by very thick stone walls and have a lower number of reference points with direct visual contact (cf. fig. \ref{fig:apfingerprint}).
The maximum position error for the global scheme is \SI{25.3}{\meter} and \SI{18.4}{\meter} for the per-floor one.
Both are related to the \docAPshort{} in the red \add{rectangle}.
%Gesamtfehler und wieso?
Of course, the position alone does not provide sufficient information of the overall performance, however it provides a good visual impression of how the optimization behaves.
The overall optimization error is measured using the difference between model predictions and real-world RSSI values for each reference measurement.
These differences can be positive or negative, which is why we indicate an absolute or signed error.
The (absolute) optimization error of the respective strategies is \SI{4.7}{\decibel} ($\mu =$ \SI{3.8}{}) for global and \SI{2.6}{\decibel} ($\mu =$ \SI{2.7}{}) for per-floor in average.
Again, the highest errors occur from \docAPshort{}s within the red and purple area, whereby the local maxima for the signed difference are \SI{-31.4}{\decibel} and \SI{17.5}{\decibel} for global and \SI{-12.7}{\decibel} and \SI{13.4}{\decibel} for local.
%global vs local
Thus, the per-floor optimization scheme provides a smaller overall error, whereby the positioning error is higher compared to the global one.
The reason for the latter can be found within the purple area.
It marks a vaulted cellar, that is \SI{1.7}{\meter} deeper than ground level and connect by a narrow staircase.
\add{Here, RSSI measurements received from \docAPshort{}'s residing on the ground level are strongly attenuated due to the massive walls of the cellar.
In contrast, measurements coming from the floor above are much less attenuated thanks to a much thinner ceiling.}
%Here, RSSI measurements taken from outside the ground level are strongly attenuated, while measurements \del{taken from above are more moderately attenuated} \add{received }.
Since the per-floor scheme uses only references from the current floor in question, while the global scheme uses all available references and thus more meaningful information in this area.
However, as the overall error suggests, this is not always an advantage, which we will see later on in the localization experiments.
%warum ist die optimierung tdz. ganz gut?
As mentioned above, some areas are heavily attenuated by big walls, what simply does not fit the used signal strength prediction model.
As discussed in section \ref{sec:relatedWork} and \ref{sec:wifi}, we only consider ceilings within the model to avoid computational expensive wall intersection-tests.
A far higher number of reference measurements in bad areas can therefore only increase the accuracy to a limited extent.
Nevertheless, by optimizing all parameters (\mPosAPVec{}, \mTXP{}, \mPLE{} and \mWAF{}) the system provides far better localization results compared to using the \docAPshort{}'s real positions with empirical values or even optimized values only for \mTXP{}, \mPLE{} and \mWAF{}.
The reason for this is obvious.
The optimized parameters fit the (unrealistic) signal strength prediction model much better than the real ones and thus provide for a smaller error between measured RSSI and predicted RSSI.
Since walls are ignored by the model, optimizing the position of the access points can compensate for the resulting effects.
This is also the reason why the optimized positions of \docAPshort{}'s attached to walls always have a certain distance to them, as can be seen in fig. \ref{fig:apfingerprint}.
A more realistic model would not only mean an overall improvement of the results, but also a further approximation to the real conditions in the building. It is to be expected that the estimated positions of the access points will then approach the ground truth.
Further evaluations and discussions regarding the here used optimization can be found in \cite{Ebner-17}.
\subsection{Localization Error}
\begin{figure}[t]
\centering
\begin{subfigure}{0.32\textwidth}
\def\svgwidth{\columnwidth}
{\input{gfx/groundTruth/gt_unten_final.eps_tex}}
\caption{Ground floor}
\end{subfigure}
\begin{subfigure}{0.32\textwidth}
\def\svgwidth{\columnwidth}
{\input{gfx/groundTruth/gt_mitte_final.eps_tex}}
\caption{First floor}
\end{subfigure}
\begin{subfigure}{0.32\textwidth}
\def\svgwidth{\columnwidth}
{\input{gfx/groundTruth/gt_oben_final.eps_tex}}
\caption{Second floor}
\end{subfigure}
\caption{All conducted walks within the building. The arrows indicate the running direction and a cross marks the end. For a better overview we have divided the building into 3 floors. However, each floor consists of different high levels. They are separated from each other by different shades of grey, dark is lower then light.}
\label{fig:floorplan}
\end{figure}
%
The 4 chosen walking paths can be seen in fig. \ref{fig:floorplan}.
Walk 0 is \SI{152}{\meter} long and took about \SI{2.30}{\minute} to walk.
Walk 1 has a length of \SI{223}{\meter} and Walk 2 a length of \SI{231}{\meter}, both required about \SI{6}{\minute} to walk.
Finally, walk 3 is \SI{310}{\meter} long and takes \SI{10}{\minute} to walk.
All walks were carried out by 4 different male testers using either a Samsung Note 2, Google Pixel One or Motorola Nexus 6 for recording the measurements.
All in all, we recorded \SI{28}{} distinct measurement series, \SI{7}{} for each walk.
The picked walks intentionally contain erroneous situations, in which many of the above treated problems occur.
\del{This allows us to discuss everything in detail.}
A walk is indicated by a set of numbered markers, fixed to the ground.
Small icons on those markers give the direction of the next marker and in some cases provide instructions to pause walking for a certain time.
The intervals for pausing vary between \SI{10}{\second} to \SI{60}{\second}.
The ground truth is then measured by recording a timestamp while passing a marker.
For this, the tester clicks a button on the smartphone application.
Between two consecutive points, a constant movement speed is assumed.
Thus, the ground truth might not be \SI{100}{\percent} accurate, but fair enough for error measurements.
The approximation error is then calculated by comparing the interpolated ground truth position with the current estimation \cite{Fetzer-16}.
An estimation on the wrong floor has a great impact on the location awareness of an pedestrian, but only provides a relatively small error.
Therefore, errors in $z$-direction are penalized by tripling the $z$-value.
%computation und monte carlo runs
For each walk we deployed 100 runs using \SI{5000}{particles} and set $N_{\text{eff}} = 0.85$ for resampling.
Instead of an initial position and heading, all walks start with a uniform distribution (random position and heading) as prior.
The overall localization results can be see in table \ref{table:overall}.
Here, we differ between the respective anti-impoverishment techniques presented in chapter \ref{sec:impo}.
The simple anti-impoverishment method is added to the resampling step and thus uses the transition method presented in chapter \ref{sec:transition}.
In contrast, the $D_\text{KL}$-based method extends the transition and thus uses a standard cumulative resampling step.
We set $l_\text{max} =$ \SI{-75}{dBm} and $l_\text{min} =$ \SI{-90}{dBm}.
For a better overview, we only used the KDE-based estimation, as the errors compared to the weighted-average estimation differ by only a few centimeter.
\newcommand{\STAB}[1]{\begin{tabular}{@{}c@{}}#1\end{tabular}}
\begin{table}[t]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
Method & \multicolumn{3}{c|}{none} & \multicolumn{3}{c|}{simple} & \multicolumn{3}{c|}{$D_\text{KL}$}\\
\hline
& $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ & $\bar{x}$ & $\bar{\sigma}$ & $\tilde{x}_{75}$ \\
\hline \hline
walk 0 & \SI{13.4}{\meter} & \SI{11.2}{\meter} & \SI{22.6}{\meter} & \SI{7.1}{\meter} & \SI{6.6}{\meter} & \SI{9.4}{\meter} & \SI{5.8}{\meter} & \SI{4.9}{\meter} & \SI{7.3}{\meter} \\ \hline
walk 1 & \SI{3.2}{\meter} & \SI{2.4}{\meter} & \SI{4.1}{\meter} & \SI{3.2}{\meter} & \SI{2.6}{\meter} & \SI{4.0}{\meter} & \SI{3.8}{\meter} & \SI{3.2}{\meter} & \SI{4.6}{\meter} \\ \hline
walk 2 & \SI{8.3}{\meter} & \SI{4.1}{\meter} & \SI{10.9}{\meter} & \SI{3.6}{\meter} & \SI{2.3}{\meter} & \SI{4.9}{\meter} & \SI{3.6}{\meter} & \SI{2.3}{\meter} & \SI{4.8}{\meter} \\ \hline
walk 3 & \SI{7.0}{\meter} & \SI{5.9}{\meter} & \SI{13.5}{\meter} & \SI{5.4}{\meter} & \SI{4.7}{\meter} & \SI{7.7}{\meter} & \SI{4.8}{\meter} & \SI{4.3}{\meter} & \SI{6.5}{\meter} \\
\hline
\end{tabular}
\caption{Overall localization results in meter using the different impoverishment methods. For estimation we used the KDE-based method, as the errors compared to the weighted-average differ by only a few centimeter. The results are presented given the average positioning error $\bar{x}$, the standard deviation $\bar{\sigma}$ and the \SI{75}{\percent}-quantil of positioning errors $\tilde{x}_{75}$.}
\label{table:overall}
\end{table}
All walks, except for walk 1, suffer in some way from sample impoverishment.
We discuss the single results of table \ref{table:overall} starting with walk 0.
Here, the pedestrians started at the top most level, walking down to the lowest point of the building.
The first critical situation occurs immediately after the start.
While walking down the small staircase, many particles are getting dragged into the room to the right due to erroneous Wi-Fi readings.
At this point, the activity "walking down" is recognized, however only for a very short period.
This is caused by the short length of the stairs.
After this period, only a small number of particles changed the floor correctly, while a majority is stuck within the right-hand room.
The activity based evaluation $p(\vec{o}_t \mid \vec{q}_t)_\text{act}$ prevents particles from further walking down the stairs, while the resampling step mainly draws particles in already populated areas.
In \SI{10}{\percent} of the runs using none of the anti-impoverishment methods, the system is unable to recover and thus unable to finish the walk somewhere near the correct position or even on the same floor.
Yet, the other \SI{90}{\percent} of runs suffer from a very high error.
Only by using one of the here presented methods to prevent impoverishment, the system is able to recover in \SI{100}{\percent} of cases.
Fig. \ref{fig:errorOverTimeWalk0} compares the error over time between the different methods for an exemplary run.
The above described situation, causing the system to stuck after \SI{10}{\second}, is clearly visible.
Both, the simple and the $D_\text{KL}$ method are able to recover early and thus decrease the overall error dramatically.
Between \SI{65}{\second} and \SI{74}{\second} the simple method produces high errors due to some uncertain Wi-Fi measurements coming from an \docAP{} below, causing those particles who are randomly drawn near this \docAPshort{} to be rewarded with a very high weight.
This leads to newly sampled particles in this area and therefore a jump of the estimation.
The situation is resolved after entering another room, which is now shielded by stone walls instead of wooden ones.
Walking down the stairs at \SI{80}{\second} does also recover the localization system using none of the methods.
%
\begin{figure}
\centering
\input{gfx/errorOverTimeWalk0/errorOverTime.tex}
\caption{Error development over time of a single Monte Carlo run of walk 0. Between \SI{10}{\second} and \SI{24}{\second} the Wi-Fi signal was highly attenuated, causing the system to get stuck and producing high errors. Both, the simple and the $D_\text{KL}$ anti-impoverishment method are able to recover early. However, between \SI{65}{\second} and \SI{74}{\second} the simple method produces high errors due to the high random factor involved.}
\label{fig:errorOverTimeWalk0}
\end{figure}
A similar behavior as the above can be seen in walk 3.
Without a method to recover from impoverishment, the system lost track in \SI{100}{\percent} of the runs due to a not detected floor change in the last third of the walk.
By using the simple method, the overall error can be reduced and the impoverishment resolved. Nevertheless, unpredictable jumps of the estimation are causing the system to be highly uncertain in some situations, even if those jumps do not last to long.
Only the use of the $D_\text{KL}$ method is able to produce reasonable results.
As described in chapter \ref{sec:wifi}, we use a Wi-Fi model optimized for each floor instead of a single global one.
A good example why we do this, can be seen in fig. \ref{fig:walk3:wifiopt}, considering a small section of walk 3.
Here, the system using the global Wi-Fi model makes a big jump into the right-hand corridor and requires \SI{5}{\second} to recover.
This happens through a combination of environmental occurrences, like the many different materials and thus attenuation factors, as well as the limitation of the here used Wi-Fi model, only considering ceilings and ignoring walls.
Following, \docAPshort{}'s on the same floor level, which are highly attenuated by \SI{2}{\meter} thick stone walls, are neglected and \docAPshort{}'s from the floor above, which are only separated by a thin wooden ceiling, have a greater influence within the state evaluation process.
Of course, we optimize the attenuation per floor, but at the end this is just an average value summing up the \docAPshort{}'s surrounding materials.
Therefore, the calculated signal strength predictions do not fit the measurements received from the above in a optimal way.
In contrast, the model optimized for each floor only considers the respective \docAPshort{}'s on that floor, allowing to calculate better fitting parameters.
A major disadvantage of the method is the reduced number of visible \docAPshort{}'s and thus measurements within an area.
This could lead to an underrepresentation of \docAPshort{}'s for triangulation.
Such a scenario can be seen in fig. \ref{fig:walk3:time} between \SI{200}{\second} and \SI{220}{\second}, where the pedestrian enters an isolated room.
Only two \docAPshort{}'s provide a solid signal within this area, leading to a higher error, while the global scheme still receives RSSI readings from above.
\begin{figure}[t!]
\centering
\begin{subfigure}[t]{0.45\textwidth}
\def\svgwidth{\columnwidth}
{\input{gfx/wifiOptGlobalFloor/wifiOptGlobalFloor.eps_tex}}
\caption{}
\label{fig:walk3:wifiopt}
\end{subfigure}
\hfil
\begin{subfigure}[t]{0.45\textwidth}
\resizebox{1\textwidth}{!}{\input{gfx/errorOverTimeWalk3/errorOverTime.tex}}
\caption{}
\label{fig:walk3:time}
\end{subfigure}
\caption{(a) A small section of walk 3. Optimizing the system with a global Wi-Fi optimization scheme (blue) causes a big jump and thus high errors. This happens due to highly attenuated Wi-Fi signals and inappropriate Wi-Fi parameters. We compare this to a system optimized for each floor individually (orange), resolving the situation a producing reasonable results. (b) Error development over time for this section. The high error can be seen at \SI{190}{\second}. }
\label{fig:walk3}
\end{figure}
%walk 1
Looking at the results of table \ref{table:overall} again, it can be seen that the $D_\text{KL}$ method is able to improve the results in three of the four walks.
Those walks have in common, that they suffer in some way from sample impoverishment or other problems causing the system to stuck.
The only exception is walk 1.
It was set up to provide a challenging scenario, leading to as many multimodalities as possible.
We intentionally searched for situations in which there was a great chance that the particle set would separate, e.g. by providing multiple possible whereabouts through crossings or by blocking and thus separating a straight path with objects like movable walls.
Similar to the other walks, we added different pausing intervals of \SI{10}{\second} to \SI{60}{\second}.
This helps to analyse how the particles behave in such situations, especially in this multimodal setting.
Besides uncertain measurements, one of the main sources for multimodalities are restrictive transition models, e.g. no walking through walls.
As shown in section \ref{sec:impo}, the $D_\text{KL}$ method compares the current posterior $p(\mStateVec_{t} \mid \mObsVec_{1:t})$ with the probability grid $\probGrid_{t, \text{wifi}}$ using the Kullback-Leibler divergence and a Wi-Fi quality factor.
Environmental restriction like walls are not considered while creating $\probGrid_{t, \text{wifi}}$, that is why the grid is not effected by a transition-based multimodal setting.
Given accurate Wi-Fi measurements, it is therefore very likely that $\probGrid_{t, \text{wifi}}$ represents a unimodal distribution, even if the particles got separated by an obstacle or wall.
This leads to a situation, in which posterior and grid differ.
As a result, the radius $r_\text{sub}$ increases and thus the diversity of particles.
We are able to confirm the above by examining the different scenarios integrated into walk 1.
For this, we compared the error development with the corresponding radius $r_\text{sub}$ over time.
In situations where the errors given by the $D_\text{KL}$ method and the simple method differ the most, $r_\text{sub}$ also increases the most.
Here, the radius grows to a maximum of $r_\text{sub} = $ \SI{8.4}{\meter}, using the same measurement series as in fig. \ref{fig:walk1:kdeovertime}.
In contrast, a real sample impoverishment scenario, as seen in walk 0 (cf. fig. \ref{fig:errorOverTimeWalk0}), has a maximum radius of \SI{19.6}{\meter}.
Nevertheless, such an slightly increased diversity of \SI{8.4}{\meter} is enough to influence the estimation error of the $D_\text{KL}$ in a negative way (cf. walk 1 in table \ref{table:overall}).
Ironically, this is again some type of sample impoverishment, caused by the aforementioned environmental restrictions not allowing particles inside walls or other out of reach areas.
%%estimation
\subsection{Estimation}
\label{sec:eval:est}
As mentioned before, the single estimation methods (cf. chapter \ref{sec:estimation}) only vary by a few centimetres in the overall localization error.
That means, they differ mainly in the representation of the estimated locations.
More easily spoken, in which way the estimated path is drawn and thus presented to the user.
Regarding the underlying particle set, different shapes of probability distributions need to be considered, especially those with multimodalities.
%
\begin{figure}[t]
\centering
\begin{subfigure}{0.45\textwidth}
\resizebox{1\textwidth}{!}{\input{gfx/walk.tex}}
\caption{}
\label{fig:walk1:kde}
\end{subfigure}
\hfil
\begin{subfigure}{0.45\textwidth}
\resizebox{1\textwidth}{!}{\input{gfx/errorOverTimeWalk1/errorOverTime.tex}}
\caption{}
\label{fig:walk1:kdeovertime}
\end{subfigure}
\caption{(a) Occurring bimodal distribution caused by uncertain measurements in the first \SI{13.4}{\second} of walk 1. After \SI{20.8}{\second}, the distribution gets unimodal. The weigted-average estimation (orange) provides a high error compared to the ground truth (solid black), while the KDE approach (blue) does not. (b) Error development over time for the complete walk. From \SI{230}{\second} to \SI{290}{\second} to pedestrian was not moving. }
\label{fig:walk1}
\end{figure}
%
The main advantage of a KDE-based estimation is that it provides the "correct" mode of a density, even under a multimodal setting (cf. section \ref{sec:estimation}).
That is why we again have a look at walk 1.
A situation in which the system highly benefits from this is illustrated in fig. \ref{fig:walk1:kde}.
Here, a set of particles splits apart, due to uncertain measurements and multiple possible walking directions.
Indicated by the black dotted line, the resulting bimodal posterior reaches its maximum distance between the modes at \SI{13.4}{\second}.
Thus, a weighted-average estimation (orange line) results in a position of the pedestrian somewhere outside the building (light green area).
The ground truth is given by the black solid line.
The KDE-based estimation (blue line) is able to provide reasonable results by choosing the "correct" mode of the density.
After \SI{20.8}{\second} the setting returns to be unimodal again.
Due to a right turn the lower red particles are walking against a wall and thus punished with a low weight.
Although, situations as displayed in fig. \ref{fig:walk1:kde} frequently occur, the KDE-estimation is not able to improve the overall estimation results.
This can be seen in the corresponding error development over time plot given by fig. \ref{fig:walk1:kdeovertime}.
Here, the KDE-estimation performs slightly better then the weighted-average, however after deploying \SI{100}{} Monte Carlo runs, the difference becomes insignificant.
It is obvious, that the above mentioned "correct" mode, not always provides the lowest error.
In some situations the weighted-average estimation is often closer to the ground truth.
Within our experiments this happened especially when entering or leaving thick-walled rooms, causing slow and attenuated Wi-Fi signals.
While the systems dynamics are moving the particles outside, the faulty Wi-Fi readings are holding back a majority by assigning corresponding weights.
Only with new measurements coming from the hallway or other parts of the building, the distribution and thus the KDE-estimation are able to recover.
This leads to the conclusion, that a weighted-average approach provides a more smooth representation of the estimated locations and thus a higher robustness.
A comparison between both methods is illustrated in fig. \ref{fig:estimationcomp} using a measuring sequence of walk 2.
We have highlighted some interesting areas with colored \del{squares} \add{rectangles}.
The greatest difference between the respective estimation methods can be seen inside the green rectangle, the gallery wing of the museum.
While the weighted-average (orange) produces a very straight estimated path, the KDE-based method (blue) is much more volatile.
This can be explained by the many small rooms that pedestrians pass through.
The doors act like bottlenecks, which is why many particles run against walls and thus are either drawn on a new position within a reachable area (cf. section \ref{sec:estimation}) or walk along the wall towards the door.
This causes a higher uncertainty and diversity of the posterior, what is more likely to be reflected by the KDE method than by the weighted-average.
Additionally, the pedestrian was forced seven times to look at paintings (stop walking) between \SI{10}{\second} and \SI{20}{\second}, just in this small area.
Nevertheless, even if both estimated paths look very different, they produce similar errors.
The purple rectangle displays a situation in which a sample impoverishment was successfully resolved.
Due to a poorly working \docAPshort{}, in the lower corner of the big room the pedestrians passes before walking down the stairs, the majority of particles is dragged into the upper right corner of that room and unable to walk down.
By allowing some particles to walk through the wall and thus down the stairs, the impoverishment could be dissolved.
The KDE-based estimation \add{(blue line)} illustrates this behavior very accurate.
\add{At first, the pedestrian's position is estimated in the area around the corner of the room, after the impoverishment was recognized, the estimated path is then crossing the wall, enabling the floor change.
However, as could be seen in fig. 7, before the here presented methods are able to resolve sample impoverishment, the error and thus the radius $r_\text{sub}$ increase in time as the system got stuck.
This can take up to a few seconds, in which the pedestrian has continued walking and is thus ahead of the current position estimation.
As the first particles are newly drawn into more proper regions, the system starts to recover, still remaining in an uncertain state as the particle set is split apart.
After a few filter updates, especially resampling steps, the system returns back to a more stable state.
Both, the time in which the system was uncertain as well as the lag to the real position of the pedestrian lead to problems at the end of the staircase (left corner of the purple rectangle).
While the pedestrian has already completely descended the stairs, the activity changes from walking down to walking.
Since the majority of the particles are still on the stairs, they are thus considered to be less likely than particles on a floor.
As there are only a few particles on the floors, some below and some above, the estimation is calculated somewhere in between, which finally explains the increased error in this area.}
Another situation in which the estimated paths do not provide sufficient results can be seen inside the teal rectangle.
The room is very isolated from the rest of the building, which is reflected by the fact that only 3 \docAPshort{}'s are detected.
The pedestrians have been asked to cross the room at a quick pace, leading to a higher step rate and therefore update rate of the filter.
The results within this area lead to the assumption, that even if Wi-Fi has a bad coverage, it influences the estimation results the most.
The PDR based transition alone is able to walk alongside the ground truth in an accurate manner.
However, this is of course only true if we consider this area individually, without the rest of the walk due to the accumulating bias of the relative sensors involved.
\del{In the end, it is a question of optimal harmony between transition and evaluation.}
We hope to further improve such situations in future work by enabling the transition step to provide a weight to particles that walk very likely, especially in situation where Wi-Fi provides bad readings.
\begin{figure}[t]
\centering
\def\svgwidth{0.8\columnwidth}
{\input{gfx/estimationPath2/est.eps_tex}}
\caption{Estimation results of walk 2 using the KDE method (blue) and the weighted-average (orange). While the latter provides a more smooth representation of the estimated locations, the former provides a better idea of the quality of the underlying processes. In order to keep a better overview, the top level of the last floor was hidden. The colored rectangles are used as references within the text.}
\label{fig:estimationcomp}
\end{figure}
To summarize, the KDE-based approach for estimation is able to resolve multimodalities.
It does not provide a smooth estimated path, since it depends more on an accurate sensor model than a weighted-average approach, but is suitable as a good indicator about the real performance of a sensor fusion system.
At the end, in the here shown examples we only searched for a global maxima, even though the KDE approach opens a wide range of other possibilities for finding a best estimate.
\commentByToni{Diskussion, wie die Contributions uns jetzt geholfen haben. Nochmal zusammengefasst.}

View File

@@ -0,0 +1,68 @@
\section{Introduction}
\label{sec:intro}
Setting up a reliable localization solution for a building is a challenging and time-consuming task, especially in environments that are not built with localization in mind or do not provide any wireless infrastructure or even both.
Such scenarios are of special interest when old or historical buildings serve a new purpose such as museums, shopping malls or retirement homes.
In terms of European architecture, the problems emanating from these buildings worsen over time.
In the scope of this work, we deployed an indoor localization system to a 13th century building.
The first 300 years, the building was initially used as a convent, and, after that, had different functions ranging from a granary to an office for Bavarian officials.
Over time, the building underwent major construction measures and was extended several times.
Since 1936, the \SI{2500}{\square\meter} building acts as a museum of the medieval town Rothenburg ob der Tauber \cite{Rothenburg}, Germany.
Such buildings are often full of nooks and crannies, what makes it hard for dynamical models using any kind of pedestrian dead reckoning (PDR). Here, the error accumulates not only over time, but also with the number of turns and steps made \cite{Ebner-15}.
\del{There is also a higher chance of detecting false or misplaced turns,} \add{There is also a higher probability of detecting a wrong turn,} what can cause the position estimation to lose track or getting stuck within a demarcated area.
Thus, this paper presents a \del{robust but realistic} \add{continuous} movement model using a three-dimensional navigation mesh based on triangles.
\add{In addition, a novel threshold-based activity-recognition is used to allow for smooth floor changes.}
%In addition, this allows for very small map sizes, consuming little storage space.
In localization systems using a sample based density representation, like particle filters, aforementioned problems can further lead to more advanced problems like sample impoverishment \cite{Fetzer-17} or multimodalities \cite{Fetzer-16}.
Sample impoverishment refers to a situation, in which the filter is unable to sample enough particles into proper regions of the building, caused by a high concentration of misplaced particles.
Within this work we present a simple yet efficient method that enables a particle filter to fully recover from sample impoverishment.
We also use \del{a novel} \add{an} approach for finding an exact estimation of the pedestrian's current position by using a \del{rapid computation} \add{approximation} scheme of the kernel density estimation (KDE) \cite{Bullmann-18}.
Many historical buildings, especially bigger ones like castles, monasteries or churches, are built of massive stone walls and have annexes from different historical periods out of different construction materials.
\del{This leads to problems} \add{This makes it more challenging to ensure good radio coverage of the entire building, especially} for technologies using received signal strengths indications (RSSI) from \docWIFI{} or Bluetooth.
\add{For methods requiring environmental knowledge, like the wall-attenuation-factor model, the high signal attenuation between different rooms causes further problems.}
Many unknown quantities, like the walls definitive material or thickness, make it expensive to determine important parameters, \eg{} the signal's depletion over distance.
Additionally, \del{most wireless} \add{many of these} approaches are based on a line-of-sight assumption.
Thus, the performance will be even more limited due to the irregularly shaped spatial structure of such buildings.
Our approach tries to avoid those problems using an optimization scheme for Wi-Fi based on a \del{few} \add{set of} reference measurements.
We distribute a \del{small number} \add{set} of \del{simple} \add{small (\SI{2.8}{\centi\meter} x \SI{3.5}{\centi\meter})} and cheap \add{($\sim \SI{10}{\$}$)} \docWIFI{} beacons over the whole building \add{to ensure a reasonable coverage} and instead of measuring their position \add{and necessary parameters, we use our optimization scheme, initially presented in \cite{Ebner-17}}.
\add{An optimization scheme is able to compensate for wrongly measured access point positions, inaccurate building plans or other knowledge necessary for the Wi-Fi component.
}
%An optimization scheme also avoids inaccuracies like wrongly measured access point positions or outdated fingerprints caused by changes of the environment or inaccurate building plans.
%\commentByFrank{warum fingerprints? das verwirrt mich an der stelle. willst du sagen, dass opt. besser ist, als ueberhaupt fingerprints zu nehmen? dann kommt es nicht so rueber. unsicher, deshalb kein direkter fix sondern comment}
\del{It is obvious, that} \add{Of course, } this could be solved by re-measuring the building, however this is a very time-consuming process requiring specialized hardware and a surveying engineer.
\add{Depending on the size of the building, such a complex and time-consuming process is} contrary to most costumers expectations of a fast to deploy \del{and low-cost} solution.
%
In addition, this is not just a question of \del{costs incurred} \add{initial effort}, but also for buildings under monumental protection, not allowing for larger construction measures.
\add{That is why the compact Wi-Fi beacons are a reasonable alternative to conventional access points for localization.
The access points of a classic Wi-Fi infrastructure are mostly mounted to the ceilings of the building to presume a cost efficient setting receiving the highest possible coverage.
However, this usually requires new cabling, e.g. an extra power over Ethernet connection.
In contrast, the beacons can simply be plugged into already existing power outlets and due to their low price they can be distributed in large quantities, if necessary.
In the here presented scenario, the beacons do not establish a wireless network and thus serve only to provide signal strengths.}
%To sum up, this work presents a smartphone-based localization system using.
To sum up, \add{this work presents an updated version of the winning localization system of the smartphone-based competition at IPIN 2016 \cite{Ebner-15}, including the improvements and newly developed methods that have been made since then \cite{Ebner-16, Ebner-17, Fetzer-17, Bullmann-18}.
This is the first time that all these previously acquired findings have been fully combined and applied simultaneously.
During the here presented update, the following novel contributions will be presented and added to the system:
\begin{itemize}
\item The pedestrian's movement is modelled in a more realistic way using a navigation mesh, based on the building's floorplan. This only allows movements that are actually feasible, e.g. no walking through walls. Compared to the gridded-graph structure we used before \cite{Ebner-16}, the mesh allows continuous transitions and reduces the required storage space drastically.
\item To enabled more smooth floor changes, a threshold-based activity recognition using barometer and accelerometer readings is added to the state evaluation process of the particle filter. The method is able to distinguish between standing, walking, walking up and walking down.
\item To address the problem of sample impoverishment in a wider scope, we present a simplification of our previous method \cite{Fetzer-17}. This reduces the overhead of adapting an existing system to the method and allows to incorporate it as independent component of the state transition of any approach using a general particle filter methodology.
\end{itemize}
}
%We then further omit time-consuming approaches like classic fingerprinting or measuring the exact positions of access points.
%Instead we use a simple optimization scheme based on reference measurements to estimate a corresponding \docWIFI{} model.
The goal of this work is to propose a fast to deploy \del{and low-cost} localization solution, that provides reasonable results in a high variety of situations.
Consequently, we believe that by utilizing our localization approach to such a challenging scenario, it is possible to prove those characteristics.
\add{Despite evaluating the novel contributions and the overall performance of the system, we have carried out additional experiments to determine the performance of our Wi-Fi optimization in such a complex scenario as well as a detailed comparison between KDE-based and weighted-average position estimation.}
%novel experiments to previous methods due to the complex scenario blah und blub.}
%Finally, it should be mentioned that the here presented work is an highly updated version of the winner of the smartphone-based competition at IPIN 2016 \cite{Ebner-15}.
\blfootnote{We would like to take this opportunity to thank Dr. Helmuth M\"ohring and all other employees of the Reichsstadtmuseum Rothenburg for the great cooperation and the provision of their infrastructure and resources. }

View File

@@ -0,0 +1,123 @@
\section{Particle Filtering}
As described earlier, we use a CONDENSATION particle filter to implement the recursive state estimator described in section \ref{sec:rse}.
A set of $N$ particles is defined by $\{\vec{X}^i_{t}, w^i_{t} \}_{i=1}^N$, where $\mParticleVec^{i}_{t}$ is sampled based on the state transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$.
The weight $w_t^i$ is obtained by the probability density of the state evaluation $p(\mObsVec_{t} \mid \mStateVec_{t})$.
A particle set approximates the posterior as follows:
\begin{equation}
p(\mStateVec_{t} \mid \mObsVec_{1:t}) \approx \sum^N_{i=1} w^i_t \delta_{\vec{X}^i_{t}}(\vec{q}_{t}) \enspace,
\label{eg:monteEstimation}
\end{equation}
\noindent where $\delta_{x_0}(x)$ denotes the Dirac delta mass located at $x_0$.
As one can imagine, after a few iterations with continuously reweighting particles, the weight will concentrate on a few particles only.
To handle this phenomenon of weight degeneracy, a resampling procedure is performed after every filter step \cite{robotics}.
\input{chapters/estimation}
\subsection{Sample Impoverishment}
\label{sec:impo}
As we have extensively discussed in \cite{Fetzer-17}, besides sample degeneracy, particle filters (and nearly all of its modifications) continue to suffer from another notorious problem: sample impoverishment.
It refers to a situation, in which the filter is unable to sample enough particles into proper regions of the building, caused by a high concentration of misplaced particles.
%Such situations are strongly influenced by the resampling step and most of all by restrictive transition models.
As described in section \ref{sec:relatedWork}, sample impoverishment is often a problem of environmental restrictions and system dynamics.
An example using the so far presented approach can be seen in fig. \ref{fig:multimodalPath}.
Due to uncertain measurements, the posterior distribution of the particle filter is captured within a room.
Between time $t-1$ and $t$, the resampling step abandons all particles on the corridor and drawing new particles outside the room is not possible due to the restricted transition.
At this point, standard filtering methods are not able to recover.
%
\begin{figure}[t]
\centering
\def\svgwidth{0.75\columnwidth}
\input{gfx/multimodalPath.eps_tex}
\caption[An example of the occurrence of sample impoverishment.]{
An example of the occurrence of sample impoverishment enhanced by a restrictive transition model that prevents sampling through walls. At time $t-1$ the approximated position (green line) drifts apart from the ground truth (black line) due to uncertain measurements. The posterior distribution is then captured within the room and not able to recover by itself \cite{Fetzer-17}. }
\label{fig:multimodalPath}
\end{figure}
%
%todo: umschreiben weng
The simplest solution to handle sample impoverishment is by drawing a handful new particles randomly in the building.
For this, we add a slight chance of \SI{0.01}{\percent} to the resampling step, so that every particle can be chosen for repositioning instead of the standard procedure.
A new position for those particles is then drawn uniformely from the underlying mesh.
It is obvious that this leads to a higher uncertainty and possibly a multimodal posterior distribution.
Additionally, very uncertain absolute measurements, like attenuated Wi-Fi signals, can cause unpredictable jumps to such a newly drawn position, which would otherwise not be possible.
Especially, methods using relative measurements like pedestrian dead reckoning are losing their importance.
Nevertheless, this method is very easy to implement and we expect that the system should be able to recover from nearly every situation regardless of the cause.
A second method we suggest within this paper is a simplified version of our approach presented in \cite{Fetzer-17}.
Here, we used an additional, very simple particle filter to monitor if our primary (localization) filter suffers from sample impoverishment.
If that is true, both filters are combined by exchanging particles among each other.
This allows the primary filter to recover, while retaining prior knowledge.
However, we believe that such a combination of two independent filters is not necessary for most scenarios and thus the resulting overhead can be avoided.
%neue methode:
For the simplified version we distribute \SI{10000}{} samples uniformly within the complete building to approximate $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ as presented in section \ref{sec:wifi}.
From the resulting probability grid $\probGrid_{t, \text{wifi}}$ we are able to identify the areas where the \docWIFI{} model assumes the pedestrian is most likely located.
Of course, this often results in a multimodal representation of the probability density and thus multiple possible whereabouts.
However, compared to the used particle filter, this representation enables us to monitor the complete building without any environmental restrictions and can thus be deployed as an indicator to detect sample impoverishment.
If $\probGrid_{t, \text{wifi}}$ and the current posterior $p(\mStateVec_{t} \mid \mObsVec_{1:t})$ show a significant difference, we can assume that either the posterior got stuck and suffers from impoverishment or the \docWIFI{} quality is low due to factors like attenuation or bad coverage.
A good measure of how one probability distribution differs from a second is the well-established Kullback-Leibler divergence $D_\text{KL}$ \cite{Fetzer-17}.
To calculate $D_\text{KL}$, we need to sample densities from both probability density functions likewise.
For the posterior we use the results provided by our \del{rapid} kernel density estimation performed in the state estimation procedure, while $\probGrid_{t, \text{wifi}}$ is already in the desired form.
%To handle $D_\text{KL}$ as probability, we use a positive exponential distribution
% \begin{equation}
% f(D_{\text{KL}}, \lambda) = e^{-\lambda D_{\text{KL}}}
% \enspace .
% \label{equ:KLD}
% \end{equation}
%
Using $D_\text{KL}$, we are now able to take countermeasures against sample impoverishment, depending on its size.
However, those countermeasures will only work reliable if the \docWIFI{} measurement noise is within reasonable limits.
Attenuated or bad \docWIFI{} readings are leading $D_\text{KL}$ to grow, even if the posterior provides good results.
For this, we introduce a \docWIFI{} quality factor, enabling us to identify such situations.
The quality factor is defined by
\begin{equation}
\newcommand{\leMin}{l_\text{min}}
\newcommand{\leMax}{l_\text{max}}
q(\mObsVec_t^{\mRssiVec_\text{wifi}}) =
\max \left(0,
\min \left(
\frac{
\bar\mRssi_\text{wifi} - \leMin
}{
\leMax - \leMin
},
1
\right)
\right)
%,\enskip
%\bar\mRssi_\text{wifi} = \frac{1}{n} \sum_{i = 1}^{n} \mRssi_i
\label{eq:wifiQuality}
\end{equation}
\noindent where $\bar\mRssi_\text{wifi}$ is the average of all signal strength measurements received from the observation $\mObsVec_t^{\mRssiVec_\text{wifi}}$. An upper and lower bound is given by $l_\text{max}$ and $l_\text{min}$.
The quality factor is extensively discussed within \cite{Ebner-17} and \cite{Fetzer-17}.
%\commentByMarkus{Nochmal eine second method, meintest du third? wenn nicht versteh ich den Satz hier oder oben nicht}
Finally, we have all necessary tools to implement the second method to prevent impoverishment into the particle filter.
For this, the state transition model is extended.
Compared to the resampling step, as used by the first method, the transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ enables us to use prior measurements, which is obviously necessary for all \docWIFI{} related calculations.
As described in chapter \ref{sec:transition}, our transition method only allows to sample particles at positions, that are actual feasible for a humans within a building e.g. no walking trough walls.
If a particle targets a position which is not walk-able e.g. behind a wall, we deploy a strategy how to handle this.
For example, drawing a new position within a very small, but reachable area around the particle's current position.
%
%Instead of such a small area or even the complete building, as suggested in method one, we now define a sphere.
To prevent sample impoverishment we extend this transition strategy by making the reachable area depended upon $D_\text{KL}$ and the \docWIFI{} quality factor.
Particles are thus drawn uniformly on a sub-region of the mesh, given by a radius $r_\text{sub} = D_\text{KL} \cdot q(\mObsVec_t^{\mRssiVec_\text{wifi}})$.
The sub-region consists of all walk-able and connected triangles within $r_\text{sub}$, including stairs and elevators.
%\todo{radius ist falsch! all connected triangles... warte aber noch aufs franks transition teil.}
%The radius is given by $D_\text{KL} \cdot q(\mObsVec_t^{\mRssiVec_\text{wifi}})$ and particles are drawn uniformly on the mesh enclosed by the sphere.
This allows to increase the diversity of particles by the means of \docWIFI{}, allowing to ignore any restrictions made by the system, as long as the difference between $\probGrid_{t, \text{wifi}}$ and the posterior is high.
The subsequent evaluation step of the particle filter then reweights the particles, so that only those in proper regions will survive the resampling.
To further improve the method we give particles a chance of \SI{0.01}{\percent} to walk trough a nearby wall, if the destination is not outside.
This enables to handle sample impoverishment more quickly in situations caused by environmental restrictions, even when the \docWIFI{} quality is low.
Especially in areas full of nooks an crannies, the vulnerability to errors should be decreased.
%In most cases $\lambda$ tends to be somewhere between \SI{0.01}{} and \SI{0.10}{}.

View File

@@ -0,0 +1,108 @@
\section{Related Work}
\label{sec:relatedWork}
We consider indoor localization to be a time-sequential, non-linear and non-Gaussian state estimation problem.
Such problems are often solved using Bayesian filters, which update a state estimation recursively
with every new incoming measurement.
A powerful group of methods to obtain numerical results for this approach are particle filter.
In context of indoor localization, particle filter approximate a probability distribution describing the pedestrian's possible whereabouts by using a set of weighted random samples (particles).
Here, new particles are drawn according to some importance distribution, often represented by the state transition, which models the dynamics of the system.
%\todo{statt dynamics of the system vlt: the pedestrian's movement?}
Those particles are then weighted by the state evaluation given different sensor measurements.
A resampling step is deployed to prevent that only a small number of particles have a significant weight \cite{chen2003bayesian}.
Most localization approaches differ mainly in how the transition and evaluation steps are implemented and the sensors are incorporated \cite{Fetzer-16, Ebner-16, Hilsenbeck2014}.
%\todo{hier ist irgendwie ein harter cut zu dem nächsten satz}
%Additionally, within this paper we present a method, which is designed to run solely on a commercial smartphone.
%In its most basic form, the state transition is given by.. einfach distanz und heading.. intersection with walls usw.
%\todo{nochmal mit frank klären was wir jetzt GENAU machen.}
The system's dynamics describe a pedestrian's potential movement within the building.
This can be formulated as the question \emph{``Given the pedestrian's current position and heading are known, where could he be after a certain amount of time?''}.
Obviously, the answer to this question depends on the pedestrian's walking behavior, any nearby architecture and thus the building's floorplan.
%
Assuming the pedestrian to walk almost straight towards his current heading with a known, constant walking speed, the most basic form of state transition simply rejects all movements, where the line-of-sight between current position and potential destination is blocked by an obstacle \cite{Ebner-15}.
%
Despite its simplicity, this approach suffers from several drawbacks.
The intersection-test can be costly, depending on the number of used particles and the complexity of the building.
Furthermore, it is limited mainly to 2D transitions within the plane.
Smooth 3D transitions, like walking stairs, would require much more complex intersection tests \cite{Afyouni2012}.
To overcome both limitations, the building's floorplan can be used to derive a graph-based structure, like voronoi diagrams or fixed-distance grids, moving all costly intersection tests into a one-time offline phase \cite{Ebner-16, Hilsenbeck2014}.
Hereafter, graph-based random walks along the created data-structure can be used as a fast transition approximation.
Smooth transitions in 3D space can be achieved by generating nodes and edges along stairs and elevators.
Furthermore, the nodes can be used to store additional information, like their distance towards a pedestrian's desired destination.
Such information can be included during the transitions step, \eg{} increasing the likelihood of all potential movements that approach this destination \cite{Ebner-16}.
However, the graph-based approach also imposes some potential issues. When using a gridded graph, the spacing between adjacent
nodes directly represents the transition's accuracy. Likewise, the amount of required memory to represent the floorplan
scales about quadratically with this spacing. Even though nodes/edges are only created for actually walkable areas (like a sparse cube),
large buildings require millions of nodes and might not fit into memory at once.
Furthermore, (large) outdoor regions between adjacent buildings require unnecessarily large amounts
of memory to be modeled \cite{Afyouni2012}. While voronoi diagrams have the ability to mitigate this issue to some degree,
they usually suffer from reduced accuracy for large open spaces, as many implementations only use the edges to estimate potential movements \cite{Hilsenbeck2014}.
We therefore present a novel technique based on continuous walks along a navigation mesh.
Like the graph, the mesh, consisting of triangles sharing adjacent edges,
is created once during an offline phase, based on the building's 3D floorplan.
Using large triangles reduces the memory footprint dramatically (a few megabytes for large buildings)
while still increasing the quality (triangle-edges directly adhere to architectural-edges) and allows
for truly continuous transitions along the surface spanned by all triangles.
%eval - wifi, fingerprinting
The outcomes of the state evaluation process depend highly on the used sensors.
Most smartphone-based systems are using received signal strength indications (RSSI) given by \docWIFI{} or Bluetooth as a source for absolute positioning information.
At this, one can mainly distinguish between fingerprinting and signal-strength prediction model based solutions \cite{Ebner-17}.
Indoor localization using \docWIFI{} fingerprints was first addressed by \cite{radar}.
During a one-time offline-phase, a multitude of reference measurements are conducted.
During the online-phase the pedestrian's location is then inferred by comparing those prior measurements against live readings.
Based on this pioneering work, many further improvements where made within this field of research \cite{PropagationModelling, ProbabilisticWlan, meng11}.
However, despite a very high accuracy up to \SI{1}{\meter}, fingerprinting approaches suffer from tremendous setup- and maintenance times.
Using robots instead of human workforce might thus be a viable choice, still this seems not to be a valid option for old buildings with limited accessibility due to uneven grounds and small stairs.
%wifi, signal strength
Signal strength prediction models are a well-established field of research to determine signal strengths for arbitrary locations by using an estimation model instead of real measurements.
While many of them are intended for outdoor and line-of-sight purposes \cite{PredictingRFCoverage, empiricalPathLossModel}, they are often applied to indoor use-cases as well \cite{Ebner-17, farid2013recent}.
Besides their solid performance in many different localization solutions, a complex scenario requires an equally complex signal strength prediction model.
As described in section 1, historical buildings represent such a scenario and thus the model has to take many different constraints into account.
An example is the wall-attenuation-factor model \cite{PathLossPredictionModelsForIndoor}.
It introduces an additional parameter to the well-known log-distance model \cite{IntroductionToRadio}, which considers obstacles between (line-of-sight) the access point (AP) and the location in question by attenuating the signal with a constant value.
Depending on the use-case, this value describes the number and type of walls, ceilings, floors etc. between both positions.
For obstacles, this requires an intersection-test of each obstacle with the line-of-sight, which is costly for larger buildings.
Thus \cite{Ebner-17} suggests to only consider floors/ceilings, which can be calculated without intersection checks and allows for real-time use-cases running on smartphones.
%wifi optimization
To further reduce the setup-time, \cite{WithoutThePain} introduces an approach that works without any prior knowledge.
They use a genetic optimization algorithm to estimate the parameters for a signal strength prediction, including access point positions, and the pedestrian's locations during the walk.
The estimated parameters can be refined using additional walks.
Within this work we present a similar optimization approach for estimating the AP's location in 3D.
However, instead of taking multiple measuring walks, the locations are optimized based only on some reference measurements, further decreasing the setup-time.
Additionally, we will show that such an optimization scheme can partly compensate for the above abolished intersection-tests.
%immpf
Besides well chosen probabilistic models, the system's performance is also highly affected by handling problems which are based on the nature of \add{a} particle filter.
They are often caused by restrictive assumptions about the dynamic system, like seen from the aforementioned problem of sample impoverishment.
The authors of \cite{Sun2013} handled the problem by using an adaptive number of particles instead of a fixed one.
The key idea is to choose a small number of samples if the distribution is focused on a small part of the state space and a large number of particles if the distribution is much more spread out and requires a higher diversity of samples.
The problem of sample impoverishment is then addressed by adapting the number of particles dependent upon the system's current uncertainty \cite{Fetzer-17}.
%\commentByFrank{ich glaube encountered ist das falsche wort. du willst doch auf 'es wird gefixed' raus, oder? addressed? mitigated?}
In practice, sample impoverishment is often a problem of environmental restrictions and system dynamics.
Therefore, the method above fails, since it is not able to propagate new particles into the state space due to environmental restrictions e.g. walls or ceilings.
In \cite{Fetzer-17} we deployed an interacting multiple model particle filter (IMMPF) to solve sample impoverishment in such restrictive scenarios.
We combine two particle filter using a non-trivial Markov switching process, depending upon the Kullback-Leibler divergence between both.
However, deploying an IMMPF is in many cases not necessary and produces additional processing overhead.
Thus, a much simpler, but heuristic method is presented within this paper.
%estimation
Finally, as the name recursive state estimation says, it requires to find the most probable state within the state space, to provide the "best estimate" of the underlying problem.
In the discrete manner of a particle representation this is often done by providing a single value, also known as sample statistic, to serve as a best guess \cite{Bullmann-18}.
Examples are the weighted-average over all particles or the particle with the highest weight.
However, in complex scenarios like a multimodal representation of the posterior, such methods fail to provide an accurate statement about the most probable state.
Thus, in \cite{Bullmann-18} we present a \del{rapid computation} \add{approximation} scheme of kernel density estimates (KDE).
Recovering the probability density function using an efficient KDE algorithm yields a promising approach to solve the state estimation problem in a more profound way.

View File

@@ -0,0 +1,39 @@
\section{Recursive State Estimation}
\label{sec:rse}
We consider indoor localization to be a time-sequential, non-linear and non-Guassian state estimation problem.
The filtering equation to calculate the posterior is given by the recursion
\begin{equation}
\arraycolsep=1.2pt
\begin{array}{ll}
&p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\
&\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}}
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}}
\end{array}
\enspace ,
\label{equ:bayesInt}
\end{equation}
\noindent where $\mStateVec_t$ is the hidden state and $\mObsVec_t$ provides the corresponding observation vector at time $t$.
As realization of \eqref{equ:bayesInt} we use the well-known CONDENSATION particle filter \cite{Isard98:CCD}.
Here, the transition is used as proposal distribution and a resampling step is utilized to handle the phenomenon of weight degeneracy.
The state $\mStateVec$ is given by
\begin{equation}
\mStateVec = (x, y, z, \mStateHeading),\enskip
x, y, z, \mStateHeading \in \R \enspace,
\end{equation}
\noindent where $x, y, z$ represent the position in 3D space and $\mStateHeading$ is the user's current (absolute) heading.
In context of particle filtering, a particle is thus a weighted representation of one possible state $\mStateVec$.
The observation vector is defined as
\begin{equation}
\mObsVec = (\mRssiVec_\text{wifi}, \mObsHeading, \mObsSteps, \mObsActivity) \enspace .
\end{equation}
\noindent Here, $\mRssiVec_\text{wifi}$ contains the signal strength measurements of all \docAP{}s currently visible to the phone. $\mObsHeading$ provides the relative angular change and $\mObsSteps$ the number of steps since the last filter-step.
The result of a simple activity recognition using the phone's barometer and acceleromter is given by $\mObsActivity$, which is one of: "standing", "walking", "walking up" or "walking down".

View File

@@ -0,0 +1,139 @@
\section{Transition}
\label{sec:transition}
\begin{figure}[t]
\centering
\begin{subfigure}{0.325\textwidth}
\centering
\includegraphics[width=5.1cm]{gfx/transition/museumMap.pdf}
\caption{3D Floorplan}
\label{fig:museumMap}
\end{subfigure}
\begin{subfigure}{0.325\textwidth}
\centering
\includegraphics[width=5.1cm]{gfx/transition/museumMapGrid.pdf}
\caption{Navigation graph}
\label{fig:museumMapGrid}
\end{subfigure}
\begin{subfigure}{0.325\textwidth}
\centering
\includegraphics[width=5.1cm]{gfx/transition/museumMapMesh.pdf}
\caption{Navigation mesh}
\label{fig:museumMapMesh}
\end{subfigure}
\caption{
Floorplan and transition data structures for the ground floor of the building (\SI{71}{\meter}~x~\SI{53}{\meter}).
To reach every nook and cranny, the graph based approach (b) requires many nodes and edges.
The depicted version uses a coarse node-spacing of \SI{90}{\centi\meter} (1700 nodes) and barely reaches all doors and stairs.
A navigation mesh (c) requires only 320 triangles to tightly reach every corner within the building.
}
\label{fig:transition}
\end{figure}
Within previous works, we used a graph of equidistant nodes (see \reffig{fig:museumMapGrid})
to model the buildings floorplan, representing the basis for the transition step \cite{Ebner-15, Ebner-16}.
% in 15 und 16 haben wir stueckweise den graph eingefuhert
%
The graph equals a grid, where each node constitutes the center of a grid-cell.
Cells, usually around \SI{30} x \SI{30}{\centi\meter} in size,
are only placed in regions that are actually walkable and not intersected by any walls
or other obstacles. After placement, each cell is connected with their, up to 8, potential
neighbors in the plane, creating a walkable graph for each floor. The resulting graphs are
hereafter connected via stairs or elevators, to form the final data structure
for the whole building.
This allowes for (semi-)random walks along the graph, by assigning probabilities to each edge,
using prior knowledge provided by sensors, forming the transition probability
$p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ \cite{Ebner-16}.
Due to the equidistant spacing, the resulting graph was rather rigid and
only well-suited for rectangular buildings. For more contorted buildings, like many
historic ones, the node-spacing needs to be small, to reliably reach every door, stair
and corner of the building. Within \reffig{fig:museumMapGrid} we used a
\SI{90}{\centi\meter} spacing, that is barely able to reach all places within
the lower floors of the building, and failing to connect the upper floors reliably.
While using smaller spacings remedies the problem, it requires huge amounts of memory:
up to several hundred megabytes and millions of nodes and edges to model a single building.
% musuem aus figure: 90cm grid : ca 2000 nodes, ca 6500 edges
% museum aus figure: 30cm grid : ca 32k nodes und 120k edges
% museum ganz, 20cm grid : ca 75k nodes, 280k edges
Because of both, required memory amounts and inaccuracies of the graph-based
model, we developed a new basis for the transition step, that is still able to answer
$p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$.
The new foundation is provided by well-known navigation meshes \cite{navMesh1}
where the walkable area is spanned by convex polygons, sharing
their outline edges. Each polygon knows its adjacent
neighbors, creating a walkable mesh.
Using variable shaped/sized elements instead of rigid grid-cells
provides both, higher accuracy for reaching every corner, and a reduced
memory footprint as a single polygon is able to cover arbitrarily
large regions. However, polygons impose several drawbacks on
common operations used within the transition step, like checking whether
a point is contained within some region. This is much more costly for polygons
compared to grid-cells, which are axis-aligned rectangles.
% museum aus figure: 305 3-ecke
% museum ganz : 789 fuer alles
%
Such issues can be mitigated by using triangles instead of polygons, depicted within \reffig{fig:museumMapMesh}.
Doing so, each element within the mesh has exactly three edges and a maximum of three neighbors.
While this usually requires some additional memory, as more triangles are need compared to polygons,
operations, such as aforementioned contains-check, can now easily be performed,
\eg{} by using barycentric coordinates.
\newcommand{\turnNoise}{\mathcal{T}}
\newcommand{\stepSize}{\mathcal{S}}
This data structure yields room for various strategies to be applied within the transition step.
The most simple approach uses an average pedestrian step size together with the
number of detected steps $\mObsSteps$ and change in heading $\mObsHeading$
gathered from sensor observations $\mObsVec_{t-1}$.
Combined with previously estimated position $(x,y)^T$ and heading $\mStateHeading$
%from $\mStateVec_{t-1}$
, including uncertainties for step-size $\stepSize$
and turn-angle $\turnNoise$,
this directly defines new potential whereabouts
$p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$:
\begin{equation}
\begin{aligned}
x_t &=& \overbrace{x_{t-1}}^{\text{old pos.}}& & &+& \overbrace{\mObsSteps \cdot \stepSize}^{\text{distance}}& & &\cdot& \overbrace{\cos(\mStateHeading_{t})}^{\text{direction}}& & ,\enskip \turnNoise &\sim \mathcal{N}(\mObsHeading, \sigma_\text{turn}^2) \\
y_t &=& y_{t-1}\phantom{.}& & &+& \mObsSteps \cdot \stepSize& & &\cdot& \sin(\mStateHeading_{t})& & ,\enskip \stepSize &\sim \mathcal{N}(\SI{70}{\centi\meter}, \sigma_\text{step}^2) \\
\mStateHeading_{t} &=& \mStateHeading_{t-1} + \turnNoise\\
\end{aligned}
\end{equation}
\noindent{}with
\begin{equation*}
\mObsSteps,\mObsHeading \in \mObsVec_{t-1}
\enskip\enskip\enskip
\text{and}
\enskip\enskip\enskip
x_{t-1},y_{t-1},\mStateHeading_{t-1} \in \mStateVec_{t-1}
\enskip.
\end{equation*}
Whether the newly obtained destination $(x_t, y_t)^T$ is actually reachable from the start $(x_{t-1}, y_{t-1})^T$ can be determined
by checking if their corresponding triangles are connected with each other.
If so, the corresponding $z_t$ can be interpolated using the barycentric coordinates of $(x_t, y_t)^T$
within a 2D projection of the triangle the position belongs to and applying them to the original 3D triangle.
If the destination is unreachable,
\eg{} due to walls or other obstacles. Those occurrences demand for different handling strategies. Simply trying again might
be a viable solution, as uncertainty induced by $\turnNoise$ and $\stepSize$ will yield a slightly different destination
that might be reachable. Increasing $\sigma_\text{step}$ and $\sigma_\text{turn}$ for those cases might also be a viable choice.
Likewise, just using some random position, omitting heading/steps might be viable as well.
The detected steps $\mObsSteps$ and the heading change $\mObsHeading$ are obtained using the smartphone's IMU.
To provide a robust heading change, we first need to rotate the gyroscope onto the east-north-up frame using a suitable transformation matrix.
After the rotation, integrating over the gyros $z$-axis for a predefined time interval provides the users heading change (yaw) \cite{Ebner-15}.
To obtain the matrix in the first place, we assume that the acceleration during walking is cyclic and thus the average acceleration over several cycles has to be almost zero.
This enables to measure the direction of gravity and use it to construct the transformation matrix.
It should be noted, that especially for cheap IMUs, as they can be found in most smartphones, the matrix has to be updated at very short intervals of one or two seconds to preserve good results \cite{davidson2017survey}.
To receive the number of steps, we use a very simple step detection based on the accelerometer magnitude.
For this, we calculated the difference between the average magnitude over the last \SI{200}{\milli\second} and the gravity vector.
If this difference is above a certain threshold ($> \SI{0.32}{\m\per\square\s}$), a step is detected.
To prevent multiple detections within an unrealistic short interval, we block the complete process for \SI{250}{\milli\second} \cite{Koeping14}.
Of course, there are much more advanced methods as surveyed in \cite{davidson2017survey}, however this simple method has served us very well in the past.
%\commentByFrank{es gaebe noch ganz andere ansaetze etc. aber wir haben wohl nicht mehr genug platz :P}
%\commentByToni{ich denke aber auch, es langt.}

1682
tex_review/chicago2.bst Executable file

File diff suppressed because it is too large Load Diff

2976
tex_review/egbib.bib Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,318 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.15.10 (http://cairographics.org)
%%CreationDate: Thu Sep 20 12:44:32 2018
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 266 144
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 266 144
%%EndPageSetup
q 0 0 266 144 rectclip
1 0 0 -1 0 144 cm q
0 g
0.25 w
0 J
0 j
[] 0.0 d
3.8 M q 1 0 0 -1 0 0 cm
29.699 -108.801 m 32.852 -108.801 l 246.551 -108.801 m 243.398 -108.801
l S Q
q 1 0 0 -1 0 0 cm
29.699 -96.852 m 32.852 -96.852 l 246.551 -96.852 m 243.398 -96.852 l S Q
q 1 0 0 -1 0 0 cm
29.699 -84.898 m 32.852 -84.898 l 246.551 -84.898 m 243.398 -84.898 l S Q
q 1 0 0 -1 0 0 cm
29.699 -72.949 m 32.852 -72.949 l 246.551 -72.949 m 243.398 -72.949 l S Q
q 1 0 0 -1 0 0 cm
29.699 -61 m 32.852 -61 l 246.551 -61 m 243.398 -61 l S Q
q 1 0 0 -1 0 0 cm
29.699 -49.102 m 32.852 -49.102 l 246.551 -49.102 m 243.398 -49.102 l S Q
q 1 0 0 -1 0 0 cm
29.699 -37.148 m 32.852 -37.148 l 246.551 -37.148 m 243.398 -37.148 l S Q
q 1 0 0 -1 0 0 cm
29.699 -25.199 m 32.852 -25.199 l 246.551 -25.199 m 243.398 -25.199 l S Q
q 1 0 0 -1 0 0 cm
29.699 -13.25 m 32.852 -13.25 l 246.551 -13.25 m 243.398 -13.25 l S Q
q 1 0 0 -1 0 0 cm
29.699 -108.801 m 29.699 -105.648 l 29.699 -13.25 m 29.699 -16.398 l S Q
q 1 0 0 -1 0 0 cm
60.699 -108.801 m 60.699 -105.648 l 60.699 -13.25 m 60.699 -16.398 l S Q
q 1 0 0 -1 0 0 cm
91.648 -108.801 m 91.648 -105.648 l 91.648 -13.25 m 91.648 -16.398 l S Q
q 1 0 0 -1 0 0 cm
122.648 -108.801 m 122.648 -105.648 l 122.648 -13.25 m 122.648 -16.398
l S Q
q 1 0 0 -1 0 0 cm
153.602 -108.801 m 153.602 -105.648 l 153.602 -13.25 m 153.602 -16.398
l S Q
q 1 0 0 -1 0 0 cm
184.602 -108.801 m 184.602 -105.648 l 184.602 -13.25 m 184.602 -16.398
l S Q
q 1 0 0 -1 0 0 cm
215.551 -108.801 m 215.551 -105.648 l 215.551 -13.25 m 215.551 -16.398
l S Q
q 1 0 0 -1 0 0 cm
246.551 -108.801 m 246.551 -105.648 l 246.551 -13.25 m 246.551 -16.398
l S Q
q 1 0 0 -1 0 0 cm
29.699 -13.25 216.852 -95.551 re S Q
0.780392 g
0.75 w
q 1 0 0 -1 0 0 cm
225.25 -21.898 m 233.352 -21.898 l 31.852 -94.301 m 33.051 -91.5 l 34 -88.699
l 34.949 -92.801 l 35.898 -98.699 l 36.801 -103.199 l 37.699 -104.648 l
38.801 -105.352 l 39.5 -104.648 l 40.5 -99.148 l 41.25 -100.398 l 42.398
-99 l 43.352 -95.199 l 44.25 -93.25 l 45.551 -89.949 l 46.5 -98.051 l 47.352
-96.602 l 48 -98.051 l 48.75 -98.699 l 49.551 -96.898 l 50.5 -95.398 l
51.352 -94.602 l 52.102 -93.102 l 53.051 -91.551 l 53.949 -90.949 l 54.898
-89.352 l 55.801 -87.648 l 56.648 -86.301 l 57.551 -84.148 l 58.449 -82.602
l 59.398 -79.898 l 60.398 -78.199 l 61.199 -77.551 l 62.25 -75.699 l 63.148
-73.602 l 64.148 -71.301 l 65 -69.852 l 65.949 -67.602 l 66.898 -65.398
l 67.949 -62.301 l 68.75 -59.648 l 69.801 -57.25 l 70.648 -56.5 l 71.551
-55.75 l 72.449 -54.199 l 73.449 -53.801 l 74.449 -51.449 l 75.301 -48.801
l 76.25 -46.602 l 77.199 -45 l 78.148 -44 l 79.051 -42.551 l 80 -41.648
l 81.051 -39.801 l 81.801 -39.898 l 82.898 -37.449 l 83.648 -36.148 l 84.75
-33.699 l 85.449 -30.551 l 86.398 -29.699 l 87.301 -26.801 l 88.352 -28.352
l 89.148 -27.051 l 90.199 -24.648 l 91.051 -24.699 l 92.102 -23.398 l 93
-22.648 l 94 -21.352 l 94.949 -22.602 l 96 -24.551 l 97.102 -25.051 l 98.25
-26.898 l 98.949 -26.25 l 99.949 -30.25 l 100.852 -30.5 l 101.898 -31.852
l 102.75 -34.801 l 103.551 -37.301 l 104.551 -39.898 l 105.352 -40.801
l 106.301 -40.25 l 107.25 -41.852 l 108.199 -44.398 l 109.25 -45.102 l 110
-45.25 l 110.949 -48.051 l 111.898 -50.5 l 112.898 -53.352 l 113.648 -54.102
l 114.551 -56.398 l 115.5 -58.148 l 116.398 -59.102 l 117.301 -61.102 l
118.398 -62.051 l 119.199 -62.699 l 120.051 -63.648 l 120.898 -63.449 l
121.852 -61.852 l 122.852 -60.75 l 123.75 -60 l 124.801 -59.352 l 125.801
-59.199 l 127.648 -60.051 l 128.699 -60 l 129.648 -60.5 l 130.648 -54 l
131.602 -57 l 132.602 -55.352 l 133.551 -55.25 l 134.5 -53.301 l 135.449
-52.301 l 136.398 -50.949 l 137.449 -49.199 l 138.148 -49 l 139.102 -47.602
l 140.102 -45.602 l 140.949 -44.398 l 141.852 -38.648 l 143.148 -37 l 143.852
-50.148 l S Q
q 1 0 0 -1 0 0 cm
143.852 -50.148 m 145 -74.398 l 145.699 -72.5 l 146.551 -70.301 l 147.398
-68.199 l 148.551 -66.25 l 149.398 -65.852 l 150.148 -67.301 l 151.051
-67.75 l 151.898 -67.551 l 152.648 -66.199 l 153.398 -84.148 l 154.199 -70
l 154.852 -81.398 l 155.602 -82.25 l 156.301 -86.25 l 156.949 -92.5 l 157.648
-96.602 l 158.449 -98.301 l 159.25 -99.5 l 160 -99.398 l 160.75 -100 l
161.5 -100.352 l 162.352 -100.148 l 163.199 -100.051 l 164 -100.551 l 164.801
-100.449 l 165.551 -100.852 l 166.25 -101.148 l 166.949 -101 l 167.602
-102.398 l 168.199 -102.602 l 168.949 -104.301 l 169.699 -104.699 l 170.301
-105.449 l 171.051 -104.898 l 171.898 -103.699 l 172.551 -102.898 l 173.5
-101.148 l 174.602 -99.602 l 175.551 -98.5 l 176.5 -100.102 l 177.5 -98.898
l 178.5 -101.25 l 179.449 -103.25 l 180.352 -104.852 l 181.301 -105.75
l 182.25 -106.301 l 183.199 -106.551 l 184.148 -107.051 l 185.199 -107.551
l 186.148 -107.148 l 187.102 -106.5 l 188.148 -107.449 l 188.898 -107.551
l 189.75 -107.352 l 190.648 -107 l 191.75 -98.25 l 192.551 -94.5 l 193.5
-96.648 l 194.25 -97.949 l 195.301 -108.051 l 196.148 -107.75 l 196.898
-107.449 l 197.852 -108.148 l 198.852 -106.898 l 199.648 -106.852 l 200.602
-106.602 l 201.352 -106.898 l 202.25 -106.75 l 203.25 -106.398 l 204.199
-106.5 l 205.898 -106.5 l 206.75 -106.301 l 207.602 -106.5 l 208.5 -106.75
l 209.449 -106.352 l 210.199 -106.602 l 211.199 -106.801 l 212 -106.648
l 212.898 -107.25 l 213.699 -107.648 l 214.699 -106.75 l 215.551 -108.199
l 216.449 -107.801 l 217.199 -107.699 l 218.352 -105.449 l 219.352 -104.352
l 220.102 -106.852 l 220.898 -107.699 l 222.148 -106.801 l 223.301 -105.5
l 224.25 -104.852 l 224.949 -105 l 225.898 -102.301 l 226.75 -101 l 227.5
-100.551 l 228.25 -99.301 l 228.898 -98.852 l 229.551 -97.699 l 230.301
-96.648 l 231.102 -95 l 232.051 -92.898 l 232.801 -90.699 l S Q
q 1 0 0 -1 0 0 cm
232.801 -90.699 m 233.648 -88.699 l 234.602 -86.5 l 235.5 -84.051 l 236.398
-81.898 l 237.398 -84.898 l 238.398 -84.301 l 239.301 -83.352 l 240.301
-83.648 l 241.301 -82.852 l 242.102 -81.648 l 243 -83.801 l 243.898 -84.648
l 245 -84.051 l 245.75 -84 l S Q
0.2 0.4 0.639216 rg
q 1 0 0 -1 0 0 cm
225.25 -32.898 m 233.352 -32.898 l 31.852 -94.102 m 33.051 -93.949 l 34
-91.75 l 34.949 -95.398 l 35.898 -97.699 l 36.801 -98.5 l 37.699 -97.5
l 38.801 -106.051 l 39.5 -103.148 l 40.5 -98.551 l 41.25 -96.102 l 42.398
-95.648 l 43.352 -95.199 l 44.25 -93.699 l 45.551 -90.398 l 46.5 -97.352
l 47.352 -97.148 l 48 -96.75 l 48.75 -96.852 l 49.551 -95.602 l 50.5 -95.398
l 51.352 -94.5 l 52.102 -93.102 l 53.051 -91.551 l 53.949 -90.051 l 54.898
-89.148 l 55.801 -87.648 l 56.648 -86.301 l 57.551 -84.801 l 58.449 -83.25
l 59.398 -80.602 l 60.398 -78.852 l 61.199 -77.449 l 62.25 -75.699 l 63.148
-74.301 l 64.148 -71.301 l 65 -69.852 l 65.949 -67.648 l 66.898 -66 l 67.949
-61.648 l 68.75 -60.301 l 69.801 -57.898 l 70.648 -56.5 l 71.551 -55.699
l 72.449 -54.102 l 73.449 -52.5 l 74.449 -52.102 l 75.301 -48.852 l 76.25
-46.602 l 77.199 -45.051 l 78.148 -44.148 l 79.051 -43.398 l 80 -86.398
l 81.051 -90.352 l 81.801 -90.75 l 82.898 -91.051 l 83.648 -91.051 l 84.75
-90.699 l 85.449 -91.449 l 86.398 -91.25 l 87.301 -91.699 l 88.352 -91.949
l 89.148 -92.051 l 90.199 -92.25 l 91.051 -93.75 l 92.102 -94.352 l 93
-93.602 l 94 -92.898 l 94.949 -93.75 l 96 -93.75 l 97.102 -93.699 l 98.25
-94.199 l 98.949 -93.398 l 99.949 -94.602 l 100.852 -95.551 l 101.898 -94.75
l 102.75 -95.648 l 103.551 -95.699 l 104.551 -95.551 l 105.352 -95.602
l 106.301 -95.801 l 107.25 -96.699 l 108.199 -96.852 l 109.25 -97.25 l 110
-96.398 l 110.949 -95.551 l 111.898 -95.602 l 112.898 -95.301 l 113.648
-95.301 l 114.551 -95.199 l 115.5 -94.75 l 116.398 -95.648 l 117.301 -93.148
l 118.398 -93.5 l 119.199 -92.852 l 120.051 -93.352 l 120.898 -93.648 l
121.852 -92.352 l 122.852 -91.398 l 123.75 -89.301 l 124.801 -89.551 l
125.801 -87.852 l 127.648 -85.602 l 128.699 -86.25 l 129.648 -86.051 l 130.648
-89.199 l 131.602 -97.898 l 132.602 -99.25 l 133.551 -99.5 l 134.5 -102.102
l 135.449 -70.352 l 136.398 -65 l 137.449 -63.25 l 138.148 -63.352 l 139.102
-63.051 l 140.102 -63.449 l 140.949 -63.102 l 141.852 -63.648 l 143.148
-83.301 l 143.852 -99.648 l S Q
q 1 0 0 -1 0 0 cm
143.852 -99.648 m 145 -101.148 l 145.699 -101.449 l 146.551 -101.25 l 147.398
-101.551 l 148.551 -97.801 l 149.398 -84.5 l 150.148 -83.898 l 151.051
-85.102 l 151.898 -86.301 l 152.648 -88.5 l 153.398 -82.398 l 154.199 -83.648
l 154.852 -95.051 l 155.602 -95.852 l 156.301 -98.301 l 156.949 -99.449
l 157.648 -101.25 l 158.449 -102.25 l 159.25 -104.301 l 160 -97.5 l 160.75
-97.949 l 161.5 -98.301 l 162.352 -98.199 l 163.199 -100.602 l 164 -100.352
l 164.801 -99.301 l 165.551 -99.602 l 166.25 -99 l 166.949 -100.801 l 167.602
-102.398 l 168.199 -102.75 l 168.949 -104.5 l 169.699 -104.551 l 170.301
-105.398 l 171.051 -104.949 l 171.898 -103.75 l 172.551 -102.852 l 173.5
-101.301 l 174.602 -99.898 l 175.551 -99.148 l 176.5 -100.75 l 177.5 -100.051
l 178.5 -102.199 l 179.449 -104.051 l 180.352 -104.852 l 181.301 -105.949
l 183.199 -105.949 l 184.148 -106.602 l 185.199 -107.051 l 186.148 -107.148
l 187.102 -107.648 l 188.148 -106.551 l 188.898 -107 l 189.75 -107.25 l
190.648 -105.699 l 191.75 -95.301 l 192.551 -93.75 l 193.5 -92.449 l 194.25
-96.5 l 195.301 -107.199 l 196.148 -107.5 l 196.898 -106.5 l 197.852 -107.352
l 198.852 -107.5 l 199.648 -106.852 l 200.602 -106.898 l 201.352 -106.898
l 202.25 -106.75 l 203.25 -106.398 l 204.199 -106.5 l 204.898 -106.898
l 205.898 -106.352 l 206.75 -106.648 l 207.602 -107.398 l 208.5 -106.75
l 209.449 -106.352 l 210.199 -106.301 l 211.199 -106.051 l 212 -106.648
l 212.898 -106.801 l 213.699 -107.148 l 214.699 -107.102 l 215.551 -107
l 216.449 -106.602 l 217.199 -107.102 l 218.352 -105.602 l 219.352 -104
l 220.102 -107.102 l 220.898 -107.051 l 222.148 -106.449 l 223.301 -105.398
l 224.25 -105.199 l 224.949 -104.5 l 225.898 -102.852 l 226.75 -101.699
l 227.5 -100.5 l 228.25 -99.852 l 228.898 -98.699 l 229.551 -97.25 l 230.301
-96.199 l 231.102 -94.25 l 232.051 -91.5 l 232.801 -89.852 l S Q
q 1 0 0 -1 0 0 cm
232.801 -89.852 m 233.648 -87.75 l 234.602 -89.699 l 235.5 -88.199 l 236.398
-84.352 l 237.398 -84.301 l 238.398 -84.199 l 239.301 -84.352 l 240.301
-83.398 l 241.301 -82.398 l 242.102 -81 l 243 -84.602 l 243.898 -84.648
l 245 -84.602 l 245.75 -85.102 l S Q
0.992157 0.690196 0.239216 rg
q 1 0 0 -1 0 0 cm
225.25 -43.898 m 233.352 -43.898 l 31.852 -94 m 33.051 -92.602 l 34 -90.199
l 34.949 -93.148 l 35.898 -97.199 l 36.801 -98.75 l 37.699 -105.148 l 38.801
-104.602 l 39.5 -103.148 l 40.5 -102.801 l 41.25 -98.301 l 42.398 -97.051
l 43.352 -94.699 l 44.25 -92.75 l 45.551 -96.75 l 46.5 -96.699 l 47.352
-97.352 l 48 -96.898 l 48.75 -98.25 l 49.551 -97.602 l 50.5 -96.449 l 51.352
-95.102 l 52.102 -93.102 l 53.051 -91.648 l 53.949 -90.699 l 54.898 -89.148
l 55.801 -87.648 l 56.648 -86.301 l 57.551 -84.148 l 58.449 -83.398 l 59.398
-80.602 l 60.398 -78.852 l 61.199 -76.801 l 62.25 -75.699 l 63.148 -74.25
l 64.148 -71.898 l 65 -69.852 l 65.949 -68.949 l 66.898 -66.75 l 67.949
-64.949 l 68.75 -62.898 l 69.801 -60.551 l 70.648 -58.5 l 71.551 -55.699
l 72.449 -54.102 l 73.449 -50 l 74.449 -94 l 75.301 -93.801 l 76.25 -93.301
l 77.199 -92.949 l 78.148 -93.352 l 79.051 -93.852 l 80 -94.301 l 81.051
-93.75 l 81.801 -94.449 l 82.898 -94.648 l 83.648 -94.75 l 84.75 -94.949
l 85.449 -95.051 l 86.398 -95.051 l 87.301 -95.449 l 88.352 -95.602 l 89.148
-95.602 l 90.199 -96.398 l 91.051 -98.25 l 92.102 -98.398 l 93 -97.75 l
94 -97.449 l 94.949 -97.5 l 96 -97.75 l 97.102 -97.75 l 98.25 -97.199 l
98.949 -97.352 l 99.949 -97.852 l 100.852 -98.102 l 101.898 -98 l 102.75
-98.301 l 103.551 -98.398 l 104.551 -98.199 l 105.352 -97.648 l 106.301
-98.051 l 107.25 -98.449 l 108.199 -98.602 l 109.25 -99.199 l 110 -97.949
l 110.949 -98.352 l 111.898 -96.898 l 112.898 -97.352 l 113.648 -96.699
l 114.551 -97 l 115.5 -96 l 116.398 -95.852 l 117.301 -95.5 l 118.398 -93.648
l 119.199 -93.352 l 120.051 -94.352 l 120.898 -94.551 l 121.852 -93.25
l 122.852 -91.801 l 123.75 -91.102 l 124.801 -90.449 l 125.801 -89.699 l
127.648 -88.898 l 128.699 -89.949 l 129.648 -93.852 l 130.648 -94.602 l
131.602 -99.148 l 132.602 -100.551 l 133.551 -104.051 l 134.5 -105.949
l 135.449 -105.449 l S Q
q 1 0 0 -1 0 0 cm
135.449 -105.449 m 136.398 -105.602 l 137.449 -105.352 l 138.148 -105.102
l 139.102 -105.449 l 140.102 -104.852 l 140.949 -104.801 l 141.852 -104.699
l 143.148 -103.75 l 143.852 -102.551 l 145 -101.051 l 145.699 -103.398
l 146.551 -103.301 l 147.398 -101.898 l 148.551 -100.148 l 149.398 -98.648
l 150.148 -96.648 l 151.051 -95.199 l 151.898 -91.801 l 152.648 -92.5 l
153.398 -92.449 l 154.199 -96.352 l 154.852 -94.148 l 155.602 -93.801 l
156.301 -98.051 l 156.949 -98.699 l 157.648 -98.801 l 158.449 -97.949 l
159.25 -97.301 l 160 -96.25 l 160.75 -97.051 l 161.5 -97.648 l 162.352
-97.5 l 163.199 -100.352 l 164 -101.199 l 164.801 -100.352 l 165.551 -101.199
l 166.25 -102.398 l 166.949 -102.602 l 167.602 -103.801 l 168.199 -103.801
l 168.949 -105 l 169.699 -104.648 l 170.301 -105.352 l 171.051 -104.898
l 171.898 -103.602 l 172.551 -102.602 l 173.5 -100.602 l 174.602 -98.949
l 175.551 -97.949 l 176.5 -99 l 177.5 -98.449 l 178.5 -96.148 l 179.449
-96.5 l 180.352 -103.602 l 181.301 -105.148 l 182.25 -106.301 l 183.199
-106 l 184.148 -106.398 l 185.199 -107.301 l 186.148 -107.148 l 187.102
-106.199 l 188.148 -106.051 l 188.898 -106.102 l 189.75 -107.352 l 190.648
-104.25 l 191.75 -99.449 l 192.551 -99.801 l 193.5 -100.051 l 194.25 -102.602
l 195.301 -107.199 l 196.148 -107.301 l 196.898 -107.398 l 197.852 -107.551
l 198.852 -106.949 l 199.648 -106.852 l 200.602 -106.602 l 201.352 -106.551
l 202.25 -106.75 l 203.25 -106.398 l 204.199 -106 l 204.898 -106.301 l
205.898 -106.051 l 206.75 -106.301 l 207.602 -106.5 l 208.5 -106.75 l 209.449
-106.352 l 210.199 -106.301 l 211.199 -106.801 l 212 -107.551 l 212.898
-107.699 l 213.699 -107.949 l 214.699 -107.949 l 215.551 -108.199 l 216.449
-107.898 l 217.199 -107.102 l 218.352 -106.301 l 219.352 -105.25 l 220.102
-106.551 l 220.898 -107.801 l 222.148 -106.5 l 223.301 -105.398 l 224.25
-105.199 l 224.949 -104.801 l 225.898 -103.398 l S Q
q 1 0 0 -1 0 0 cm
225.898 -103.398 m 226.75 -101.75 l 227.5 -101.148 l 228.25 -99.852 l 228.898
-98.801 l 229.551 -98.25 l 230.301 -96.551 l 231.102 -94.648 l 232.051
-91.648 l 232.801 -89.602 l 233.648 -87.801 l 234.602 -89.301 l 235.5 -87.75
l 236.398 -85.102 l 237.398 -85.398 l 238.398 -83.648 l 239.301 -84.199
l 240.301 -85 l 241.301 -104.449 l 242.102 -106.75 l 243 -104.449 l 243.898
-102.949 l 245 -104.352 l 245.75 -106 l S Q
0 g
0.25 w
q 1 0 0 -1 0 0 cm
29.699 -13.25 216.852 -95.551 re S Q
1 g
0.75 w
q 1 0 0 1 0 0 cm
0.457 0.305 265.031 143.266 re S Q
Q Q
showpage
%%Trailer
end
%%EOF

View File

@@ -0,0 +1,118 @@
% GNUPLOT: LaTeX picture with Postscript
\begingroup
\makeatletter
\providecommand\color[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package color not loaded in conjunction with
terminal option `colourtext'%
}{See the gnuplot documentation for explanation.%
}{Either use 'blacktext' in gnuplot or load the package
color.sty in LaTeX.}%
\renewcommand\color[2][]{}%
}%
\providecommand\includegraphics[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package graphicx or graphics not loaded%
}{See the gnuplot documentation for explanation.%
}{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
\renewcommand\includegraphics[2][]{}%
}%
\providecommand\rotatebox[2]{#2}%
\@ifundefined{ifGPcolor}{%
\newif\ifGPcolor
\GPcolorfalse
}{}%
\@ifundefined{ifGPblacktext}{%
\newif\ifGPblacktext
\GPblacktexttrue
}{}%
% define a \g@addto@macro without @ in the name:
\let\gplgaddtomacro\g@addto@macro
% define empty templates for all commands taking text:
\gdef\gplbacktext{}%
\gdef\gplfronttext{}%
\makeatother
\ifGPblacktext
% no textcolor at all
\def\colorrgb#1{}%
\def\colorgray#1{}%
\else
% gray or color?
\ifGPcolor
\def\colorrgb#1{\color[rgb]{#1}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
\expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
\expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
\expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
\expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
\expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
\expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
\expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
\expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
\else
% gray
\def\colorrgb#1{\color{black}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color{black}}%
\expandafter\def\csname LT1\endcsname{\color{black}}%
\expandafter\def\csname LT2\endcsname{\color{black}}%
\expandafter\def\csname LT3\endcsname{\color{black}}%
\expandafter\def\csname LT4\endcsname{\color{black}}%
\expandafter\def\csname LT5\endcsname{\color{black}}%
\expandafter\def\csname LT6\endcsname{\color{black}}%
\expandafter\def\csname LT7\endcsname{\color{black}}%
\expandafter\def\csname LT8\endcsname{\color{black}}%
\fi
\fi
\setlength{\unitlength}{0.0500bp}%
\ifx\gptboxheight\undefined%
\newlength{\gptboxheight}%
\newlength{\gptboxwidth}%
\newsavebox{\gptboxtext}%
\fi%
\setlength{\fboxrule}{0.5pt}%
\setlength{\fboxsep}{1pt}%
\begin{picture}(5328.00,2880.00)%
\gplgaddtomacro\gplbacktext{%
\csname LTb\endcsname%
\put(462,704){\makebox(0,0)[r]{\strut{}\footnotesize{0}}}%
\put(462,943){\makebox(0,0)[r]{\strut{}\footnotesize{5}}}%
\put(462,1182){\makebox(0,0)[r]{\strut{}\footnotesize{10}}}%
\put(462,1421){\makebox(0,0)[r]{\strut{}\footnotesize{15}}}%
\put(462,1660){\makebox(0,0)[r]{\strut{}\footnotesize{20}}}%
\put(462,1898){\makebox(0,0)[r]{\strut{}\footnotesize{25}}}%
\put(462,2137){\makebox(0,0)[r]{\strut{}\footnotesize{30}}}%
\put(462,2376){\makebox(0,0)[r]{\strut{}\footnotesize{35}}}%
\put(462,2615){\makebox(0,0)[r]{\strut{}\footnotesize{40}}}%
\put(594,484){\makebox(0,0){\strut{}\footnotesize{0}}}%
\put(1214,484){\makebox(0,0){\strut{}\footnotesize{20}}}%
\put(1833,484){\makebox(0,0){\strut{}\footnotesize{40}}}%
\put(2453,484){\makebox(0,0){\strut{}\footnotesize{60}}}%
\put(3072,484){\makebox(0,0){\strut{}\footnotesize{80}}}%
\put(3692,484){\makebox(0,0){\strut{}\footnotesize{100}}}%
\put(4311,484){\makebox(0,0){\strut{}\footnotesize{120}}}%
\put(4931,484){\makebox(0,0){\strut{}\footnotesize{140}}}%
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%
\put(48,1659){\rotatebox{-270}{\makebox(0,0){\strut{}\footnotesize{error in meters}}}}%
\put(2762,154){\makebox(0,0){\strut{}\footnotesize{time in seconds}}}%
\csname LTb\endcsname%
\put(4373,2442){\makebox(0,0)[r]{\strut{}\footnotesize{none}}}%
\csname LTb\endcsname%
\put(4373,2222){\makebox(0,0)[r]{\strut{}\footnotesize{simple}}}%
\csname LTb\endcsname%
\put(4373,2002){\makebox(0,0)[r]{\strut{}\footnotesize{$D_\text{KL}$}}}%
}%
\gplbacktext
\put(0,0){\includegraphics{errorOverTimeWalk0/errorOverTime}}%
\gplfronttext
\end{picture}%
\endgroup

View File

@@ -0,0 +1,402 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.15.10 (http://cairographics.org)
%%CreationDate: Thu Sep 20 13:45:16 2018
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 266 144
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 266 144
%%EndPageSetup
q 0 0 266 144 rectclip
1 0 0 -1 0 144 cm q
0 g
0.25 w
0 J
0 j
[] 0.0 d
3.8 M q 1 0 0 -1 0 0 cm
29.699 -108.801 m 32.852 -108.801 l 246.551 -108.801 m 243.398 -108.801
l S Q
q 1 0 0 -1 0 0 cm
29.699 -81.648 m 32.852 -81.648 l 246.551 -81.648 m 243.398 -81.648 l S Q
q 1 0 0 -1 0 0 cm
29.699 -54.5 m 32.852 -54.5 l 246.551 -54.5 m 243.398 -54.5 l S Q
q 1 0 0 -1 0 0 cm
29.699 -27.352 m 32.852 -27.352 l 246.551 -27.352 m 243.398 -27.352 l S Q
q 1 0 0 -1 0 0 cm
29.699 -108.801 m 29.699 -105.648 l 29.699 -11.051 m 29.699 -14.199 l S Q
q 1 0 0 -1 0 0 cm
62.352 -108.801 m 62.352 -105.648 l 62.352 -11.051 m 62.352 -14.199 l S Q
q 1 0 0 -1 0 0 cm
95 -108.801 m 95 -105.648 l 95 -11.051 m 95 -14.199 l S Q
q 1 0 0 -1 0 0 cm
127.648 -108.801 m 127.648 -105.648 l 127.648 -11.051 m 127.648 -14.199
l S Q
q 1 0 0 -1 0 0 cm
160.352 -108.801 m 160.352 -105.648 l 160.352 -11.051 m 160.352 -14.199
l S Q
q 1 0 0 -1 0 0 cm
193 -108.801 m 193 -105.648 l 193 -11.051 m 193 -14.199 l S Q
q 1 0 0 -1 0 0 cm
225.648 -108.801 m 225.648 -105.648 l 225.648 -11.051 m 225.648 -14.199
l S Q
q 1 0 0 -1 0 0 cm
29.699 -11.051 216.852 -97.75 re S Q
0.780392 g
0.5 w
q 1 0 0 -1 0 0 cm
225.25 -19.699 m 233.352 -19.699 l 30.352 -101.449 m 30.75 -97.898 l 31.199
-100.648 l 31.551 -81.398 l 31.949 -80.648 l 32.301 -68.602 l 32.75 -69.75
l 33.102 -104.148 l 33.449 -56.648 l 33.852 -53.051 l 34.199 -42.898 l
34.648 -43.398 l 35.051 -36.949 l 35.398 -33.852 l 35.852 -96.199 l 36.148
-19.75 l 36.5 -19.602 l 36.949 -11.648 l 36.949 -11.051 l 39.449 -11.051
m 39.75 -103.148 l 40.148 -104.352 l 40.551 -100.148 l 40.949 -98.449 l
41.352 -101.852 l 41.75 -91.25 l 42 -90.449 l 42.449 -97.648 l 42.75 -95.449
l 43.301 -88.648 l 43.699 -85 l 44.102 -88.898 l 44.449 -91.801 l 45.352
-95.5 l 45.699 -93.898 l 47.801 -87.602 l 48.051 -86.648 l 48.301 -86.352
l 50.75 -80.648 l 51.199 -78.148 l 51.75 -78.551 l 53.75 -86.199 l 54.301
-86.449 l 54.699 -85.301 l 55.5 -94.898 l 57.898 -90 l 58.301 -93.602 l
58.648 -91 l 59 -88.852 l 60.25 -95.648 l 60.551 -97.25 l 60.801 -89.852
l 64.102 -87.352 l 64.699 -98.602 l 65.102 -100.898 l 65.5 -102.898 l 65.949
-104.25 l 66.352 -104.102 l 66.801 -94.199 l 67.199 -89.852 l 67.602 -85.5
l 68 -80.699 l 68.398 -59 l 69.199 -64.75 l 69.449 -61.398 l 71.5 -65.75
l 71.801 -52.801 l 72.449 -68.648 l 72.801 -81.5 l 73.199 -93.398 l 73.551
-96.852 l 73.949 -102.852 l 74.301 -98.949 l 74.75 -96.449 l 75.102 -96.801
l 75.449 -103.648 l 75.852 -102.102 l 76.199 -99.699 l 76.551 -92.5 l 76.949
-92.148 l 77.301 -92.301 l 77.801 -55.5 l 78.148 -51.75 l 78.5 -49.5 l
78.852 -49.801 l 79.25 -49.551 l 79.648 -48.25 l 79.949 -45.699 l 80.301
-44.25 l 80.699 -62.801 l 81.148 -36.352 l 81.398 -32.102 l 81.801 -27.949
l 82.148 -33.852 l 82.5 -31 l 82.852 -24.602 l 83.301 -49.551 l 83.602
-51.5 l 83.949 -51.852 l 84.352 -48.551 l 84.699 -65.352 l 85.051 -58.5
l 85.449 -53.898 l 85.852 -57.25 l 86.199 -55.75 l 86.648 -51.699 l 87 -50.199
l 87.449 -50.449 l 87.898 -52 l 88.352 -72.398 l 88.699 -73.602 l 89.148
-87.449 l 89.551 -103.551 l 89.949 -106.602 l 90.352 -105.449 l 90.648
-92.852 l 91.051 -98.75 l 91.5 -99.551 l 91.852 -100.648 l 92.25 -100.398
l 92.648 -99.551 l 93.051 -94.449 l 93.449 -87.102 l 93.898 -88.648 l 94.301
-89.199 l 94.699 -87.352 l 95.148 -88.898 l 95.602 -81.449 l 96.051 -101.398
l 96.449 -79 l 96.852 -77.449 l 97.301 -90.602 l 97.75 -84.898 l 98.301
-90.699 l 98.602 -90.699 l 98.852 -97.602 l 99.148 -94.5 l 100.051 -94.301
l 100.551 -93.051 l 100.852 -95.852 l 101.602 -99.449 l 101.949 -103.449
l 105 -89.051 l 106.25 -85.5 l 106.801 -94.75 l 111.898 -88.25 l 112.301
-85.801 l 114.398 -79.801 l 116.648 -77.199 l 117.852 -81.5 l 119.398 -91.5
l 119.898 -80.898 l 120.352 -83.25 l 120.801 -83.5 l 121.199 -81 l 121.602
-102.398 l 122 -102.551 l 122.449 -101.102 l 122.852 -73.852 l 123.25 -89.852
l 123.648 -86.699 l 124.051 -81.852 l 124.449 -83.449 l 124.852 -82 l 125.301
-84.301 l 125.75 -89.398 l 126.25 -92.102 l 126.648 -95.352 l 126.949 -98.801
l 131.602 -91 l 133.648 -88.102 l 134.199 -77.449 l 134.648 -87.398 l 135.102
-87.949 l 135.5 -89.352 l 135.898 -89.148 l 136.301 -87.051 l 136.648 -85.648
l 137.051 -80.75 l 137.449 -83.051 l 137.852 -92.648 l 138.25 -87.148 l
138.852 -89.551 l 139.25 -89.148 l 139.602 -103.199 l 139.898 -98.352 l
140.301 -91.449 l 140.699 -88.449 l 141.102 -84.051 l 141.449 -92 l 141.852
-104.75 l 142.199 -65.5 l 142.602 -65.199 l 142.949 -64.648 l 143.301 -50.148
l 143.699 -49.699 l 144.051 -63.801 l 144.398 -56.301 l 144.801 -60.949
l 145.148 -52.75 l 145.551 -93.75 l 145.898 -93 l 146.301 -92.949 l 146.699
-98.051 l 147.051 -97 l 147.398 -81 l 147.801 -96.648 l 148.148 -102.25
l 148.5 -103.898 l 148.898 -104.352 l 149.25 -94.199 l 149.648 -94.449
l 150.051 -93.051 l 150.398 -76.148 l 150.801 -93.102 l 151.199 -90.5 l
151.551 -92.648 l 151.949 -83.75 l 152.398 -84.398 l 152.75 -78.199 l 153.148
-91.949 l 153.551 -95.25 l 153.949 -93.898 l 154.352 -91.398 l 154.75 -98.352
l 155.102 -96.25 l 155.5 -96.648 l 155.898 -95.648 l 156.301 -94.699 l
156.699 -91.102 l 157.051 -95.602 l 157.398 -96.148 l 157.801 -97.602 l
158.199 -98.352 l 158.551 -99.551 l 158.949 -98.199 l 159.352 -101.602 l
159.699 -100.398 l 160.102 -98.602 l 160.5 -100.301 l 160.852 -100.551
l 161.25 -101.102 l 161.648 -100.352 l 162 -101.449 l 162.352 -102.398 l
162.75 -97.449 l 163.148 -95.102 l 163.5 -88.75 l 163.898 -87.648 l 164.25
-87.898 l 164.648 -88 l 165 -87.602 l 165.398 -86.551 l 165.801 -86.898
l 166.102 -86.602 l 166.5 -86.5 l 166.898 -89.148 l 167.301 -90.051 l 167.648
-88.699 l 168.102 -102.801 l 168.398 -87.602 l 168.801 -86.852 l 169.199
-86.102 l 169.551 -79.398 l 169.949 -82.648 l 170.5 -93.352 l 170.852 -96.949
l 171.199 -99.148 l 171.602 -99.75 l 171.852 -97.699 l S Q
q 1 0 0 -1 0 0 cm
171.852 -97.699 m 172.25 -87.602 l 172.699 -105.898 l 173.148 -102.648
l 173.5 -97.801 l 173.852 -96.5 l 174.301 -98.25 l 174.699 -99.949 l 175.102
-99.301 l 175.551 -94.551 l 175.898 -94.051 l 176.301 -94.801 l 176.699
-94.25 l 177.148 -100.602 l 177.551 -103.199 l 178 -107.449 l 178.551 -103.5
l 178.949 -106.5 l 179.301 -93.602 l 179.602 -92.301 l 179.949 -102 l 181.148
-99.75 l 192.5 -99.352 l 192.75 -85.301 l 193.148 -98.051 l 193.648 -95.199
l 194.051 -94.648 l 194.75 -92.699 l 195 -96.352 l 195.602 -100.25 l 197.551
-88.352 l 199.199 -104.449 l 199.551 -103 l 200.051 -95.602 l 200.801 -93.102
l 201.148 -90.801 l 202.199 -90.5 l 202.551 -105.449 l 213.301 -104.551
l 217.648 -83.75 l 218.051 -86.602 l 218.449 -80.5 l 218.801 -79.102 l
219.199 -78.551 l 219.551 -75.699 l 220 -79.301 l 220.352 -88.75 l 220.75
-87.648 l 221.148 -86.199 l 221.551 -92 l 221.898 -91.398 l 222.301 -101
l 222.648 -99.398 l 223.051 -94.352 l 223.449 -91.648 l 223.801 -93.25
l 224.25 -94.352 l 224.551 -91.398 l 224.949 -94.301 l 225.301 -93.398 l
225.699 -91.699 l 226.102 -90.398 l 226.5 -89.301 l 226.801 -84.102 l 227.199
-84.102 l 227.602 -56.898 l 227.949 -55.199 l 228.398 -77.051 l 228.75
-88.898 l 229.102 -72.801 l 229.5 -72 l 229.898 -53.852 l 230.301 -55.898
l 230.648 -72 l 230.949 -71.75 l 231.398 -73.352 l 231.75 -73.352 l 232.102
-77.648 l 232.5 -87.051 l 232.852 -91.898 l 233.25 -91.801 l 233.602 -91.352
l 233.949 -92 l 234.352 -89.199 l 234.648 -75.102 l 235.102 -77.352 l 235.398
-77.25 l 235.801 -78.301 l 236.199 -82.301 l 236.5 -81.051 l 236.852 -82.898
l 237.25 -92.5 l 237.648 -91.75 l 238 -94.398 l 238.301 -94.102 l 238.699
-83.5 l 239.102 -90.5 l 239.5 -87.5 l 239.852 -96.25 l 240.301 -97.25 l
240.648 -100.852 l 241.051 -64.699 l 241.5 -94.551 l 241.898 -94.449 l
242.352 -105.102 l 242.852 -107.699 l 243.25 -105.301 l 243.602 -103.801
l 243.898 -101.199 l 244.301 -96.75 l 244.648 -99.25 l 245.102 -92.602
l 245.5 -83.148 l 245.898 -88.449 l S Q
0.992157 0.690196 0.239216 rg
0.375 w
q 1 0 0 -1 0 0 cm
225.25 -30.699 m 233.352 -30.699 l 30.352 -104 m 30.75 -100.551 l 31.199
-96.25 l 31.551 -95.648 l 31.949 -93.102 l 32.301 -90.801 l 32.75 -87.602
l 33.102 -84.949 l 33.449 -81.852 l 33.852 -78.648 l 34.199 -75.449 l 34.648
-71.5 l 35.051 -68.301 l 35.398 -64.949 l 35.852 -61.352 l 36.148 -59.102
l 36.5 -55.648 l 36.949 -52.25 l 37.352 -48.551 l 37.699 -45.852 l 38.102
-45.352 l 38.449 -49.148 l 38.852 -54.102 l 39.301 -66.449 l 39.75 -79.648
l 40.148 -97.398 l 40.551 -104.602 l 40.949 -107.852 l 41.352 -105.602
l 41.75 -103.449 l 42 -102.199 l 42.449 -100.5 l 42.75 -97.949 l 43.301
-92.398 l 43.699 -86.898 l 44.102 -84.5 l 44.449 -83.801 l 45.352 -84.148
l 45.699 -83.398 l 47.801 -82.051 l 48.051 -80.949 l 48.301 -80.602 l 50.75
-80.699 l 51.199 -81.801 l 51.75 -82.199 l 53.75 -84.449 l 54.301 -91.699
l 54.699 -96.75 l 55.5 -100.801 l 57.898 -104.551 l 58.301 -107.801 l 58.648
-106 l 59 -101.949 l 60.25 -98.898 l 60.551 -97.352 l 60.801 -97.102 l
64.102 -93.352 l 64.699 -90.852 l 65.102 -89.75 l 65.5 -89.148 l 65.949
-89.398 l 66.352 -87.148 l 66.801 -84.75 l 67.199 -88.25 l 67.602 -85.75
l 68 -79.801 l 68.398 -72.301 l 69.199 -72.852 l 69.449 -67.75 l 71.5 -74.949
l 71.801 -75.551 l 72.449 -79.699 l 72.801 -82.949 l 73.199 -87.75 l 73.551
-92.449 l 73.949 -98.801 l 74.301 -104.5 l 74.75 -104.199 l 75.102 -99.801
l 75.449 -95.398 l 75.852 -90.5 l 76.199 -87.551 l 76.551 -83 l 76.949
-79.75 l 77.301 -79.949 l 77.801 -69.648 l 78.148 -66.949 l 78.5 -75 l 78.852
-93.352 l 79.25 -107.199 l 79.648 -107.301 l 79.949 -106.199 l 80.301 -106.102
l 80.699 -105.648 l 81.148 -106.102 l 81.398 -105.398 l 81.801 -105.648
l 82.148 -105.699 l 82.5 -106.352 l 82.852 -106.852 l 83.301 -107.602 l
83.602 -107.102 l 83.949 -106.5 l 84.352 -106 l 84.699 -105.301 l 85.051
-103.852 l 85.449 -102.398 l 85.852 -101 l 86.199 -100.199 l 86.648 -98.551
l 87 -98.102 l 87.449 -98.949 l 87.898 -102.602 l 88.352 -105.852 l 88.699
-107.648 l 89.148 -105.148 l 89.551 -102.699 l 89.949 -101.5 l 90.352 -100.648
l 90.648 -99.551 l 91.051 -98.449 l 91.5 -97.699 l 91.852 -97.352 l 92.25
-98.051 l 92.648 -99.25 l 93.051 -100.398 l 93.449 -100.648 l 93.898 -101.602
l 94.301 -102 l 94.699 -102 l 95.148 -101.25 l 95.602 -100.352 l 96.051
-100.051 l 96.449 -100.051 l 96.852 -102.551 l 97.301 -105.949 l 97.75
-105 l 98.301 -106.398 l 98.602 -105.699 l 98.852 -108.352 l 99.148 -105.949
l 100.051 -106 l 100.551 -106.352 l 100.852 -95.5 l 101.602 -97.25 l 101.949
-99.051 l 105 -101.5 l 106.25 -100.051 l 106.801 -86.102 l 111.898 -72.75
l 112.301 -69.25 l 114.398 -63.801 l 116.648 -61.602 l 117.852 -71.949
l 119.398 -78.5 l 119.898 -82.5 l 120.352 -83.25 l 120.801 -82.602 l 121.199
-82.25 l 121.602 -83 l 122 -81.301 l 122.449 -79.648 l 122.852 -76.648
l 123.25 -74.852 l 123.648 -73.5 l 124.051 -73.648 l 124.449 -75.148 l 124.852
-77.352 l 125.301 -80.5 l 125.75 -84.25 l 126.25 -87.648 l 126.648 -91.148
l 126.949 -93.602 l 131.602 -105.5 l 133.648 -103.648 l 134.199 -100.102
l 134.648 -99.352 l 135.102 -101.949 l 135.5 -106.602 l 135.898 -102.648
l 136.301 -96 l 136.648 -86.602 l 137.051 -81.648 l 137.449 -81.852 l 137.852
-80.602 l 138.25 -79.551 l 138.852 -77.352 l 139.25 -77 l 139.602 -80 l
139.898 -83.352 l 140.301 -86.051 l 140.699 -87.301 l 141.102 -86.699 l
141.449 -84 l 141.852 -81.602 l 142.199 -80.398 l 142.602 -86 l 142.949
-97.602 l 143.301 -88.852 l 143.699 -99.449 l 144.051 -97.148 l 144.398
-98.102 l 144.801 -98.25 l 145.148 -98.602 l 145.551 -100.352 l 145.898
-101.199 l 146.301 -100.801 l 146.699 -100.148 l 147.051 -99.5 l 147.398
-99.551 l 147.801 -100.352 l 148.148 -101.148 l 148.5 -101.898 l 148.898
-102.352 l 149.25 -102.449 l 149.648 -102.602 l 150.051 -102.551 l 150.398
-102.301 l 150.801 -102.352 l 151.199 -102.449 l 151.551 -102.398 l 151.949
-102.199 l 152.398 -101.898 l 152.75 -102.102 l 153.148 -103.551 l 153.551
-103.898 l 153.949 -102.648 l 154.352 -101.102 l 154.75 -101.25 l 155.102
-101.551 l 155.5 -103.25 l 155.898 -104.648 l 156.301 -105 l 156.699 -104.801
l 157.051 -105.352 l 157.398 -105.25 l 157.801 -105.449 l 158.199 -106
l 158.551 -106.852 l 158.949 -107.199 l 159.352 -108.051 l 159.699 -108.449
l 160.102 -107.449 l 160.5 -106.949 l 160.852 -106.75 l 161.25 -107.102
l 161.648 -107.75 l 162 -108.148 l S Q
q 1 0 0 -1 0 0 cm
162 -108.148 m 162.352 -108.301 l 162.75 -107.648 l 163.148 -106.301 l
163.5 -104.949 l 163.898 -103.5 l 164.25 -102.551 l 164.648 -101.551 l 165
-100.352 l 165.398 -99.449 l 165.801 -98.199 l 166.102 -97.551 l 166.5
-96.852 l 166.898 -96.301 l 167.301 -95.75 l 167.648 -95.75 l 168.102 -95.801
l 168.398 -96.25 l 168.801 -96.301 l 169.199 -94.5 l 169.551 -93.75 l 169.949
-98.102 l 170.5 -102.449 l 170.852 -103.051 l 171.199 -99.699 l 171.602
-95.199 l 171.852 -91.75 l 172.25 -89.801 l 172.699 -88.148 l 173.148 -91
l 173.5 -103.949 l 173.852 -102.25 l 174.301 -101.051 l 174.699 -101.352
l 175.102 -101.5 l 175.551 -100.051 l 175.898 -98.102 l 176.301 -96.801
l 176.699 -98 l 177.148 -99.801 l 177.551 -102.102 l 178 -103.352 l 178.551
-101.648 l 178.949 -99.449 l 179.301 -96.75 l 179.602 -94 l 179.949 -91.301
l 181.148 -88.699 l 192.5 -92.602 l 192.75 -92.148 l 193.148 -93.051 l
193.648 -92.5 l 194.051 -92.551 l 194.75 -93.801 l 195 -94 l 195.602 -94.449
l 197.551 -94.898 l 199.199 -94.398 l 199.551 -93.449 l 200.051 -93.102
l 200.801 -91.75 l 201.148 -92.75 l 202.199 -93.102 l 202.551 -92.301 l
213.301 -95.801 l 217.648 -93.801 l 218.051 -91.102 l 218.449 -89.398 l
218.801 -89.5 l 219.199 -90.352 l 219.551 -89.051 l 220 -92.602 l 220.352
-91.699 l 220.75 -90.602 l 221.148 -89 l 221.551 -89.551 l 221.898 -89.148
l 222.301 -90.949 l 222.648 -96.5 l 223.051 -105.102 l 223.449 -104.551
l 223.801 -104.699 l 224.25 -104.398 l 224.551 -103.449 l 224.949 -102.75
l 225.301 -101.75 l 225.699 -100.199 l 226.102 -98.949 l 226.5 -97.5 l
226.801 -96.75 l 227.199 -98.102 l 227.602 -100.602 l 227.949 -101.398 l
228.398 -102.551 l 228.75 -101.25 l 229.102 -98.699 l 229.5 -97.148 l 229.898
-91.949 l 230.301 -77.5 l 230.648 -71 l 230.949 -70.051 l 231.398 -74.148
l 231.75 -76.398 l 232.102 -78.949 l 232.5 -80.801 l 232.852 -84.25 l 233.25
-88.949 l 233.602 -92.199 l 233.949 -95.352 l 234.352 -96.102 l 234.648
-96 l 235.102 -97.102 l 235.398 -97.051 l 235.801 -97.352 l 236.199 -97.801
l 236.5 -95.801 l 236.852 -93.398 l 237.25 -94.051 l 237.648 -94.852 l
238 -97.551 l 238.301 -98.449 l 238.699 -98.898 l 239.102 -96.602 l 239.5
-95.148 l 239.852 -94.648 l 240.301 -93.352 l 240.648 -92.602 l 241.051
-93.301 l 241.5 -94.898 l 241.898 -95.602 l 242.352 -98.352 l 242.852 -99.551
l 243.602 -100.301 l 243.898 -99.648 l 244.301 -97.25 l 244.648 -95.051
l 245.102 -92.148 l 245.5 -89.852 l 245.898 -88.352 l S Q
0.2 0.4 0.639216 rg
q 1 0 0 -1 0 0 cm
225.25 -41.699 m 233.352 -41.699 l 30.352 -100.75 m 30.75 -106.199 l 31.199
-106.051 l 31.551 -106.648 l 31.949 -106.75 l 32.301 -106.301 l 32.75 -106.25
l 33.102 -105.699 l 33.449 -106.5 l 33.852 -104.898 l 34.199 -105.398 l
34.648 -105.25 l 35.051 -104.25 l 35.398 -105 l 35.852 -103.898 l 36.148
-105 l 36.5 -104.148 l 36.949 -104.352 l 37.352 -103.301 l 37.699 -102.5
l 38.102 -105.102 l 38.449 -108 l 38.852 -107.398 l 39.301 -104.75 l 39.75
-102.051 l 40.148 -104.551 l 40.551 -107.148 l 40.949 -107.648 l 41.352
-102.699 l 41.75 -99.898 l 42 -99.949 l 42.449 -98.301 l 42.75 -95.949
l 43.301 -92.5 l 43.699 -85.551 l 44.102 -84.398 l 44.449 -85.25 l 45.352
-84.75 l 45.699 -83.898 l 47.801 -83.648 l 48.051 -79.852 l 48.301 -78.449
l 50.75 -79.102 l 51.199 -75.199 l 51.75 -76.051 l 53.75 -74.801 l 54.301
-72.898 l 54.699 -77.898 l 55.5 -89.148 l 57.898 -93.199 l 58.301 -93.801
l 58.648 -94.051 l 59 -91.5 l 60.25 -89.102 l 60.551 -86.102 l 60.801 -85.602
l 64.102 -88.75 l 64.699 -94.602 l 65.102 -92.051 l 65.5 -92.148 l 65.949
-91.898 l 66.352 -96.801 l 66.801 -92.699 l 67.199 -84.75 l 67.602 -78.398
l 68 -73.949 l 68.398 -65.949 l 69.199 -64.398 l 69.449 -62.148 l 71.5
-69.75 l 71.801 -70.699 l 72.449 -76.352 l 72.801 -80.898 l 73.199 -85.648
l 73.551 -92.25 l 73.949 -98.801 l 74.301 -100.699 l 74.75 -98.898 l 75.102
-95.102 l 75.449 -92.051 l 75.852 -103.898 l 76.199 -106.5 l 76.551 -106.648
l 76.949 -105.301 l 77.301 -105.199 l 77.801 -104.148 l 78.148 -105.949
l 78.5 -108.352 l 78.852 -106.051 l 79.25 -105.352 l 79.648 -105.301 l
79.949 -104.801 l 80.301 -105.199 l 80.699 -104.949 l 81.148 -104 l 81.398
-104.102 l 81.801 -105.25 l 82.148 -105.602 l 82.5 -106.398 l 82.852 -107.051
l 83.301 -107.648 l 83.602 -107.5 l 83.949 -107.102 l 84.352 -104.852 l
84.699 -103.648 l 85.051 -103.5 l 85.449 -100.301 l 85.852 -100.852 l 86.199
-99.801 l 86.648 -97.949 l 87 -96.949 l 87.449 -98.449 l 87.898 -103.898
l 88.352 -105.398 l 88.699 -105.148 l 89.148 -103.148 l 89.551 -100.301
l 89.949 -99 l 90.352 -98.898 l 90.648 -97.5 l 91.051 -95.801 l 91.5 -94.148
l 91.852 -95.25 l 92.25 -96.148 l 92.648 -97.5 l 93.051 -98 l 93.449 -97.301
l 93.898 -98.801 l 94.301 -99.352 l 94.699 -99.801 l 95.148 -101.5 l 95.602
-103.449 l 96.051 -104.602 l 96.449 -104.898 l 96.852 -104.352 l 97.301
-103.551 l 97.75 -105.75 l 98.301 -106.5 l 98.602 -107.648 l 98.852 -101.801
l 99.148 -98.148 l 100.051 -98.25 l 100.551 -96.352 l 100.852 -93.398 l
101.602 -92.75 l 101.949 -90.199 l 105 -90.148 l 106.25 -88.301 l 106.801
-89.25 l 111.898 -84.551 l 112.301 -83.5 l 114.398 -79.949 l 116.648 -78.699
l 117.852 -83.699 l 119.398 -87.102 l 119.898 -89.852 l 120.352 -90.949
l 120.801 -91.352 l 121.199 -91.25 l 121.602 -93.949 l 122 -95.801 l 122.449
-97.449 l 122.852 -76.852 l 123.25 -75.148 l 123.648 -71.199 l 124.051
-71.25 l 124.449 -73.148 l 124.852 -77.25 l 125.301 -80.75 l 125.75 -83.648
l 126.25 -86.25 l 126.648 -94.602 l 126.949 -95.148 l 131.602 -105.852
l 133.648 -103.051 l 134.199 -99.398 l 134.648 -88.949 l 135.102 -91.301
l 135.5 -93.648 l 135.898 -96 l 136.301 -99.398 l 136.648 -101.301 l 137.051
-101.25 l 137.449 -94 l 137.852 -92.949 l 138.25 -91.148 l 138.852 -92.5
l 139.25 -92.199 l 139.602 -94.949 l 139.898 -95.648 l 140.301 -100.801
l 140.699 -99.551 l 141.102 -99.5 l 141.449 -98.648 l 141.852 -97 l 142.199
-95.602 l 142.602 -97.5 l 142.949 -98.199 l 143.301 -100.801 l 143.699
-102.5 l 144.051 -102.949 l 144.398 -103.5 l 144.801 -103.75 l 145.148 -104.102
l 145.551 -104.352 l 145.898 -104.5 l 146.301 -104.551 l 146.699 -106.051
l 147.051 -105.699 l 147.398 -106.051 l 147.801 -105.898 l 148.148 -104.699
l 148.5 -104.602 l 148.898 -104.75 l 149.25 -106.148 l 149.648 -106.301
l 150.051 -106.301 l 150.398 -106.148 l 150.801 -105.898 l 151.199 -107.75
l 151.551 -107.5 l 151.949 -107.199 l 152.398 -106 l 152.75 -107.801 l
153.148 -107.449 l 153.551 -106.602 l 153.949 -106.199 l 154.352 -104.398
l 154.75 -103.648 l 155.102 -104.301 l 155.5 -106.398 l 155.898 -107.199
l 156.301 -106.102 l 156.699 -105.449 l 157.051 -107.648 l 157.398 -107.801
l 157.801 -106.898 l 158.199 -108 l 158.551 -107.199 l 158.949 -107.898
l 159.352 -108.102 l 159.699 -108.301 l 160.102 -107.051 l 160.5 -106.898
l 160.852 -107.051 l 161.25 -105.898 l 161.648 -106.852 l 162 -106.301
l S Q
q 1 0 0 -1 0 0 cm
162 -106.301 m 162.352 -106.898 l 162.75 -107.148 l 163.148 -106.051 l
163.5 -105 l 163.898 -103.551 l 164.25 -101.301 l 164.648 -100.398 l 165
-100.051 l 165.398 -97.75 l 165.801 -97.102 l 166.102 -96.551 l 166.5 -96.148
l 166.898 -95.25 l 167.301 -94.551 l 167.648 -95.699 l 168.102 -94.602
l 168.398 -95.352 l 168.801 -94.949 l 169.199 -92.551 l 169.551 -91.949
l 169.949 -95.301 l 170.5 -100.648 l 170.852 -101.449 l 171.199 -97.699
l 171.602 -93.852 l 171.852 -91.449 l 172.25 -90.148 l 172.699 -89.648 l
173.148 -87.051 l 173.5 -85.148 l 173.852 -101.25 l 174.301 -101.602 l
174.699 -101.602 l 175.102 -98.25 l 175.551 -96.352 l 175.898 -96 l 176.301
-95.102 l 176.699 -96.352 l 177.148 -96.699 l 177.551 -100.102 l 178 -102
l 178.551 -100 l 178.949 -99.148 l 179.301 -96.352 l 179.602 -93.25 l 179.949
-90.449 l 181.148 -88.102 l 192.5 -90.852 l 192.75 -91.051 l 193.148 -91.75
l 193.648 -89.148 l 194.051 -92.551 l 194.75 -92.699 l 195 -106.551 l 195.602
-103.852 l 197.551 -103.5 l 199.199 -104.102 l 199.551 -99.301 l 200.051
-92.051 l 200.801 -96.051 l 201.148 -91.949 l 202.199 -91.801 l 202.551
-88 l 213.301 -83.949 l 217.648 -80 l 218.051 -79.102 l 218.449 -81.648
l 218.801 -77.449 l 219.199 -75.949 l 219.551 -81.449 l 220 -80.898 l 220.352
-78.051 l 220.75 -77.352 l 221.148 -98 l 221.551 -98.102 l 221.898 -97.102
l 222.301 -102.551 l 222.648 -101.352 l 223.051 -99.5 l 223.449 -95.898
l 223.801 -94.301 l 224.25 -89.352 l 224.551 -87.602 l 224.949 -83.102
l 225.301 -76.602 l 225.699 -95.398 l 226.102 -94.449 l 226.5 -93.199 l
226.801 -91 l 227.199 -92.898 l 227.602 -96.352 l 227.949 -98.352 l 228.398
-101.199 l 228.75 -100.398 l 229.102 -99.699 l 229.5 -97.398 l 229.898
-99 l 230.301 -91.801 l 230.648 -73.75 l 230.949 -72.949 l 231.398 -74.5
l 231.75 -75.398 l 232.102 -75 l 232.5 -76.051 l 232.852 -92.301 l 233.25
-92.199 l 233.602 -93 l 233.949 -94.699 l 234.352 -94.551 l 234.648 -94.852
l 235.102 -95.051 l 235.398 -95.449 l 235.801 -97.398 l 236.199 -97.352
l 236.5 -96.699 l 236.852 -96.199 l 237.25 -95.852 l 237.648 -96.051 l
238 -96.449 l 238.301 -96.801 l 238.699 -98.148 l 239.102 -95.602 l 239.5
-93.699 l 239.852 -95.199 l 240.301 -93 l 240.648 -91.898 l 241.051 -92.148
l 241.5 -97 l 241.898 -96.648 l 242.352 -99.699 l 242.852 -99.199 l 243.25
-101.602 l 243.602 -101.25 l 243.898 -99.898 l 244.301 -97.551 l 244.648
-93.102 l 245.102 -90.301 l 245.5 -87.699 l 245.898 -84.949 l S Q
0 g
0.25 w
q 1 0 0 -1 0 0 cm
29.699 -11.051 216.852 -97.75 re S Q
1 g
0.75 w
4 M q 1 0 0 1 0 0 cm
0.152 0.457 265.73 143.238 re S Q
Q Q
showpage
%%Trailer
end
%%EOF

View File

@@ -0,0 +1,112 @@
% GNUPLOT: LaTeX picture with Postscript
\begingroup
\makeatletter
\providecommand\color[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package color not loaded in conjunction with
terminal option `colourtext'%
}{See the gnuplot documentation for explanation.%
}{Either use 'blacktext' in gnuplot or load the package
color.sty in LaTeX.}%
\renewcommand\color[2][]{}%
}%
\providecommand\includegraphics[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package graphicx or graphics not loaded%
}{See the gnuplot documentation for explanation.%
}{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
\renewcommand\includegraphics[2][]{}%
}%
\providecommand\rotatebox[2]{#2}%
\@ifundefined{ifGPcolor}{%
\newif\ifGPcolor
\GPcolorfalse
}{}%
\@ifundefined{ifGPblacktext}{%
\newif\ifGPblacktext
\GPblacktexttrue
}{}%
% define a \g@addto@macro without @ in the name:
\let\gplgaddtomacro\g@addto@macro
% define empty templates for all commands taking text:
\gdef\gplbacktext{}%
\gdef\gplfronttext{}%
\makeatother
\ifGPblacktext
% no textcolor at all
\def\colorrgb#1{}%
\def\colorgray#1{}%
\else
% gray or color?
\ifGPcolor
\def\colorrgb#1{\color[rgb]{#1}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
\expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
\expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
\expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
\expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
\expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
\expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
\expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
\expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
\else
% gray
\def\colorrgb#1{\color{black}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color{black}}%
\expandafter\def\csname LT1\endcsname{\color{black}}%
\expandafter\def\csname LT2\endcsname{\color{black}}%
\expandafter\def\csname LT3\endcsname{\color{black}}%
\expandafter\def\csname LT4\endcsname{\color{black}}%
\expandafter\def\csname LT5\endcsname{\color{black}}%
\expandafter\def\csname LT6\endcsname{\color{black}}%
\expandafter\def\csname LT7\endcsname{\color{black}}%
\expandafter\def\csname LT8\endcsname{\color{black}}%
\fi
\fi
\setlength{\unitlength}{0.0500bp}%
\ifx\gptboxheight\undefined%
\newlength{\gptboxheight}%
\newlength{\gptboxwidth}%
\newsavebox{\gptboxtext}%
\fi%
\setlength{\fboxrule}{0.5pt}%
\setlength{\fboxsep}{1pt}%
\begin{picture}(5328.00,2880.00)%
\gplgaddtomacro\gplbacktext{%
\csname LTb\endcsname%%
\put(462,704){\makebox(0,0)[r]{\strut{}\footnotesize{0}}}%
\put(462,1247){\makebox(0,0)[r]{\strut{}\footnotesize{5}}}%
\put(462,1790){\makebox(0,0)[r]{\strut{}\footnotesize{10}}}%
\put(462,2333){\makebox(0,0)[r]{\strut{}\footnotesize{15}}}%
\put(594,484){\makebox(0,0){\strut{}\footnotesize{0}}}%
\put(1247,484){\makebox(0,0){\strut{}\footnotesize{50}}}%
\put(1900,484){\makebox(0,0){\strut{}\footnotesize{100}}}%
\put(2553,484){\makebox(0,0){\strut{}\footnotesize{150}}}%
\put(3207,484){\makebox(0,0){\strut{}\footnotesize{200}}}%
\put(3860,484){\makebox(0,0){\strut{}\footnotesize{250}}}%
\put(4513,484){\makebox(0,0){\strut{}\footnotesize{300}}}%
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%%
\put(70,1681){\rotatebox{-270}{\makebox(0,0){\strut{}\footnotesize{error in meters}}}}%
\put(2762,154){\makebox(0,0){\strut{}\footnotesize{time in seconds}}}%
\csname LTb\endcsname%%
\put(4373,2486){\makebox(0,0)[r]{\strut{}\footnotesize{maximum particle}}}%
\csname LTb\endcsname%%
\put(4373,2266){\makebox(0,0)[r]{\strut{}\footnotesize{weighted average particle}}}%
\csname LTb\endcsname%%
\put(4373,2046){\makebox(0,0)[r]{\strut{}\footnotesize{kernel density}}}%
}%
\gplbacktext
\put(0,0){\includegraphics{errorOverTimeWalk1/errorOverTime}}%
\gplfronttext
\end{picture}%
\endgroup

View File

@@ -0,0 +1,207 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.15.10 (http://cairographics.org)
%%CreationDate: Thu Sep 20 12:48:45 2018
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 266 144
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 266 144
%%EndPageSetup
q 0 0 266 144 rectclip
1 0 0 -1 0 144 cm q
0 g
0.25 w
0 J
0 j
[] 0.0 d
3.8 M q 1 0 0 -1 0 0 cm
29.699 -108.801 m 32.852 -108.801 l 246.551 -108.801 m 243.398 -108.801
l S Q
q 1 0 0 -1 0 0 cm
29.699 -92.852 m 32.852 -92.852 l 246.551 -92.852 m 243.398 -92.852 l S Q
q 1 0 0 -1 0 0 cm
29.699 -76.949 m 32.852 -76.949 l 246.551 -76.949 m 243.398 -76.949 l S Q
q 1 0 0 -1 0 0 cm
29.699 -61 m 32.852 -61 l 246.551 -61 m 243.398 -61 l S Q
q 1 0 0 -1 0 0 cm
29.699 -45.102 m 32.852 -45.102 l 246.551 -45.102 m 243.398 -45.102 l S Q
q 1 0 0 -1 0 0 cm
29.699 -29.148 m 32.852 -29.148 l 246.551 -29.148 m 243.398 -29.148 l S Q
q 1 0 0 -1 0 0 cm
29.699 -13.25 m 32.852 -13.25 l 246.551 -13.25 m 243.398 -13.25 l S Q
q 1 0 0 -1 0 0 cm
29.699 -108.801 m 29.699 -105.648 l 29.699 -13.25 m 29.699 -16.398 l S Q
q 1 0 0 -1 0 0 cm
60.699 -108.801 m 60.699 -105.648 l 60.699 -13.25 m 60.699 -16.398 l S Q
q 1 0 0 -1 0 0 cm
91.648 -108.801 m 91.648 -105.648 l 91.648 -13.25 m 91.648 -16.398 l S Q
q 1 0 0 -1 0 0 cm
122.648 -108.801 m 122.648 -105.648 l 122.648 -13.25 m 122.648 -16.398
l S Q
q 1 0 0 -1 0 0 cm
153.602 -108.801 m 153.602 -105.648 l 153.602 -13.25 m 153.602 -16.398
l S Q
q 1 0 0 -1 0 0 cm
184.602 -108.801 m 184.602 -105.648 l 184.602 -13.25 m 184.602 -16.398
l S Q
q 1 0 0 -1 0 0 cm
215.551 -108.801 m 215.551 -105.648 l 215.551 -13.25 m 215.551 -16.398
l S Q
q 1 0 0 -1 0 0 cm
246.551 -108.801 m 246.551 -105.648 l 246.551 -13.25 m 246.551 -16.398
l S Q
q 1 0 0 -1 0 0 cm
29.699 -13.25 216.852 -95.551 re S Q
0.2 0.4 0.639216 rg
0.75 w
q 1 0 0 -1 0 0 cm
29.699 -98.102 m 30.75 -93.75 l 31.5 -93.352 l 32.352 -92.25 l 33.551 -92.352
l 36.648 -89.852 l 39.648 -90.199 l 52.199 -91.352 l 59.398 -90.75 l 67.852
-91.5 l 70.148 -93.352 l 70.852 -93.051 l 71.801 -94 l 72.398 -95.398 l
73.051 -96.051 l 73.699 -96.148 l 74.648 -96.801 l 88.199 -95.75 l 89.25
-94.648 l 90.5 -89.949 l 92.898 -89.301 l 94.25 -92.699 l 95 -93.551 l
96.602 -94.5 l 97.648 -94.551 l 98.648 -93.801 l 99.5 -94.949 l 100.449
-95.852 l 101.449 -95.301 l 102.551 -99.5 l 103.648 -100.699 l 104.648 -97.949
l 105.602 -100.301 l 106.551 -104.199 l 107.648 -97.199 l 108.602 -107.449
l 109.398 -102.949 l 110.801 -102.5 l 111.801 -103.5 l 113.148 -101.898
l 130.648 -89.301 l 131.449 -88.898 l 132.301 -86.801 l 133.199 -86.051
l 134.102 -93.852 l 135 -95.949 l 135.949 -97.398 l 136.898 -99.25 l 137.699
-101.5 l 138.648 -102.602 l 139.398 -102.949 l 140.5 -103 l 141.449 -98.602
l 142.301 -94.852 l 143.398 -91.801 l 144.352 -89.949 l 145.25 -102.852
l 146.102 -104.602 l 146.949 -104.25 l 147.75 -104.949 l 148.551 -104.949
l 149.398 -104.398 l 150.25 -104.699 l 151 -103.551 l 151.852 -102.898
l 152.699 -103.801 l 153.551 -104.051 l 154.199 -104.051 l 155.148 -104
l 155.949 -105.352 l 156.801 -105.699 l 157.551 -105.699 l 158.398 -105.801
l 159.25 -104.699 l 160.051 -105.102 l 160.898 -105.051 l 161.75 -104.949
l 162.551 -105.148 l 163.352 -104.949 l 164.148 -104.75 l 165.852 -104.352
l 166.699 -104.051 l 167.449 -103.551 l 168.352 -104.051 l 169.102 -104.199
l 170.051 -104.75 l 170.699 -105.75 l 171.75 -106.602 l 172.5 -106.051
l 173.602 -103.5 l 174.699 -102.852 l 175.449 -102.75 l 176.25 -102.801
l 177.398 -103.051 l 178.398 -102.051 l 179.648 -98.148 l 180.449 -95.551
l 181.352 -90.398 l 182.25 -86.801 l 183.199 -55.801 l 184.102 -51.449
l 184.949 -48.25 l 185.801 -44.102 l 186.551 -40.102 l S Q
q 1 0 0 -1 0 0 cm
186.551 -40.102 m 187.398 -36.75 l 188.25 -32.699 l 189.051 -29.398 l 189.898
-25.301 l 190.699 -21.199 l 191.551 -17.949 l 192.398 -51.301 l 193.102
-51.449 l 193.949 -52.199 l 194.602 -68.898 l 195.199 -69.25 l 195.898
-65.352 l 196.898 -66.5 l 197.699 -65.602 l 198.449 -64.25 l 199.5 -62.398
l 200.301 -99.801 l 201.102 -101.5 l 202.148 -101.648 l 203.148 -99.551
l 203.898 -100.051 l 205.398 -94.852 l 206.699 -99 l 207.648 -100.852 l
208.551 -103.148 l 209.398 -105.801 l 210.301 -105.352 l 211.551 -106.051
l 212.852 -105 l 215.148 -103.75 l 233.5 -103.5 l 234.602 -101.602 l 236.301
-103.398 l 237.551 -101.148 l 238.301 -102.699 l 239.301 -100.801 l 240.148
-102.148 l 241.102 -100.801 l 242 -99.699 l 242.898 -107.648 l 243.898
-106.75 l 245 -108.148 l 246 -106.898 l 246.551 -104.602 l S Q
0.992157 0.690196 0.239216 rg
q 1 0 0 -1 0 0 cm
29.699 -97.051 m 30.75 -95.25 l 31.5 -99.352 l 33.602 -104.398 l 36.699
-106.148 l 39.699 -106.5 l 52.199 -105.25 l 70.148 -106.898 l 70.852 -107.699
l 71.801 -105.398 l 73.551 -102.102 l 90.5 -104.5 l 92.898 -101.25 l 95
-101.949 l 96.602 -101.699 l 97.648 -101.648 l 98.648 -102.648 l 99.5 -102.148
l 100.449 -101.449 l 101.5 -102.398 l 102.602 -101.75 l 103.648 -105.051
l 104.699 -104.102 l 105.801 -104.801 l 106.551 -106.75 l 107.648 -105.148
l 108.602 -105.5 l 109.398 -105.301 l 110.801 -104.148 l 113.148 -105.301
l 130.648 -93.102 l 131.5 -94.051 l 132.352 -92.898 l 133.25 -92.801 l
134.148 -93.449 l 135.102 -100.301 l 135.949 -101.449 l 136.898 -102.699
l 137.699 -104.449 l 138.648 -104.102 l 139.449 -103.898 l 140.5 -103.051
l 141.449 -106.898 l 142.301 -106.852 l 143.398 -105 l 144.352 -104 l 145.25
-105.352 l 146.102 -104.449 l 146.949 -105 l 147.75 -106.648 l 148.602
-103.5 l 149.398 -103.148 l 150.25 -102.852 l 151.051 -103.148 l 151.852
-104.102 l 152.699 -105.602 l 153.551 -105.199 l 154.398 -105.051 l 155.199
-105.602 l 155.949 -105.051 l 156.801 -104.699 l 157.551 -105.898 l 158.398
-106.199 l 159.25 -106.5 l 160.051 -104.898 l 160.898 -104.352 l 161.75
-103.551 l 162.551 -101.852 l 163.352 -101.602 l 164.148 -100.551 l 165
-102.102 l 165.898 -104.25 l 166.699 -106.199 l 167.5 -106.449 l 168.352
-107.352 l 169.199 -107.352 l 170.051 -107.699 l 170.699 -107.898 l 171.801
-107.898 l 172.5 -106.648 l 173.602 -106.148 l 174.699 -104.699 l 175.449
-105.75 l 176.25 -107.051 l 177.398 -107.199 l 178.398 -105.648 l 179.648
-106.301 l 180.449 -107.449 l 181.352 -103.699 l 182.25 -103.801 l 183.199
-103.398 l 184.102 -102.898 l 185.801 -102.898 l 186.551 -104 l 187.398
-103.398 l 188.25 -102.699 l 189.102 -102.051 l 189.898 -102.398 l 190.75
-90.699 l 191.551 -90.699 l 192.398 -92.449 l 193.148 -93.898 l 193.949
-95.602 l 194.602 -95.852 l 195.199 -98.898 l 195.898 -98.398 l 196.898
-100.25 l S Q
q 1 0 0 -1 0 0 cm
196.898 -100.25 m 197.699 -104.148 l 198.5 -102.699 l 199.5 -101.199 l
200.352 -103.699 l 201.102 -105.352 l 202.148 -103.5 l 203.148 -101.352
l 203.898 -100.5 l 205.398 -99.449 l 206.699 -94.898 l 207.648 -92.699 l
208.551 -91.102 l 209.449 -93.5 l 210.301 -97 l 211.602 -97.551 l 212.852
-97.25 l 233.551 -93.449 l 236.352 -92.148 l 237.602 -92.648 l 239.301
-79.449 l 240.148 -78.301 l 241.102 -77.148 l 242 -77.301 l 242.898 -102.398
l 243.949 -105.898 l 245.199 -106.699 l 246 -96.148 l 246.551 -100.449
l S Q
0 g
0.25 w
q 1 0 0 -1 0 0 cm
29.699 -13.25 216.852 -95.551 re S Q
1 g
0.75 w
q 1 0 0 1 0 0 cm
0.457 0.305 265.73 143.848 re S Q
Q Q
showpage
%%Trailer
end
%%EOF

View File

@@ -0,0 +1,110 @@
% GNUPLOT: LaTeX picture with Postscript
\begingroup
\makeatletter
\providecommand\color[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package color not loaded in conjunction with
terminal option `colourtext'%
}{See the gnuplot documentation for explanation.%
}{Either use 'blacktext' in gnuplot or load the package
color.sty in LaTeX.}%
\renewcommand\color[2][]{}%
}%
\providecommand\includegraphics[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package graphicx or graphics not loaded%
}{See the gnuplot documentation for explanation.%
}{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
\renewcommand\includegraphics[2][]{}%
}%
\providecommand\rotatebox[2]{#2}%
\@ifundefined{ifGPcolor}{%
\newif\ifGPcolor
\GPcolorfalse
}{}%
\@ifundefined{ifGPblacktext}{%
\newif\ifGPblacktext
\GPblacktexttrue
}{}%
% define a \g@addto@macro without @ in the name:
\let\gplgaddtomacro\g@addto@macro
% define empty templates for all commands taking text:
\gdef\gplbacktext{}%
\gdef\gplfronttext{}%
\makeatother
\ifGPblacktext
% no textcolor at all
\def\colorrgb#1{}%
\def\colorgray#1{}%
\else
% gray or color?
\ifGPcolor
\def\colorrgb#1{\color[rgb]{#1}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
\expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
\expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
\expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
\expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
\expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
\expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
\expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
\expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
\else
% gray
\def\colorrgb#1{\color{black}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color{black}}%
\expandafter\def\csname LT1\endcsname{\color{black}}%
\expandafter\def\csname LT2\endcsname{\color{black}}%
\expandafter\def\csname LT3\endcsname{\color{black}}%
\expandafter\def\csname LT4\endcsname{\color{black}}%
\expandafter\def\csname LT5\endcsname{\color{black}}%
\expandafter\def\csname LT6\endcsname{\color{black}}%
\expandafter\def\csname LT7\endcsname{\color{black}}%
\expandafter\def\csname LT8\endcsname{\color{black}}%
\fi
\fi
\setlength{\unitlength}{0.0500bp}%
\ifx\gptboxheight\undefined%
\newlength{\gptboxheight}%
\newlength{\gptboxwidth}%
\newsavebox{\gptboxtext}%
\fi%
\setlength{\fboxrule}{0.5pt}%
\setlength{\fboxsep}{1pt}%
\begin{picture}(5328.00,2880.00)%
\gplgaddtomacro\gplbacktext{%
\csname LTb\endcsname%
\put(462,704){\makebox(0,0)[r]{\strut{}\footnotesize{0}}}%
\put(462,1023){\makebox(0,0)[r]{\strut{}\footnotesize{5}}}%
\put(462,1341){\makebox(0,0)[r]{\strut{}\footnotesize{10}}}%
\put(462,1660){\makebox(0,0)[r]{\strut{}\footnotesize{15}}}%
\put(462,1978){\makebox(0,0)[r]{\strut{}\footnotesize{20}}}%
\put(462,2297){\makebox(0,0)[r]{\strut{}\footnotesize{25}}}%
\put(462,2615){\makebox(0,0)[r]{\strut{}\footnotesize{30}}}%
\put(594,484){\makebox(0,0){\strut{}\footnotesize{80}}}%
\put(1214,484){\makebox(0,0){\strut{}\footnotesize{100}}}%
\put(1833,484){\makebox(0,0){\strut{}\footnotesize{120}}}%
\put(2453,484){\makebox(0,0){\strut{}\footnotesize{140}}}%
\put(3072,484){\makebox(0,0){\strut{}\footnotesize{160}}}%
\put(3692,484){\makebox(0,0){\strut{}\footnotesize{180}}}%
\put(4311,484){\makebox(0,0){\strut{}\footnotesize{200}}}%
\put(4931,484){\makebox(0,0){\strut{}\footnotesize{220}}}%
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%
\put(48,1659){\rotatebox{-270}{\makebox(0,0){\strut{}\footnotesize{error in meters}}}}%
\put(2762,154){\makebox(0,0){\strut{}\footnotesize{time in seconds}}}%
}%
\gplbacktext
\put(0,0){\includegraphics{errorOverTime}}%
\gplfronttext
\end{picture}%
\endgroup

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,61 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'est.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{837.06347848bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.8444723)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{est.eps}}%
\put(0.70275287,0.78080042){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}weighted average\end{tabular}}}}%
\put(0.74542443,0.80930301){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}kernel density \end{tabular}}}}%
\put(0.75888075,0.75001065){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}ground truth\end{tabular}}}}%
\end{picture}%
\endgroup%

View File

@@ -0,0 +1,296 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.15.10 (http://cairographics.org)
%%CreationDate: Tue Sep 11 21:06:36 2018
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 447 617
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 447 617
%%EndPageSetup
q 0 0 447 617 rectclip
1 0 0 -1 0 638 cm q
0.835294 g
320.555 270.266 m 344.086 270.266 l 344.922 320.066 l 349.105 320.066 l
349.105 344.891 l 433.918 342.266 l 431.41 275.441 l 433.918 99.492 l 260.945
48.867 l 234.906 136.391 l 318.883 158.742 l 317.211 206.816 l 344.086
206.816 l 344.086 247.992 l 320.555 247.992 l h
320.555 270.266 m f
0.960784 g
339.867 71.215 m 332.301 102.117 l 322.227 99.492 l 330.629 68.441 l h
339.867 71.215 m f
0.615686 g
4.5 w
0 J
0 j
[] 0.0 d
4 M q 0.530916 0 0 1 0 0 cm
603.578 247.992 m 652.829 248.816 l h
603.578 247.992 m S Q
q 0.530916 0 0 1 0 0 cm
603.32 270.457 m 652.829 270.266 l h
603.32 270.457 m S Q
q 0.530916 0 0 1 0 0 cm
663.925 313.164 m 679.677 313.164 l h
663.925 313.164 m S Q
q 0.530916 0 0 1 0 0 cm
697.151 314.066 m 799.37 314.066 l h
697.151 314.066 m S Q
q 0.530916 0 0 1 0 0 cm
728.73 314.066 m 728.73 322.617 l h
728.73 314.066 m S Q
q 0.530916 0 0 1 0 0 cm
728.73 333.715 m 728.73 342.266 l h
728.73 333.715 m S Q
q 0.530916 0 0 1 0 0 cm
801.474 340.617 m 657.994 343.941 l h
801.474 340.617 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
657.553 249.715 m 657.553 199.914 l h
657.553 249.715 m S Q
q 0.530916 0 0 1 0 0 cm
657.553 268.539 m 657.553 319.164 l h
657.553 268.539 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
657.553 189.641 m 657.553 157.016 l h
657.553 189.641 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
606.065 204.129 m 609.214 156.055 l h
606.065 204.129 m S Q
6.17589 w
q 0.530916 0 0 1 0 0 cm
449.761 131.367 m 655.978 161.289 l h
449.761 131.367 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
684.474 164.742 m 731.953 172.465 l h
684.474 164.742 m S Q
q 0.530916 0 0 1 0 0 cm
754.077 175.914 m 796.751 182.742 l h
754.077 175.914 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
803.13 188.742 m 806.279 100.391 l h
803.13 188.742 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
811.841 104.16 m 638.173 76.875 l h
811.841 104.16 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
632.28 136.391 m 619.603 156.191 l h
632.28 136.391 m S Q
q 0.530916 0 0 1 0 0 cm
637.003 127.84 m 665.499 83.215 l h
637.003 127.84 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
803.13 188.457 m 799.9 249.715 l h
803.13 188.457 m S Q
q 0.530916 0 0 1 0 0 cm
799.9 261.715 m 806.279 342.461 l h
799.9 261.715 m S Q
q 0.530916 0 0 1 0 0 cm
499.078 54.277 m 455.58 131.379 l h
499.078 54.277 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
580.379 71.066 m 559.528 109.84 l h
580.379 71.066 m S Q
q 0.530916 0 0 1 0 0 cm
554.599 118.773 m 541.826 142.68 l h
554.599 118.773 m S Q
q 0.530916 0 0 1 0 0 cm
552.384 120.008 m 587.207 125.914 l h
552.384 120.008 m S Q
q 0.530916 0 0 1 0 0 cm
589.451 124.582 m 578.503 148.242 l h
589.451 124.582 m S Q
6.17589 w
q 0.530916 0 0 1 0 0 cm
600.054 202.973 m 652.255 202.973 l h
600.054 202.973 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
641.727 74.664 m 619.603 71.215 l h
641.727 74.664 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
661.555 310.867 m 660.739 344.941 l h
661.555 310.867 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
803.13 249.715 m 803.13 261.715 l h
803.13 249.715 m S Q
0.772549 g
320.516 268.539 m 344.844 268.766 l 344.965 249.867 l 320.633 249.715 l
h
320.516 268.539 m f
0.615686 g
0.75 w
q 0.530916 0 0 1 0 0 cm
649.526 268.766 m 649.754 249.867 l 603.924 249.715 l 603.703 268.539 l
h
649.526 268.766 m S Q
0.772549 g
352.609 341.441 m 377.812 340.539 l 377.535 331.992 l 352.332 332.891 l
h
352.609 341.441 m f
0.615686 g
q 0.530916 0 0 1 0 0 cm
711.484 339.938 m 711.101 331.992 l 664.734 332.891 l 665.109 340.801 l
h
711.484 339.938 m S Q
0.776471 g
287.824 23.965 m 350.777 41.141 l 343.25 80.664 l 338.195 79.766 l 332.301
102.117 l 322.227 99.492 l 328.121 77.215 l 277.711 63.492 l h
287.824 23.965 m f
0.588235 g
4.5 w
q 0.530916 0 0 1 0 0 cm
655.015 43.535 m 543.702 27.414 l h
655.015 43.535 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
547.204 26.789 m 529.752 62.902 l h
547.204 26.789 m S Q
q 0.530916 0 0 1 0 0 cm
492.795 54.316 m 617.484 74.246 l h
492.795 54.316 m S Q
0.745098 g
332.141 101.742 m 338.035 79.391 l 328.281 76.691 l 322.426 99.039 l h
332.141 101.742 m f
0.588235 g
0.75 w
q 0.530916 0 0 1 0 0 cm
636.702 79.391 m 618.33 76.691 l 607.301 99.039 l 625.599 101.742 l h
636.702 79.391 m S Q
0.905882 0.305882 0.305882 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
705.627 336.117 m 714.478 336.266 l 766.673 328.617 l 687.623 318.34 l
682.9 198.191 l 736.676 186.191 l 774.627 122.664 l 711.329 110.664 l 695.503
120.941 l 660.702 138.117 l 543.702 108.941 l 561.103 76.316 l 508.901
67.766 l 480.405 120.941 l 531.025 129.566 l 542.127 109.84 l 608.5 116.664
l 627.475 75.492 l 625.901 48.867 l S Q
0.615686 g
3 w
q 1 0 0 1 0 0 cm
337.73 250.164 m 337.73 268.445 l S Q
0.388235 g
q 1 0 0 1 0 0 cm
331.676 250.164 m 331.676 268.445 l S Q
q 1 0 0 1 0 0 cm
325.652 250.164 m 325.652 268.445 l S Q
q 1 0 0 1 0 0 cm
337.73 250.164 m 337.73 268.445 l S Q
0.345098 0.87451 0.0313726 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
604.306 259.992 m 674.954 259.992 l 674.954 188.742 l 768.328 191.367 l
755.651 251.441 l 755.651 293.477 l S Q
0.588235 g
5.25 w
q 1 0 0 1 0 0 cm
346 41.539 m 340.961 77.418 l 346.867 79.383 l S Q
0 g
2.7324 w
q 1 0 0 1 0 0 cm
1.449 627.238 m 11.504 464.867 l 22.434 467.59 l 45.094 195.641 l 316.281
200.93 l 317.332 158.496 l 235.703 136.391 l 261.746 48.867 l 280.711 54.246
l 288.32 22.984 l 351.805 39.703 l 346.73 73.324 l 434.719 99.492 l 432.219
276.539 l 439.082 400.875 l 442.617 401.262 l 445.125 504.234 l 409.887
506.859 l 358.641 505.961 l 358.641 542.035 l 333.137 636.395 l 222.25
632.812 112.375 630.133 1.449 627.238 c h
1.449 627.238 m S Q
0.345098 0.87451 0.0313726 rg
362.309 247.566 m 358.242 239.43 l 353.781 247.473 l h
362.309 247.566 m f
2.25 w
q 1 0 0 1 0 0 cm
397.352 288.18 m 404.875 295.703 l S Q
q 1 0 0 1 0 0 cm
397.32 295.672 m 404.844 288.148 l S Q
0.956863 0.356863 0.356863 rg
q 1 0 0 1 0 0 cm
328.438 44.668 m 335.957 52.191 l S Q
q 1 0 0 1 0 0 cm
328.406 52.16 m 335.93 44.637 l S Q
0.933333 0.333333 0.333333 rg
280.598 118.199 m 282.699 127.051 l 288.879 120.242 l h
280.598 118.199 m f
278.91 74.797 m 287.863 73.18 l 281.398 66.641 l h
278.91 74.797 m f
359.5 123.453 m 357.137 132.242 l 365.812 129.191 l h
359.5 123.453 m f
369.07 303.289 m 364.77 295.273 l 360.539 303.438 l h
369.07 303.289 m f
Q Q
showpage
%%Trailer
end
%%EOF

View File

@@ -0,0 +1,58 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'gt_mitte_final.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{446.52252438bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,1.42836081)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{gt_mitte_final.eps}}%
\end{picture}%
\endgroup%

View File

@@ -0,0 +1,644 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.15.10 (http://cairographics.org)
%%CreationDate: Tue Sep 11 21:07:29 2018
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 447 620
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 447 620
%%EndPageSetup
q 0 0 447 620 rectclip
1 0 0 -1 0 638 cm q
0.776471 g
6.273 628.344 m 10.453 565.645 l 81.848 568.27 l 83.52 527.922 l 135.562
529.645 l 136.441 497.02 l 197.723 499.57 l 196.883 530.469 l 316.938 533.094
l 316.102 312.594 l 393.352 312.594 l 394.227 341.695 l 438.703 339.969
l 442.09 408.672 l 443.762 408.672 l 443.762 417.219 l 415.211 414.672
l 413.539 447.219 l 442.926 448.945 l 443.762 472.121 l 416.047 471.297
l 414.375 509.922 l 360.617 509.02 l 360.617 551.922 l 339.633 637.797 l
333.742 636.895 l h
6.273 628.344 m f
0.65098 g
7.205205 w
0 J
0 j
[] 0.0 d
4 M q 0.530916 0 0 1 0 0 cm
360.852 530.742 m 612.326 534.191 l h
360.852 530.742 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
596.5 530.742 m 594.852 308.59 l h
596.5 530.742 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
593.277 311.965 m 732.475 311.965 l h
593.277 311.965 m S Q
q 0.530916 0 0 1 0 0 cm
817.256 337.586 m 640.748 340.242 l h
817.256 337.586 m S Q
q 0.530916 0 0 1 0 0 cm
653.425 340.242 m 653.425 377.141 l h
653.425 340.242 m S Q
q 0.530916 0 0 1 0 0 cm
653.411 388.691 m 653.411 398.965 l h
653.411 388.691 m S Q
q 0.530916 0 0 1 0 0 cm
617.05 340.242 m 599.649 340.242 l h
617.05 340.242 m S Q
q 0.530916 0 0 1 0 0 cm
656.324 401.133 m 741.746 407.133 l h
656.324 401.133 m S Q
q 0.530916 0 0 1 0 0 cm
637.599 401.141 m 656.574 401.141 l h
637.599 401.141 m S Q
q 0.530916 0 0 1 0 0 cm
617.05 401.141 m 599.649 401.141 l h
617.05 401.141 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
811.208 335.895 m 817.352 406.629 l h
811.208 335.895 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
768.152 405.418 m 825.85 408.043 l h
768.152 405.418 m S Q
q 0.530916 0 0 1 0 0 cm
770.499 403.402 m 767.276 444.043 l h
770.499 403.402 m S Q
q 0.530916 0 0 1 0 0 cm
765.025 444.531 m 821.259 446.555 l h
765.025 444.531 m S Q
q 0.530916 0 0 1 0 0 cm
823.319 444.312 m 823.672 462.965 l h
823.319 444.312 m S Q
q 0.530916 0 0 1 0 0 cm
825.872 464.336 m 761.567 463.949 l h
825.872 464.336 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
767.755 462.199 m 767.652 464.168 l 765.812 497.887 l h
767.755 462.199 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
707.202 406.508 m 707.202 447.176 l h
707.202 406.508 m S Q
q 0.530916 0 0 1 0 0 cm
707.202 444.941 m 663.049 444.941 l h
707.202 444.941 m S Q
q 0.530916 0 0 1 0 0 cm
669.251 463.766 m 732.475 464.668 l h
669.251 463.766 m S Q
q 0.530916 0 0 1 0 0 cm
732.475 462.434 m 732.085 498.059 l h
732.475 462.434 m S Q
5.146575 w
q 0.530916 0 0 1 0 0 cm
661.298 403.418 m 661.298 453.34 l h
661.298 403.418 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
661.004 465.492 m 661.298 545.066 l h
661.004 465.492 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
654.014 455.387 m 662.777 451.309 l h
654.014 455.387 m S Q
q 0.530916 0 0 1 0 0 cm
637.599 455.215 m 655 455.215 l h
637.599 455.215 m S Q
q 0.530916 0 0 1 0 0 cm
620.199 454.391 m 599.649 454.391 l h
620.199 454.391 m S Q
q 0.530916 0 0 1 0 0 cm
613.901 478.391 m 596.5 478.391 l h
613.901 478.391 m S Q
q 0.530916 0 0 1 0 0 cm
636.025 478.391 m 658.149 478.391 l h
636.025 478.391 m S Q
q 0.530916 0 0 1 0 0 cm
669.877 463.691 m 655.382 467.703 l h
669.877 463.691 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
637.599 534.191 m 656.994 534.191 l h
637.599 534.191 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
661.85 542.473 m 619.426 628.547 l h
661.85 542.473 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
624.922 627.715 m 8.675 618.676 l h
624.922 627.715 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
636.025 586.543 m 541.075 584.816 l h
636.025 586.543 m S Q
q 0.530916 0 0 1 0 0 cm
537.926 622.543 m 540.98 573.98 l h
537.926 622.543 m S Q
q 0.530916 0 0 1 0 0 cm
543.283 571.918 m 501.55 571.09 l h
543.283 571.918 m S Q
q 0.530916 0 0 1 0 0 cm
487.299 571.09 m 417.777 569.367 l h
487.299 571.09 m S Q
q 0.530916 0 0 1 0 0 cm
443.05 570.191 m 441.476 595.992 l h
443.05 570.191 m S Q
q 0.530916 0 0 1 0 0 cm
439.901 603.641 m 439.901 623.441 l h
439.901 603.641 m S Q
q 0.530916 0 0 1 0 0 cm
371.947 602.816 m 371.947 621.715 l h
371.947 602.816 m S Q
q 0.530916 0 0 1 0 0 cm
373.522 594.266 m 373.522 568.465 l h
373.522 594.266 m S Q
q 0.530916 0 0 1 0 0 cm
403.599 569.367 m 14.892 563.324 l h
403.599 569.367 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
151.058 564.875 m 154.156 526.336 l h
151.058 564.875 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
150.477 542.742 m 172.601 542.742 l h
150.477 542.742 m S Q
q 0.530916 0 0 1 0 0 cm
150.477 528.191 m 254.506 529.719 l h
150.477 528.191 m S Q
q 0.530916 0 0 1 0 0 cm
188.427 542.742 m 251.724 543.641 l h
188.427 542.742 m S Q
q 0.530916 0 0 1 0 0 cm
249.407 541.746 m 249.238 555.672 l h
249.407 541.746 m S Q
q 0.530916 0 0 1 0 0 cm
204.253 542.742 m 202.686 566.41 l h
204.253 542.742 m S Q
q 0.530916 0 0 1 0 0 cm
354.546 530.742 m 286.526 529.84 l h
354.546 530.742 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
21.116 561.891 m 14.884 615.941 l h
21.116 561.891 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
126.778 600.266 m 125.123 621.715 l h
126.778 600.266 m S Q
q 0.530916 0 0 1 0 0 cm
126.778 589.09 m 128.353 565.09 l h
126.778 589.09 m S Q
q 0.530916 0 0 1 0 0 cm
235.898 591.641 m 237.473 566.742 l h
235.898 591.641 m S Q
q 0.530916 0 0 1 0 0 cm
235.898 601.09 m 234.324 620.816 l h
235.898 601.09 m S Q
q 0.530916 0 0 1 0 0 cm
354.546 554.742 m 356.128 533.562 l h
354.546 554.742 m S Q
q 0.530916 0 0 1 0 0 cm
354.546 564.551 m 354.546 567.926 l h
354.546 564.551 m S Q
q 0.530916 0 0 1 0 0 cm
772.073 499.691 m 667.052 499.016 l h
772.073 499.691 m S Q
q 0.530916 0 0 1 0 0 cm
363.103 497.965 m 249.473 495.867 l h
363.103 497.965 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
253.1 493.859 m 252.261 506.48 250.79 519.145 250.908 531.766 c h
253.1 493.859 m S Q
q 0.530916 0 0 1 0 0 cm
359.461 499.867 m 357.379 534.145 l h
359.461 499.867 m S Q
0.835294 g
354.988 200.207 m 312.98 198.555 l 44.281 193.383 l 35.047 311.805 l 353.316
316.906 l h
354.988 200.207 m f
0.662745 g
4.5 w
q 0.530916 0 0 1 0 0 cm
651.851 267.34 m 577.525 266.516 l h
651.851 267.34 m S Q
q 0.530916 0 0 1 0 0 cm
560.124 266.516 m 536.352 266.141 l h
560.124 266.516 m S Q
q 0.530916 0 0 1 0 0 cm
538.228 258.266 m 537.926 289.691 l h
538.228 258.266 m S Q
q 0.530916 0 0 1 0 0 cm
537.926 295.691 m 537.926 308.59 l h
537.926 295.691 m S Q
q 0.530916 0 0 1 0 0 cm
537.625 277.168 m 467.426 277.168 l h
537.625 277.168 m S Q
q 0.530916 0 0 1 0 0 cm
577.826 245.59 m 650.821 246.445 l h
577.826 245.59 m S Q
q 0.530916 0 0 1 0 0 cm
562 245.367 m 540.178 245.215 l h
562 245.367 m S Q
q 0.530916 0 0 1 0 0 cm
538.897 228.418 m 538.603 250.168 l h
538.897 228.418 m S Q
q 0.530916 0 0 1 0 0 cm
538.603 220.016 m 538.603 204.84 l h
538.603 220.016 m S Q
q 0.530916 0 0 1 0 0 cm
537.323 241.766 m 465.175 241.617 l h
537.323 241.766 m S Q
q 0.530916 0 0 1 0 0 cm
466.749 241.617 m 466.749 228.715 l h
466.749 241.617 m S Q
q 0.530916 0 0 1 0 0 cm
467.051 219.492 m 467.051 205.227 l h
467.051 219.492 m S Q
q 0.530916 0 0 1 0 0 cm
466.749 241.617 m 465.778 307.691 l h
466.749 241.617 m S Q
q 0.530916 0 0 1 0 0 cm
406.748 276.492 m 464.873 277.168 l h
406.748 276.492 m S Q
q 0.530916 0 0 1 0 0 cm
388.678 276.266 m 214.672 275.293 l h
388.678 276.266 m S Q
q 0.530916 0 0 1 0 0 cm
194.424 275.742 m 89.726 274.543 l h
194.424 275.742 m S Q
q 0.530916 0 0 1 0 0 cm
328.302 286.766 m 328.302 275.965 l h
328.302 286.766 m S Q
q 0.530916 0 0 1 0 0 cm
328.302 295.016 m 328.302 306.34 l h
328.302 295.016 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
667.677 205.543 m 88.74 198.414 l h
667.677 205.543 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
659.723 208.992 m 658.149 315.566 l h
659.723 208.992 m S Q
q 0.530916 0 0 1 0 0 cm
653.425 239.066 m 607.521 239.066 l h
653.425 239.066 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
96.09 196.648 m 79.094 303.988 l h
96.09 196.648 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
72.899 306.641 m 659.723 312.191 l h
72.899 306.641 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
223.229 275.965 m 223.229 287.066 l h
223.229 275.965 m S Q
q 0.530916 0 0 1 0 0 cm
223.229 296.516 m 223.229 307.691 l h
223.229 296.516 m S Q
0.819608 g
323.383 210.715 11.785 27.453 re f
0.662745 g
0.75 w
q 0.530916 0 0 1 0 0 cm
609.103 210.715 22.198 27.453 re S Q
0.894118 g
359.496 315.418 m 354.48 317.965 l 345.242 317.965 l 345.242 242.441 l
322.543 240.793 l 322.543 211.617 l 320.035 211.617 l 321.707 153.266 l
345.242 158.367 l 347.75 151.543 l 432.562 176.367 l 430.891 315.418 l h
359.496 315.418 m f
0.678431 g
7.205205 w
q 0.530916 0 0 1 0 0 cm
660.614 314.789 m 661.188 237.207 l h
660.614 314.789 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
664.727 155.965 m 811.628 180.691 l h
664.727 155.965 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
806.08 178.176 m 802.078 270.793 l h
806.08 178.176 m S Q
q 0.530916 0 0 1 0 0 cm
802.078 269.965 m 805.072 311.098 l h
802.078 269.965 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
712.882 208.91 m 724.293 168.18 l h
712.882 208.91 m S Q
q 0.530916 0 0 1 0 0 cm
715.074 207.266 m 664.881 207.117 l h
715.074 207.266 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
662.872 153.754 m 662.872 220.992 l h
662.872 153.754 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
377.02 314.855 m 377.961 337.105 l S Q
0.678431 g
4.5 w
q 0.530916 0 0 1 0 0 cm
811.194 312.402 m 662.872 312.867 l h
811.194 312.402 m S Q
q 0.530916 0 0 1 0 0 cm
727.751 312.867 m 729.326 285.418 l h
727.751 312.867 m S Q
q 0.530916 0 0 1 0 0 cm
729.326 275.965 m 730.297 233.891 l h
729.326 275.965 m S Q
q 0.530916 0 0 1 0 0 cm
730.901 223.617 m 730.901 208.992 l h
730.901 223.617 m S Q
q 0.530916 0 0 1 0 0 cm
729.326 208.992 m 798.929 209.891 l h
729.326 208.992 m S Q
q 0.530916 0 0 1 0 0 cm
772.073 246.793 m 802.078 246.793 l h
772.073 246.793 m S Q
q 0.530916 0 0 1 0 0 cm
754.673 246.793 m 729.326 246.793 l h
754.673 246.793 m S Q
q 0.530916 0 0 1 0 0 cm
607.521 239.066 m 660.253 239.441 l h
607.521 239.066 m S Q
q 0.530916 0 0 1 0 0 cm
660.856 162.57 m 611.171 157.266 l h
660.856 162.57 m S Q
4.500165 w
q 0.530916 0 0 1 0 0 cm
609.103 154.918 m 606.58 207.746 l h
609.103 154.918 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
334.582 211.805 m 334.582 236.781 l S Q
0.678431 g
4.5 w
q 0.530916 0 0 1 0 0 cm
632.876 209.559 m 604.372 209.559 l h
632.876 209.559 m S Q
q 0.530916 0 0 1 0 0 cm
730.805 209.656 m 742.253 170.832 l h
730.805 209.656 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
324.082 211.805 m 324.082 236.781 l S Q
q 1 0 0 1 0 0 cm
329.332 211.805 m 329.332 236.781 l S Q
0.772549 g
60.328 276.824 m 59.73 289.727 l 97.758 290.551 l 98.039 277.727 l h
60.328 276.824 m f
0.615686 g
0.75 w
q 0.530916 0 0 1 0 0 cm
113.63 276.824 m 112.505 289.727 l 184.13 290.551 l 184.66 277.727 l h
113.63 276.824 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
95.277 290.094 m 95.703 277.746 l S Q
q 1 0 0 1 0 0 cm
79.551 289.816 m 79.973 277.465 l S Q
0.866667 0.690196 0.0784314 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
783.102 227.891 m 602.798 227.891 l 115.676 220.992 l 115.676 257.066 l
400.377 258.793 l 400.377 291.418 l 221.647 291.418 l 186.853 281.965 l
163.448 282.641 l S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
370.32 314.914 m 371.262 337.105 l S Q
q 1 0 0 1 0 0 cm
363.504 314.973 m 364.445 337.344 l S Q
q 1 0 0 1 0 0 cm
356.805 314.973 m 357.746 337.52 l S Q
0.733333 g
136.508 511.961 m 152.461 512.43 l 151.617 529.734 l 135.66 529.262 l h
136.508 511.961 m f
0.576471 g
0.58256 w
q -0.683021 -0.0201481 -0.048822 1 0 0 cm
-259.472 524.507 m -236.109 524.505 l -236.114 507.204 l -259.47 507.202
l h
-259.472 524.507 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
136.012 525.785 m 151.754 526.383 l S Q
q 1 0 0 1 0 0 cm
136.211 520.539 m 151.953 521.137 l S Q
q 1 0 0 1 0 0 cm
136.41 515.293 m 152.152 515.891 l S Q
0.905882 0.305882 0.305882 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
267.55 504.117 m 267.55 547.016 l 349.749 560.742 l 425.65 543.641 l 493.678
568.465 l 463.6 600.266 l 422.501 598.543 l 406.748 615.715 l 373.522 598.543
l 314.948 610.543 l 264.328 583.09 l 234.324 595.992 l 68.197 591.641 l
234.324 597.641 l 333.923 581.367 l 373.522 599.367 l 409.897 567.641 l
624.922 541.016 l 624.922 471.492 l 672.401 456.941 l 748.301 455.215 l
754.673 383.965 l 628.079 382.242 l 627.291 327.875 l 720.409 328.273 l
S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
90.02 290.035 m 90.441 277.688 l S Q
q 1 0 0 1 0 0 cm
84.758 289.945 m 85.184 277.594 l S Q
0.333333 0.933333 0.333333 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
164.574 282.418 m 188.427 281.965 l 221.647 292.242 l 354.546 287.066 l
397.228 276.793 l 397.228 262.242 l 248.575 262.242 l 248.575 220.992 l
466.749 223.617 l 567.997 224.441 l 567.997 255.34 l 479.426 255.34 l 602.798
257.066 l 622.075 257.066 l S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
74.289 289.727 m 74.715 277.375 l S Q
0 g
2.7324 w
q 1 0 0 1 0 0 cm
1.449 624.312 m 11.504 461.941 l 22.434 464.668 l 45.094 192.715 l 316.281
198.008 l 317.332 155.57 l 235.703 133.465 l 261.746 45.941 l 280.711 51.324
l 288.32 20.059 l 351.805 36.781 l 346.73 70.398 l 434.719 96.566 l 432.219
273.613 l 439.082 397.953 l 442.617 398.336 l 445.125 501.312 l 409.887
503.938 l 358.641 503.035 l 358.641 539.109 l 333.137 633.473 l 222.25
629.887 112.375 627.211 1.449 624.312 c h
1.449 624.312 m S Q
0.933333 0.333333 0.333333 rg
337.293 361.555 m 333.293 353.383 l 328.766 361.387 l h
337.293 361.555 m f
153.586 555.137 m 162.504 553.336 l 155.91 546.93 l h
153.586 555.137 m f
250.027 583.27 m 250.473 592.355 l 257.793 586.789 l h
250.027 583.27 m f
167.988 579.191 m 162.207 586.219 l 171.367 587.023 l h
167.988 579.191 m f
177.336 611.258 m 183.375 604.453 l 174.25 603.309 l h
177.336 611.258 m f
284.086 556.207 m 291.477 550.898 l 282.832 547.77 l h
284.086 556.207 m f
0.388235 g
3 w
q 1 0 0 1 0 0 cm
390.359 314.887 m 391.301 336.578 l S Q
q 1 0 0 1 0 0 cm
383.66 315.031 m 384.602 336.773 l S Q
0.933333 0.333333 0.333333 rg
377.938 335.652 m 392.32 328.613 l 378.234 320.641 l h
377.938 335.652 m f
0.866667 0.690196 0.0784314 rg
2.25 w
q 1 0 0 1 0 0 cm
415.879 222.555 m 415.879 233.191 l S Q
115.148 218.402 m 106.977 222.402 l 114.98 226.93 l h
115.148 218.402 m f
106.27 261.605 m 114.441 257.605 l 106.438 253.078 l h
106.27 261.605 m f
94.516 274.723 m 78.199 282.711 l 94.18 291.75 l h
94.516 274.723 m f
0.333333 0.933333 0.333333 rg
143.188 294.289 m 150.289 288.602 l 141.488 285.93 l h
143.188 294.289 m f
0.388235 g
3 w
q 1 0 0 1 0 0 cm
330.438 248.398 m 330.148 264.793 l S Q
q 1 0 0 1 0 0 cm
336.461 248.496 m 336.172 264.895 l S Q
0.333333 0.933333 0.333333 rg
324.906 264.656 m 338.723 257.465 l 324.832 250.055 l h
324.906 264.656 m f
0.760784 g
136.414 512.664 m 136.816 498.945 l 152.695 499.473 l 152.254 513.191 l
h
136.414 512.664 m f
0.603922 g
0.749461 w
q -0.530916 -0.0201481 -0.0379496 1 0 0 cm
-293.164 506.757 m -292.941 493.043 l -322.844 492.968 l -322.993 506.684
l h
-293.164 506.757 m S Q
0.760784 g
152.254 513.191 m 152.695 499.473 l 173.145 500.324 l 172.625 514.039 l
h
152.254 513.191 m f
0.603922 g
q -0.530916 -0.0201481 -0.0379496 1 0 0 cm
-322.993 506.684 m -322.844 492.968 l -361.367 493.043 l -361.368 506.758
l h
-322.993 506.684 m S Q
0.788235 g
172.625 514.039 m 173.145 500.324 l 188.066 500.891 l 187.547 514.605 l
h
172.625 514.039 m f
0.631373 g
q -0.530916 -0.0201481 -0.0379496 1 0 0 cm
-361.368 506.758 m -361.367 493.043 l -389.472 493.044 l -389.474 506.758
l h
-361.368 506.758 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
170.746 500.477 m 170.25 513.539 l S Q
q 1 0 0 1 0 0 cm
165.5 500.277 m 165.004 513.34 l S Q
q 1 0 0 1 0 0 cm
160.254 500.078 m 159.758 513.141 l S Q
q 1 0 0 1 0 0 cm
155.008 499.879 m 154.512 512.941 l S Q
q 1 0 0 1 0 0 cm
342.512 248.598 m 342.223 264.992 l S Q
q 1 0 0 1 0 0 cm
63.77 289.543 m 64.191 277.191 l S Q
q 1 0 0 1 0 0 cm
69.027 289.582 m 69.453 277.234 l S Q
0.772549 g
47.809 275.891 m 46.973 288.715 l 59.598 289.617 l 60.195 276.715 l h
47.809 275.891 m f
0.615686 g
0.75 w
q 0.530916 0 0 1 0 0 cm
90.049 275.891 m 88.475 288.715 l 112.254 289.617 l 113.38 276.715 l h
90.049 275.891 m S Q
Q Q
showpage
%%Trailer
end
%%EOF

View File

@@ -0,0 +1,58 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'gt_oben_final.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{446.52252438bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,1.42836081)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{gt_oben_final.eps}}%
\end{picture}%
\endgroup%

View File

@@ -0,0 +1,609 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.15.10 (http://cairographics.org)
%%CreationDate: Tue Sep 11 21:05:47 2018
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 447 638
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 447 638
%%EndPageSetup
q 0 0 447 638 rectclip
1 0 0 -1 0 638 cm q
0.866667 0.282353 0.0784314 rg
401.98 344.188 m 399.746 312.922 l 365.777 313.98 l f
0 g
0.75 w
0 J
0 j
[] 0.0 d
4 M q 0.530916 0 0 1 0 0 cm
837.784 446.965 m 828.631 446.965 l S Q
0.705882 0.941176 0.705882 rg
130.742 495.039 m 130.742 526.992 l 68.625 525.117 l 85.43 314.066 l 311.281
318.34 l 313.789 530.215 l 192.422 528.34 l 192.062 495.867 l h
130.742 495.039 m f
0.941176 g
92.953 625.465 m 93.832 571.391 l 172.75 572.289 l 170.242 628.09 l 252.508
629.742 l 252.508 575.742 l 339.832 575.742 l 340.668 576.566 l 349.227
578.816 l 358.305 543.117 l 358.305 507.039 l 426.316 504.492 l 426.316
506.215 l 444.793 505.316 l 442.285 402.34 l 358.305 401.516 l 358.305
211.914 l 372.602 195.641 l 381.004 163.914 l 318.848 146.742 l 317.172
201.641 l 179.48 199.914 l 173.586 277.164 l 151.766 277.164 l 157.621 199.914
l 45.094 198.191 l 22.434 467.59 l 13.199 466.691 l 6.469 566.289 l 7.305
626.367 l h
92.953 625.465 m f
0.960784 g
363.684 186.566 m 366.191 177.266 l 381.84 181.914 l 379.289 191.367 l
h
363.684 186.566 m f
338.156 295.539 26.043 11.328 re f
338.156 354.641 25.367 13.051 re f
0.576471 g
12.35178 w
q 0.530916 0 0 1 0 0 cm
607.867 149.828 m 605.682 204.965 l h
607.867 149.828 m S Q
6.558795 w
q 0.530916 0 0 1 0 0 cm
623.686 207.164 m 342.84 204.23 l h
623.686 207.164 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
344.356 202.465 m 333.761 278.965 l h
344.356 202.465 m S Q
q 0.530916 0 0 1 0 0 cm
96.031 200.367 m 47.78 479.582 l h
96.031 200.367 m S Q
q 0.530916 0 0 1 0 0 cm
650.21 572.688 m 665.904 540.59 l h
650.21 572.688 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
407.661 568.016 m 655.618 571.703 l h
407.661 568.016 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
364.906 568.016 m 138.705 567.117 l h
364.906 568.016 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
333.334 569.664 m 328.692 627.41 l h
333.334 569.664 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
171.932 620.367 m 29.585 619.465 l h
171.932 620.367 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
23.412 622.227 m 23.449 560.473 l h
23.412 622.227 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
96.031 567.117 m 29.585 566.289 l h
96.031 567.117 m S Q
q 0.530916 0 0 1 0 0 cm
322.232 531.941 m 124.681 530.062 l h
322.232 531.941 m S Q
q 0.530916 0 0 1 0 0 cm
354.789 532.766 m 366.48 532.766 l h
354.789 532.766 m S Q
q 0.530916 0 0 1 0 0 cm
357.033 498.492 m 247.906 497.59 l h
357.033 498.492 m S Q
q 0.530916 0 0 1 0 0 cm
251.055 495.039 m 251.055 527.664 l h
251.055 495.039 m S Q
q 0.530916 0 0 1 0 0 cm
357.033 535 m 357.033 495.867 l h
357.033 535 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
593.814 314.891 m 599.619 537.699 l h
593.814 314.891 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
597.317 535.504 m 409.235 533.664 l h
597.317 535.504 m S Q
6.558795 w
q 0.530916 0 0 1 0 0 cm
121.525 531.789 m 156.105 308.148 l h
121.525 531.789 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
152.736 309.789 m 597.405 314.066 l h
152.736 309.789 m S Q
q 0.530916 0 0 1 0 0 cm
698.66 179.289 m 701.809 172.465 l h
698.66 179.289 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
722.498 169.168 m 613.378 152.816 l h
722.498 169.168 m S Q
q 0.530916 0 0 1 0 0 cm
220.911 279.18 m 556.232 282.266 l h
220.911 279.18 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
597.243 208.793 m 589.459 286.133 l h
597.243 208.793 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
692.281 192.191 m 694.988 194.172 l h
692.281 192.191 m S Q
q 0.530916 0 0 1 0 0 cm
693.855 187.914 m 689.132 197.367 l h
693.855 187.914 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
662.21 414.414 m 662.21 369.043 l h
662.21 414.414 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
667.007 407.516 m 819.971 408.34 l h
667.007 407.516 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
814.085 405.273 m 820.457 505.316 l h
814.085 405.273 m S Q
q 0.530916 0 0 1 0 0 cm
663.858 429.789 m 665.433 543.941 l h
663.858 429.789 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
669.722 501.941 m 821.553 500.215 l h
669.722 501.941 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
289.41 201.691 m 279.484 279.715 l h
289.41 201.691 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
283.266 203.672 m 89.968 201.121 l h
283.266 203.672 m S Q
q 0.530916 0 0 1 0 0 cm
87.68 276.668 m 188.545 278.703 l h
87.68 276.668 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
167.208 568.082 m 165.633 622.25 l h
167.208 568.082 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
434.435 583.465 m 424.98 628.195 l h
434.435 583.465 m S Q
q 0.530916 0 0 1 0 0 cm
326.529 625.34 m 424.98 627.023 l h
326.529 625.34 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
29.776 474.414 m 54.6 476.934 l h
29.776 474.414 m S Q
q 0.530916 0 0 1 0 0 cm
23.287 567.117 m 35.883 474.414 l h
23.287 567.117 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
706.532 179.289 m 700.234 190.465 l h
706.532 179.289 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
466.08 570.828 m 466.08 629.742 l h
466.08 570.828 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
468.191 627.5 m 424.73 626.969 l h
468.191 627.5 m S Q
0.733333 g
170.934 514.059 15.969 22.273 re f
0.576471 g
0.75 w
q 0.530916 0 0 1 0 0 cm
321.96 514.059 30.078 22.273 re S Q
0.760784 g
186.965 514.766 m 187.086 501.039 l 171.199 500.965 l 171.117 514.691 l
h
186.965 514.766 m f
0.603922 g
q 0.530916 0 0 1 0 0 cm
352.155 514.766 m 352.383 501.039 l 322.46 500.965 l 322.305 514.691 l
h
352.155 514.766 m S Q
0.760784 g
171.117 514.691 m 171.199 500.965 l 150.73 501.039 l 150.73 514.766 l h
171.117 514.691 m f
0.603922 g
q 0.530916 0 0 1 0 0 cm
322.305 514.691 m 322.46 500.965 l 283.906 501.039 l 283.906 514.766 l
h
322.305 514.691 m S Q
0.788235 g
135.801 501.039 14.93 13.727 re f
0.631373 g
q 0.530916 0 0 1 0 0 cm
255.786 501.039 28.121 13.727 re S Q
0.788235 g
135.801 514.766 13.418 12.898 re f
0.631373 g
q 0.530916 0 0 1 0 0 cm
255.786 514.766 25.273 12.898 re S Q
0.733333 g
44.695 329.891 m 57.277 330.715 l 59.824 293.891 l 47.203 292.992 l h
44.695 329.891 m f
0.576471 g
q 0.530916 0 0 1 0 0 cm
84.185 329.891 m 107.884 330.715 l 112.681 293.891 l 88.909 292.992 l h
84.185 329.891 m S Q
0.772549 g
48.039 280.164 m 47.203 292.992 l 59.824 293.891 l 60.422 280.992 l h
48.039 280.164 m f
0.615686 g
q 0.530916 0 0 1 0 0 cm
90.483 280.164 m 88.909 292.992 l 112.681 293.891 l 113.807 280.992 l h
90.483 280.164 m S Q
0.835294 g
368.676 194.484 m 353.121 211.809 l 352.445 269.789 l 432.211 278.891 l
433.883 175.914 l 372.766 164.598 l h
368.676 194.484 m f
0.54902 g
12.35178 w
q 0.530916 0 0 1 0 0 cm
799.834 177.168 m 795.11 276.266 l h
799.834 177.168 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
782.433 272.891 m 658.863 271.25 l h
782.433 272.891 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
804.292 180.871 m 685.843 161.555 l h
804.292 180.871 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
702.118 164.598 m 700.013 178.77 l h
702.118 164.598 m S Q
q 0.530916 0 0 1 0 0 cm
695.496 188.18 m 694.414 194.484 l h
695.496 188.18 m S Q
8.028657 w
q 0.530916 0 0 1 0 0 cm
665.117 211.809 m 698.343 192.082 l h
665.117 211.809 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
669.222 208.859 m 663.844 269.789 l h
669.222 208.859 m S Q
q 0.530916 0 0 1 0 0 cm
771.411 199.914 m 795.485 199.914 l h
771.411 199.914 m S Q
q 0.530916 0 0 1 0 0 cm
769.837 229.09 m 794.97 229.09 l h
769.837 229.09 m S Q
0.705882 g
378.895 190.766 m 381.402 181.617 l 366.27 177.34 l 363.801 186.414 l h
378.895 190.766 m f
0.54902 g
0.75 w
q 0.530916 0 0 1 0 0 cm
713.662 190.766 m 718.385 181.617 l 689.882 177.34 l 685.232 186.414 l
h
713.662 190.766 m S Q
0.894118 g
352.148 271.238 m 349.797 370.734 l 420.465 371.441 l 420.465 374.891 l
437.266 374.066 l 431.375 267.715 l h
352.148 271.238 m f
0.556863 g
5.52948 w
q 0.530916 0 0 1 0 0 cm
657.325 271.113 m 796.133 272.355 l h
657.325 271.113 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
795.331 266.039 m 804.793 367.609 l h
795.331 266.039 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
810.936 369.789 m 655.978 368.891 l h
810.936 369.789 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
662.21 355.164 m 660.636 306.977 l h
662.21 355.164 m S Q
q 0.530916 0 0 1 0 0 cm
663.858 265.91 m 660.636 295.941 l h
663.858 265.91 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
725.507 332.891 m 662.909 332.891 l h
725.507 332.891 m S Q
0.713726 g
338.156 295.617 26.043 11.172 re f
0.556863 g
0.75 w
q 0.530916 0 0 1 0 0 cm
636.93 295.617 49.053 11.172 re S Q
0.713726 g
338.156 354.715 25.207 12.902 re f
0.556863 g
q 0.530916 0 0 1 0 0 cm
636.93 354.715 47.478 12.902 re S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
58.426 311.891 m 46.102 311.02 l S Q
q 1 0 0 1 0 0 cm
58.801 306.641 m 46.473 305.77 l S Q
q 1 0 0 1 0 0 cm
59.195 301.391 m 46.871 300.52 l S Q
q 1 0 0 1 0 0 cm
59.566 296.141 m 47.242 295.27 l S Q
q 1 0 0 1 0 0 cm
57.66 322.391 m 45.332 321.52 l S Q
q 1 0 0 1 0 0 cm
57.285 327.641 m 44.961 326.77 l S Q
0.866667 0.690196 0.0784314 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
136.005 286.391 m 99.18 287.441 l 92.882 343.992 l 112.343 344.719 l 119.546
304.199 l 649.607 301.164 l 772.986 301.164 l 776.135 361.164 l S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
186.871 517.391 m 171.117 517.391 l S Q
q 1 0 0 1 0 0 cm
186.871 522.641 m 171.117 522.641 l S Q
q 1 0 0 1 0 0 cm
186.871 533.141 m 171.117 533.141 l S Q
q 1 0 0 1 0 0 cm
58.055 317.141 m 45.73 316.27 l S Q
0.227451 0.227451 0.956863 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
627.409 549.941 m 627.409 421.242 l 697.012 421.242 l 709.681 464.141 l
709.681 446.965 l 791.961 441.867 l 731.805 441.867 l 695.43 421.242 l
625.834 421.242 l 625.834 320.891 l 568.909 283.992 l 562.611 266.891 l
516.707 254.816 l 393.409 254.816 l 383.881 229.09 l 529.384 227.367 l 557.806
268.539 l 567.334 297.715 l 130.832 299.441 l 51.709 549.941 l 124.461
549.941 l 124.461 579.117 l 45.411 579.117 l 64.386 606.566 l 124.461 606.566
l 124.461 568.84 l 77.056 532.766 l 58.081 493.316 l 118.155 472.766 l
130.832 301.164 l 202.009 292.617 l 203.584 223.914 l S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
186.871 527.891 m 171.117 527.891 l S Q
2.732576 w
q 1 0 0 1 0 0 cm
153.121 501.285 m 153.121 514.355 l S Q
q 1 0 0 1 0 0 cm
158.371 501.285 m 158.371 514.355 l S Q
q 1 0 0 1 0 0 cm
163.621 501.285 m 163.621 514.355 l S Q
q 1 0 0 1 0 0 cm
168.871 501.285 m 168.871 514.355 l S Q
0.905882 0.305882 0.305882 rg
4.11726 w
q 0.530916 0 0 1 0 0 cm
336.484 549.941 m 336.484 507.039 l 266.881 507.039 l 266.881 528.492 l
S Q
0.345098 0.87451 0.0313726 rg
3.087945 w
q 0.530916 0 0 1 0 0 cm
311.137 552.566 m 133.981 551.664 l 133.981 593.742 l 124.461 567.117 l
80.205 530.215 l 105.485 414.414 l 130.832 299.441 l 209.345 291.699 l
203.584 263.441 l 140.287 261.715 l 140.287 225.641 l 251.055 225.641 l
209.345 291.699 l 351.611 293.152 640.086 289.164 640.086 289.164 c 646.384
175.016 l 749.206 187.914 l 761.883 213.641 l 728.656 235.992 l 708.107
212.816 l 722.358 187.016 l 649.607 176.742 l 640.086 289.164 l 130.832
299.441 l 120.156 347.91 l 89.659 345.715 l 99.18 286.617 l 111.68 286.336
124.181 286.109 136.681 285.867 c S Q
0.772549 g
60.422 280.992 m 59.824 293.891 l 97.852 294.715 l 98.133 281.891 l h
60.422 280.992 m f
0.615686 g
0.75 w
q 0.530916 0 0 1 0 0 cm
113.807 280.992 m 112.681 293.891 l 184.307 294.715 l 184.837 281.891 l
h
113.807 280.992 m S Q
1 g
83.844 312.258 m 66.34 527.656 l 131.664 528.355 l 131.438 494.656 l 191.469
495.297 l 191.164 530.113 l 316.062 532.758 l 313.152 316.492 l h
83.844 312.258 m f
0 g
q 1 0 0 1 0 0 cm
83.844 312.258 m 66.34 527.656 l 131.664 528.355 l 131.438 494.656 l 191.469
495.297 l 191.164 530.113 l 316.062 532.758 l 313.152 316.492 l h
83.844 312.258 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
95.371 294.258 m 95.797 281.91 l S Q
0 g
2.7324 w
q 1 0 0 1 0 0 cm
1.449 627.238 m 11.504 464.867 l 22.438 467.59 l 45.094 195.641 l 316.281
200.93 l 317.332 158.496 l 235.703 136.391 l 261.746 48.867 l 280.711 54.246
l 288.32 22.984 l 351.805 39.703 l 346.73 73.324 l 434.719 99.492 l 432.219
276.539 l 439.082 400.875 l 442.617 401.262 l 445.125 504.234 l 409.887
506.859 l 358.641 505.961 l 358.641 542.035 l 333.137 636.395 l 222.25
632.812 112.375 630.133 1.449 627.238 c h
1.449 627.238 m S Q
0.905882 0.305882 0.305882 rg
134.371 515.891 m 141.871 530.891 l 149.371 515.891 l h
134.371 515.891 m f
0.894118 0.294118 0.294118 rg
2.25 w
q 1 0 0 1 0 0 cm
173.539 550.527 m 184.176 550.527 l S Q
0.345098 0.87451 0.0313726 rg
q 1 0 0 1 0 0 cm
165.227 547.371 m 165.227 558.008 l S Q
56.5 446.969 m 53.062 438.547 l 48 446.223 l h
56.5 446.969 m f
92.836 258.543 m 84.41 261.98 l 92.09 267.039 l h
92.836 258.543 m f
122.633 245.223 m 123.773 254.25 l 130.648 248.141 l h
122.633 245.223 m f
117.012 295.516 m 125.398 291.984 l 117.664 287.008 l h
117.012 295.516 m f
395.852 195.254 m 401.613 202.293 l 404.188 193.465 l h
395.852 195.254 m f
384.793 222.219 m 377.719 216.496 l 376.992 225.664 l h
384.793 222.219 m f
0.388235 g
3 w
q 1 0 0 1 0 0 cm
84.852 294.109 m 85.277 281.762 l S Q
q 1 0 0 1 0 0 cm
79.645 293.98 m 80.066 281.633 l S Q
q 1 0 0 1 0 0 cm
74.383 293.891 m 74.809 281.543 l S Q
0.345098 0.87451 0.0313726 rg
72.82 293.355 m 87.555 285.344 l 72.305 278.363 l h
72.82 293.355 m f
0.227451 0.227451 0.956863 rg
2.25 w
q 1 0 0 1 0 0 cm
327.91 550.977 m 338.547 550.977 l S Q
368.859 437.352 m 373.699 445.059 l 377.355 436.621 l h
368.859 437.352 m f
381.867 428.844 m 373.324 425.711 l 375.59 434.621 l h
381.867 428.844 m f
265.008 250.598 m 256.977 254.871 l 265.129 259.129 l h
265.008 250.598 m f
281.227 237.242 m 287.102 244.191 l 289.539 235.324 l h
281.227 237.242 m f
61.051 407.703 m 65.098 415.848 l 69.578 407.82 l h
61.051 407.703 m f
54.547 602.41 m 46.465 606.59 l 54.566 610.941 l h
54.547 602.41 m f
46.508 583.113 m 54.59 578.938 l 46.492 574.586 l h
46.508 583.113 m f
50.453 439.23 m 47.621 430.582 l 42.031 437.883 l h
50.453 439.23 m f
111.754 255.836 m 107.574 247.75 l 103.223 255.852 l h
111.754 255.836 m f
q 1 0 0 1 0 0 cm
104.375 219.891 m 111.895 227.414 l S Q
q 1 0 0 1 0 0 cm
104.344 227.383 m 111.867 219.859 l S Q
0.866667 0.690196 0.0784314 rg
q 1 0 0 1 0 0 cm
408.156 356.789 m 415.676 364.309 l S Q
q 1 0 0 1 0 0 cm
408.125 364.281 m 415.648 356.758 l S Q
374.227 305.039 m 382.367 300.973 l 374.324 296.508 l h
374.227 305.039 m f
47.012 312.75 m 50.594 321.113 l 55.52 313.352 l h
47.012 312.75 m f
0.388235 g
3 w
q 1 0 0 1 0 0 cm
63.863 293.707 m 64.285 281.359 l S Q
q 1 0 0 1 0 0 cm
69.121 293.75 m 69.547 281.398 l S Q
q 1 0 0 1 0 0 cm
90.113 294.199 m 90.535 281.852 l S Q
0.345098 0.87451 0.0313726 rg
q 1 0 0 1 0 0 cm
52.016 286.605 m 72.566 285.867 l S Q
1 g
0.719 0.297 215.184 169.273 re f
0 g
2.25 w
1 j
q 1 0 0 1 0 0 cm
0.719 0.297 215.184 169.273 re S Q
0.866667 0.690196 0.0784314 rg
3.75 w
0 j
q 1 0 0 1 0 0 cm
165 15.828 m 201.461 15.828 l S Q
0.227451 0.227451 0.956863 rg
q 1 0 0 1 0 0 cm
165 50.238 m 201.461 50.238 l S Q
0.345098 0.87451 0.0313726 rg
q 1 0 0 1 0 0 cm
165 119.055 m 201.461 119.055 l S Q
0.905882 0.305882 0.305882 rg
q 1 0 0 1 0 0 cm
165 84.645 m 201.461 84.645 l S Q
0.278431 g
q 1 0 0 1 0 0 cm
165.75 144.07 m 165.75 162.07 l S Q
189 145.57 m 204.109 160.633 l f
3.755598 w
q 1 0 0 0.997021 0 0 cm
189 146.005 m 204.109 161.113 l S Q
188.941 160.574 m 204.051 145.512 l f
q 1 0 0 0.997021 0 0 cm
188.941 161.054 m 204.051 145.946 l S Q
3.75 w
q 1 0 0 1 0 0 cm
166.5 153.461 m 196.5 153.461 l S Q
Q Q
showpage
%%Trailer
end
%%EOF

View File

@@ -0,0 +1,63 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'gt_unten_final.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{446.52248112bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,1.42836095)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{gt_unten_final.eps}}%
\put(0.14679693,1.37036794){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}walk 0\end{tabular}}}}%
\put(0.15144594,1.29331015){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}walk 1\end{tabular}}}}%
\put(0.14874653,1.21625231){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}walk 2\end{tabular}}}}%
\put(0.14724684,1.13919463){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}walk 3\end{tabular}}}}%
\put(0.02909742,1.06451355){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}start / end\end{tabular}}}}%
\end{picture}%
\endgroup%

View File

@@ -0,0 +1,579 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.14.8 (http://cairographics.org)
%%CreationDate: Thu Apr 20 14:10:46 2017
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 3
%%BoundingBox: 0 -1 251 116
%%EndComments
%%BeginProlog
save
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/pdfmark where { pop globaldict /?pdfmark /exec load put }
{ globaldict begin /?pdfmark /pop load def /pdfmark
/cleartomark load def end } ifelse
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 -1 251 116
%%EndPageSetup
q 0 -1 251 117 rectclip q
1 g
0.75 w
0 J
0 j
[] 0.0 d
4 M q 1 0 0 -1 0 115.266312 cm
-0.375 -18.938 289.5 136.5 re S Q
q
133.391 73.911 m 133.391 70.794 130.25 68.266 126.375 68.266 c 122.5 68.266
119.359 70.794 119.359 73.911 c 119.359 77.032 122.5 79.559 126.375 79.559
c 130.25 79.559 133.391 77.032 133.391 73.911 c h
133.391 73.911 m W n
[0.206307 0 0 -0.166086 197.646648 105.552092] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
q
184.875 63.704 m 184.875 55.938 178.578 49.641 170.812 49.641 c 163.047
49.641 156.75 55.938 156.75 63.704 c 156.75 71.469 163.047 77.766 170.812
77.766 c 178.578 77.766 184.875 71.469 184.875 63.704 c h
184.875 63.704 m W n
[0.413603 0 0 -0.413603 313.697538 142.49422] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
q
140.438 98.766 m 140.438 91.001 134.141 84.704 126.375 84.704 c 118.609
84.704 112.312 91.001 112.312 98.766 c 112.312 106.532 118.609 112.829
126.375 112.829 c 134.141 112.829 140.438 106.532 140.438 98.766 c h
140.438 98.766 m W n
[0.369485 -0.0000000443479 -0.0000000317716 -0.264706 254.018966 149.191822] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
0 g
0.75 w
0 J
0 j
[] 0.0 d
4 M q 1 0 0 -1 0 115.266312 cm
247.09 60.562 m 225.375 60.562 l 135.375 42.562 l 12.375 42.562 l 12.375
15.562 l S Q
q
92.109 97.438 m 92.109 90.016 86.094 84.001 78.676 84.001 c 71.254 84.001
65.238 90.016 65.238 97.438 c 65.238 104.856 71.254 110.872 78.676 110.872
c 86.094 110.872 92.109 104.856 92.109 97.438 c h
92.109 97.438 m W n
[0.395137 0 0 -0.395137 215.179931 172.710147] concat
/CairoFunction
<< /FunctionType 3
/Domain [ 0 1 ]
/Functions [
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.305882 0.145098 ]
/C1 [ 0.909804 0.701961 0.145098 ]
/N 1
>>
<< /FunctionType 2
/Domain [ 0 1 ]
/C0 [ 0.909804 0.701961 0.145098 ]
/C1 [ 1 1 1 ]
/N 1
>>
]
/Bounds [ 0.529851 ]
/Encode [ 1 1 2 { pop 0 1 } for ]
>>
def
<< /ShadingType 3
/ColorSpace /DeviceRGB
/Coords [ -345.464294 190.5 0 -345.464294 190.5 34 ]
/Extend [ true true ]
/Function CairoFunction
>>
shfill
Q
1 g
44.625 68.954 84.75 -8.25 re f
46.125 62.204 10.5 -4.5 re f
99.375 85.454 30.75 -7.5 re f
98.625 49.454 30.75 -8.25 re f
61.949 110.954 12.75 -33 re f
73.559 90.434 12.75 -12.48 re f
0.643137 g
0.75 w
0 J
0 j
[] 0.0 d
4 M q 1 0 0 -1 0 115.266312 cm
6.992 57.043 m 6.98 65.43 l 7 88.949 l 78.227 88.91 l S Q
q 1 0 0 -1 0 115.266312 cm
56.688 88.922 m 56.688 69.016 l S Q
q 1 0 0 -1 0 115.266312 cm
56.688 63.492 m 56.688 54.562 l S Q
q 1 0 0 -1 0 115.266312 cm
6.98 57.418 m 56.688 57.418 l S Q
q 1 0 0 -1 0 115.266312 cm
56.625 46.312 m 3.375 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
29.07 46.371 m 29.07 44.16 l S Q
q 1 0 0 -1 0 115.266312 cm
33.488 37.535 m 22.445 37.535 l 22.445 17.098 l S Q
q 1 0 0 -1 0 115.266312 cm
39.566 37.535 m 42.703 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
42.328 17.098 m 42.328 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
22.445 11.023 m 22.445 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
42.328 11.023 m 42.328 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
3.113 4.395 m 3.113 46.371 l S Q
q 1 0 0 -1 0 115.266312 cm
78.227 88.91 m 247.086 89.051 l 247.098 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
247.469 4.395 m 3.113 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
50.848 37.535 m 59.133 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
63.781 37.535 m 72.391 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
52.504 24.832 m 52.504 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
52.504 24.832 m 96.375 24.832 l S Q
q 1 0 0 -1 0 115.266312 cm
66.312 37.535 m 66.312 24.832 l S Q
q 1 0 0 -1 0 115.266312 cm
96.375 24.457 m 96.453 37.535 l 130.145 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
130.145 37.535 m 130.145 13.785 l S Q
q 1 0 0 -1 0 115.266312 cm
130.145 7.711 m 130.145 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
141.191 4.395 m 141.191 37.535 l 155 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
160.523 37.535 m 168.258 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
163.836 37.535 m 163.836 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
174.332 37.535 m 179.301 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
177.094 37.535 m 177.094 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
185.379 37.535 m 195.32 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
190.902 37.535 m 190.902 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
201.395 37.535 m 211.891 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
204.156 37.535 m 204.156 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
217.965 37.535 m 228.457 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
221.277 37.535 m 221.277 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
234.535 37.535 m 247.094 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
56.625 54.562 m 129.375 54.562 l 129.375 46.312 l 56.625 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
68.285 65.703 m 68.285 88.914 l S Q
q 1 0 0 -1 0 115.266312 cm
80.988 65.703 m 78.227 65.703 l 78.227 88.91 l S Q
q 1 0 0 -1 0 115.266312 cm
87.066 65.703 m 143.402 65.703 l 143.402 72.883 l S Q
q 1 0 0 -1 0 115.266312 cm
143.402 78.957 m 143.402 88.961 l S Q
q 1 0 0 -1 0 115.266312 cm
143.402 65.703 m 168.258 65.703 l S Q
q 1 0 0 -1 0 115.266312 cm
174.332 65.703 m 180.961 65.703 l S Q
q 1 0 0 -1 0 115.266312 cm
177.094 65.703 m 177.094 72.883 l S Q
q 1 0 0 -1 0 115.266312 cm
177.094 78.406 m 177.094 88.992 l S Q
q 1 0 0 -1 0 115.266312 cm
187.035 65.703 m 194.215 65.703 l S Q
q 1 0 0 -1 0 115.266312 cm
200.289 65.703 m 206.918 65.703 l S Q
q 1 0 0 -1 0 115.266312 cm
204.156 65.703 m 204.156 72.883 l S Q
q 1 0 0 -1 0 115.266312 cm
190.902 65.703 m 190.902 89.004 l S Q
q 1 0 0 -1 0 115.266312 cm
204.156 78.406 m 204.156 89.012 l S Q
q 1 0 0 -1 0 115.266312 cm
213.547 65.703 m 247.09 65.703 l S Q
q 1 0 0 -1 0 115.266312 cm
67.969 14.891 m 51.953 14.891 l S Q
q 1 0 0 -1 0 115.266312 cm
51.953 14.891 m 51.953 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
242.02 46.371 m 211.086 46.371 l 211.086 56.867 l 242.02 56.867 l S Q
0.25098 g
q 1 0 0 -1 0 115.266312 cm
0.375 0.375 249.816 92.438 re S Q
0.211765 0.835294 0.411765 rg
q 1 0 0 -1 0 115.266312 cm
74.711 21.355 m 78.414 18.172 l 76.867 13.617 l 79.473 15.383 l 81.527
11.957 l 78.02 22.383 l 85.215 19.664 l 82.02 18.293 l 83.578 11.953 l 90.105
8.547 l 90.684 15.871 l 93.926 17.652 l 89.613 20.805 l 92.797 21.434 l
96.656 20.906 l 103.219 29.812 l 103.406 22.219 l 105.094 19.219 l 107.344
19.125 l 109.875 26.062 l 109.875 23.812 l 110.625 20.062 l 115.797 25.77
l 119.133 28.555 l 122.645 28.828 l 126.375 29.812 l 126.375 26.531 l 132.375
27.562 l 138.375 27.562 l 135.375 36.562 l 138.375 39.562 l 135.523 43.539
l 138.375 45.562 l 135.375 51.562 l 142.875 50.363 l 146.023 51.039 l 149.625
51.414 l 151.199 51.789 l 154.727 50.887 l 157.875 51.188 l 161.176 51.113
l 165 50.887 l 166.574 51.039 l 169.727 51.262 l 173.102 51.715 l 177.375
51.562 l 179.551 51.938 l 182.625 51.863 l 185.773 51.863 l 190.426 51.188
l 191.551 51.789 l 195.148 51.938 l 198.75 51.863 l 202.352 51.863 l 206.129
56.715 l 207.027 57.09 l 207.75 61.164 l 211.273 61.164 l 215.023 61.312
l 216.449 61.387 l 219.602 61.387 l 222.898 61.238 l 225.375 60.562 l 228.375
64.312 l 233.625 56.062 l 235.949 60.414 l 239.324 60.637 l 242.859 61.457
l 246.715 61.457 l S Q
0.643137 g
0.225 w
q 1 0 0 -1 0 115.266312 cm
66.738 24.562 m 66.738 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
65.238 24.562 m 65.238 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
63.738 24.562 m 63.738 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
62.238 24.562 m 62.238 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
60.738 24.562 m 60.738 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
59.238 24.562 m 59.238 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
57.738 24.562 m 57.738 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
56.238 24.562 m 56.238 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
54.738 24.562 m 54.738 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
53.238 24.562 m 53.238 4.395 l S Q
q 1 0 0 -1 0 115.266312 cm
239.113 56.867 m 239.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
239.113 56.867 m 239.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
237.613 56.867 m 237.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
236.113 56.867 m 236.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
234.613 56.867 m 234.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
233.113 56.867 m 233.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
231.613 56.867 m 231.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
230.113 56.867 m 230.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
228.613 56.867 m 228.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
227.113 56.867 m 227.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
225.613 56.867 m 225.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
224.113 56.867 m 224.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
222.613 56.867 m 222.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
221.113 56.867 m 221.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
219.613 56.867 m 219.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
218.113 56.867 m 218.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
216.613 56.867 m 216.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
215.113 56.867 m 215.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
218.113 56.867 m 218.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
216.613 56.867 m 216.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
215.113 56.867 m 215.113 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
213.613 56.867 m 213.613 46.312 l S Q
q 1 0 0 -1 0 115.266312 cm
212.113 56.867 m 212.113 46.312 l S Q
0 g
0.75 w
q 1 0 0 -1 0 115.266312 cm
250.109 98.812 m 69.375 98.812 l S Q
65.914 16.454 m 71.102 19.454 l 71.102 13.454 l h
65.914 16.454 m f*
0.8 w
q -1 0 0 1 0 115.266312 cm
-65.914 -98.812 m -71.102 -95.812 l -71.102 -101.812 l h
-65.914 -98.812 m S Q
0.643137 g
0.75 w
q 1 0 0 -1 0 115.266312 cm
77.188 37.535 m 96.152 37.535 l S Q
q 1 0 0 -1 0 115.266312 cm
74.691 24.832 m 74.82 4.395 l S Q
Q q
74 100.266 2 -90 re W n
q
74 100.266 2 -90 re W n
% Fallback Image: x=74 y=15 w=2 h=90 res=300ppi size=10125
[ 0.24 0 0 0.24 74 10.266312 ] concat
/DeviceRGB setcolorspace
8 dict dup begin
/ImageType 1 def
/Width 9 def
/Height 375 def
/Interpolate false def
/BitsPerComponent 8 def
/Decode [ 0 1 0 1 0 1 ] def
/DataSource currentfile /ASCII85Decode filter /FlateDecode filter def
/ImageMatrix [ 1 0 0 -1 0 375 ] def
end
image
Gb"/hh+Lsb*67dilulIBdU/\p]8TRp2/JJAMTBJ=RnVCUD)$*H\g6FW/DAd#0hjI3>s"fVCL
X_ac4u\CSKbG]@0XGs0oCRU0\?nZ.h%/qrLW0YnO,>An`4/CkAtcj50l7PRrc;(01e'kh:g
S?ElNk9GS@:pn-7f.aC_cJS!uDqfU3i%X%\M4NLf6S]'Jl:55lj9)cJqmYCuMh\^PeoO1,4
?;5e5)MbTlUYa)2MOc^PWL[B]G'RBf99PnT^L_u!JlhOQ-=eHi/?P@d[<Nq0+78^4.L-"_4
XgnEP9R4<X&`[?nWSH&qg%VIiRI[R&#o*^K9UmUT<UD4S;sWc8,0#gcq`_Er[O0MahR7fPZ
,+u@ebblW]tV/s4JBgU&MYn<Qfem5:i<aHW6<`[j?BjsG;N:!I.'>2R$sY>^W.5,h1?Z/?]
ij\b)/_Lg"2ZS.;^cl;ar7#aTscOk@SAA"(Hn$Sk.Is$ACfYNos<jT7.'*SLVfb9Gn3eQck
YP;=g)`ni[X.(Wtua$<?nA7=P/NWfC%&O_E]UHJN'.o$_Y!_;h>WQBjoID_a`@hI!>_\9/2
^TN82:d%0]Ilj!A+n.ns?_o&4CmHs*,0&URXQ5&^T`2J1c,^p-Fh>utOb2I:FAbk70p&Xjg
h?3\1WGjgJ.XJG_%"8H6%i>LSS^cZYU58=rEWq5Kf`@br8M)JEjA`K(,CoLh#MB5Xa^e:Ko
Kge,MucBKLY2f.G.V%uq"2H_n,_JAJ0SksTm@_L!TS\pYR.+=;kg!]bM2eJi(kIBOIDZ.'/
>aHB/gCr&B"]LZa6u)9oh2Bi]-o=@KMP<8J)\c(^hggT.?\fB0S:=M`9)F]"0p7UUITh>)8
K=$oXUB'opgZSPqg/[^WaGim:$#(rYJ)Mk!m#[SM$gFd6ru_;N-EI@$RFkaPe@KJPD?G<+.
$dmZhf2)TN/1GLU]P_=.&pmjeHJtaNd/tM)4$k*griU6.%59*iT8jXOE.r%2?XJkZBZD))E
71V_m2U<BN^Y`C$=ns8>U8#N.69i,aBV(cc*I<e_cYW6&Z(jYc&W9s,`3UjTCe##UhqDW@)
\pmn?:EDcX/PQALT'ETg<`nP&rDFr-!E:d4&J&0VO-;o3:pgL<hUUA<n)B2,?[lljAf0=XJ
kZBZD))E7?&NBW^^%=GX>P1isB9ce]<Ud7oiU6s0n^?D=i=@lL+'UIt5sBe`2O]1c7/(`+`
mu:fQX+PSI2n<RKpiAZ+#Q.`ZG90<6drc)%85cZ;]N9$E!V9IB:&"YH[ncY0)G:gQSMF!N9
)8u8UilcYg<`l=7#_u3g0Ji<H3AOVT",V+3)KN^>2IfUdBP6q~>
Q
Q q
126 100.266 1 -90 re W n
q
126 100.266 1 -90 re W n
% Fallback Image: x=126 y=15 w=1 h=90 res=300ppi size=5625
[ 0.24 0 0 0.24 126 10.266312 ] concat
/DeviceRGB setcolorspace
8 dict dup begin
/ImageType 1 def
/Width 5 def
/Height 375 def
/Interpolate false def
/BitsPerComponent 8 def
/Decode [ 0 1 0 1 0 1 ] def
/DataSource currentfile /ASCII85Decode filter /FlateDecode filter def
/ImageMatrix [ 1 0 0 -1 0 375 ] def
end
image
Gb"/fHV@@N'YsI`P2.FtU7dcRD?lD%B$i)p8jOY0>?.8$*WhfBk6$#))OY7AH0B4i9InRd7<
BH"dYLAj=.8(MU)%\bQi_HBY\XFT5<u?$6\U(QpR>_G,W'kdCeK9Rjb1P3nF^`[?S>`@n6.
#`YTDb6ZRH0XU7rdn!e2rW&Eee3&EcZlP:;S(@IS<U8SQb4!r3!.:./8dSE8js2:LeZW%7i
IiFmm)&n@&c6<lid4Mj`gFf89SOO5^jm`!?<15j;K$sncMGFB7F+MX:p_^$`ZL<E!CV)YGn
e.$"S69$"EN>?-!Nm/X4`;>r.B-PWZAgJ/4Y@)<%ib$W?$O-+%)4ZaI"jJe:aJUc&!8Yhb)
7R51mCPNc(?)r=pCRo[I"6H<E+=Q2_L)TmHCGTj6(EgEAJE3u1UmR-r\Wq,Jc%D1Q_F$H0"
S.td!4%\T0i<g.m#9B\3f'J;QiHUZJFhP_8]CAY"D])cr?VT'0uL[ATsD#l<T7-HkNAB0`U
+>aLteW3N7)8L/Zm&g-ekfWi819`)P41[)_'84Dr@SU>Vo[1MKi:P/-eFbhhLL0d1V&$7U5
1Cjk48HXajVF(`+9=3<HdBe<Z#1,pc5(Ta[ig&H-HduO#8o$;:*+*L]bdTQ;If7M<ie.4[S
)&F=QX&OW$/sZt?gl5MNiB,X1]RJu/YPfJ]Z-b%.-$]B'jj:eQe"[0(>o4Q+rq+2!d#2m@I
iRL@TO,!An[Y-Sc\;\#@5C?0WM'/WPi&#hQDs>D[.d<BGnu0f9#E,Lj'+a!#[Zt:C4G(tP1
K7_6Y6;D@pO-W_)')hOH,PT\m.9SS\(),8QUK)9mT?#Po>nl=0.\QU;>!4>"GQFat67HL3Q
gtcH?o^$YA6N6TLrkGLfr`l5T$'g3[%Fs("e&:QQ%r%Ls&)LPLT@)]u7-eC<"#9MHj42Z\A
Tr14#$\[b:bVPY]0Pmmr82ZtOHZa*?(4$[IpCU71>nDV8H$*C>32Cl[BD\1ilg8pg9T"]m)
f[slDnt0[/>-7KB^u=6+`Poe$#pglDa2_"t0!",>-Ag[3N!)^]a;",YdB'L/o=4TQ4.QHKh
$iGDF7X&\;';LWi7$n;Nf,MWU>$qJmWZ^l&M?QJ&;f<WZGB"2fpAXNWH1@i(i7jiL,IP?nP
dBJBm(BunfKVH#AG!1ZN?Z4)lm66Aq\bYS46aRQLIM"=-0pqpgeN7H+1OA'5e86Ag^HW,K2
<Hi7ioh_i`^mMhG*&4C_j1<##=tkgEq>E:6&G,SF%/>:IEVoMQrlQnE]%>ia1K8/tq@Q`D+
36RHkqBN@`Vr!!?AU3dfHZ,#2jR="fI*l8!Yb3VuYO!/nfC`1)NZn^,d61"YQ(J=4#`!&nD
4l6AqB\YZAMTDG>5&\n61MH_nn*V^pkk>=Rd`_fC\.JYd&8V,coh4V7@0u\`b3Z[H7>SFZH
>[@;dj>jm7YA^\m(U)c0juQnC`.Js4M1@.;EmB1)'LXd%u(,ah;S]DX`j'04LO<Y1@=c]o9
\3LYbo?4Bk]$o\OXn6E,`%5!+0S\DRR%154'T-ZF37m7f!\gH9E6am"kKNG3mi^l"Or"D7<
<Q^$YO%O2]uLEVMV4DmO'*qoN-UG&8VB'+1OdJUsBqNCF$9rP.!.\:A0'i8q>Q["u]\#m>0
bn"?<rLqg]W$4$of1rbu6YjLKBs-r_E#@87C]"5KCTA$/G@rM7F=Yd_ma[TKC~>
Q
Q q
171 100.266 1 -90 re W n
q
171 100.266 1 -90 re W n
% Fallback Image: x=171 y=15 w=1 h=90 res=300ppi size=5625
[ 0.24 0 0 0.24 171 10.266312 ] concat
/DeviceRGB setcolorspace
8 dict dup begin
/ImageType 1 def
/Width 5 def
/Height 375 def
/Interpolate false def
/BitsPerComponent 8 def
/Decode [ 0 1 0 1 0 1 ] def
/DataSource currentfile /ASCII85Decode filter /FlateDecode filter def
/ImageMatrix [ 1 0 0 -1 0 375 ] def
end
image
Gb"0PIo)>O*!c!(Y3W'n7h\;[EIq\-&]H3FfHtnVP+j6eMNHfu))*g-5tFFd":CuUVBUg/8g
]rgU%i->(nS.(kQL:n&SMAP8`5qPLr^,&D4c50m^2E%+*HC>]^L!TkHjP>]DF_Jms!*1#M)
dV>.Tcj^:kX\V,A`iWMlcjF'2IA[#LlaY0Lc`9Ahmu8Bb];Ln.Nq<A7!UA`\`=#6kD/8-T;
(8*p//ZE:7R7+0Q51ZApVA7WW?<**.^fX\#^8kX4%p?`GRO,i$g7`YLI7`TBms,+&l%JCE_
&&;$A:ga)rh`ZmHd';uoA7\_"\5[`sYf@H[GYKN-#Nb5H#.b_J,*pD7joEZ*6iA%u(X=$aF
$(Q"\utA2>MEqrmVTAqCVANTHDT5l-dEBjHspbbAmA*nR_"E4HgnSed)AoWku)_lc]4m[D`
SR-RZGr=!VMS!\o/TR\EhDH`8t]i+^^kdlMBa9B1"st_ZA-7E3SXt@H[<RcKi"V5ORq:1%4
[GlZ@NEmaJ[Q%-\eaG")U+4N(16WIi3<[9Fk^RHlSs!@RKLp6q4g8pT?hks0SDo^92FD3n=
.>`$.0&_C'[,\#K-hIrrrBr^5toV!j_c<M69`t/jNk9QHU!?C"YeQNh'^.]Yh*A<g@rn.,>
b[1O,]eimO3Y%BjB?`KpqNLIlNa">S(7<Bm)7:*Pf#+GO)Cp?NV9I1N1V6(#DUH["Nj&ua*
=&s`VW'Bag`i2X:'#eOK23`["e%joi):LuMTWC8MH((`.1kJOKKhctkceNLMhmFN,H*<I+Z
$tF(p]\$@Dk<!ZU,#gCDgB5\-4]NN<4J/K*tMY_HmsbUC+BUV`<]7#j2c0`*S+@&'IFe&(7
Y*e>s74C["0u$ZT(5SOroHL;>q_k<ZEU$LlFOc9Uo+'DuI%"mS%Di:ddX7<gVn"lV:kP7`8
!8?mQlP_9r6L`2IFc'p7+EO0B1JHC3)K/Y""D7C!dE$F:RdB#J7p`KdE7J)dRjHH3n(6?f5
SRdOuHH^,)\;ZX(;:F_V"OB1bk4-JO&^B$-lpQ_<atuLIF3^SgV0H>O.oH+O61I:=fS?F4&
`RJgE%EF/^l*tlG\^7=ho1LbF`0DOm9/G5iW[9^*0d%db[fmL-b@sOZ@1odY2Z>+X:=F,M"
ro?HEO0ZC9EQ=h*rLM#b>rp_CH0u+<6)S%(V0^QM9?a-.3#YC'"O,5f'i6+^Tl4))Q,!!T&
mRWtFMeZ]cfQ#;CB3MYELr-Q3BBbGX8$K]A3Vokaha_WurY7kdEF!Au0t`q?(G6rA"<_OD)
qLLqo4J.H5Leo5\EQD":#`k[SoghCp="o&?-Vk`S"c;uq2YH!8b[YXERKXVO2#\OcQ#]D)6
+T+DqI`XKA4q;6>"L+E+Gr4hX!WFYTef3dDZVD4m=#2fHQ#@3Ja"kVR9MLfak9Km*Jq[rZJ
1)E2Tg`B0=mZPX_fdE["l/]+lV%=CM1KN\H./jN!rOALo-cQK?572WoXc.60a'T(G:/2F`+
_Pto_Y.84/Zh:3aRFj<p%OVRD?Br%6iV5gf!P][WE]T@k9%ME&F6[9]2fEHeJ7B9e>&ZDYe
aSkmLj^cI].%@b*+glX#7NJd=4!"'bFO)th&B9+05EOOafCL\luTZYVpAp>S0#,$+oWGduF
XdbJDNeZ2^RcLc(^#:K(K\bgNd0D[ObFKmcIEQ5$OmGDc6o8Q:XYM"<lqos*Vh5^Y4LlA^K
b7qd57I[rCO!SoGYZnA[^3#AK3;m8jBDm9JaE,e?6D4<k?.[=g?_'eR?'M-;9)@fC^@%VOi
Cr[R<GKp+idToZ33hp2PnBJ^c/j?3QCQ0D:hTR5#Cd=#jsQA:"D&n4]r$]biINb@)^m5]la
uc5U&9jn;rcb.9rPUumVfkohpF^E!!=6##J,C2RY^+p^V+UVHj)2^f+7T3;+<"q1+CRbe3a
>o8nGA7-BlVa'j<3eZ&Lrhr3)]&XClYA%qg"N<\c^Z/,:]*ms$ZZ*_f[9<Z4PYIQiu[5!Fc
J3B=XGUu^Dmp7S(Ofd$_)"gtbG%Lrt*M-)>&p@`*$<_P8urd6,$I5HH6fWF>O\(^fZrF_7'
B4i.l#4'V5P9/!4f`.@,ju38W=%`~>
Q
Q Q
showpage
%%Trailer
end restore
%%EOF

View File

@@ -0,0 +1,59 @@
%% Creator: Inkscape inkscape 0.92.1, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'multimodalPath.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{250.5662384bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.46002332)%
\put(0,0){\includegraphics[width=\unitlength]{multimodalPath.eps}}%
\put(2.89893406,0.19736444){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\textbf{ }}}}%
\put(0.14220044,0.04977066){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{Time}}}%
\put(0.29233099,0.00579833){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$t$}}}%
\put(0.46064291,0.00579833){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$t-1$}}}%
\put(0.63956621,0.00579833){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{$t-2$}}}%
\end{picture}%
\endgroup%

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,62 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'wifiOptTopView.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{707.99998847bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.71927962)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{wifiOptTopView.eps}}%
\put(0.0420516,0.65683794){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}floor optim.\end{tabular}}}}%
\put(0.02675088,0.68947947){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}global optim.\end{tabular}}}}%
\put(0.24620002,0.68934834){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}ground truth\end{tabular}}}}%
\put(0.2303965,0.65687677){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}reference point\end{tabular}}}}%
\end{picture}%
\endgroup%

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,69 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'grid_180_final.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{296.20049286bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.78976373)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{grid_180_final.eps}}%
\put(0.99105553,0.09049121){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}0\end{tabular}}}}%
\put(0.84495517,0.06820901){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}1\end{tabular}}}}%
\put(0.6988548,0.04618001){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}2\end{tabular}}}}%
\put(0.55275444,0.02415101){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}3\end{tabular}}}}%
\put(0.40665407,0.00186881){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}4\end{tabular}}}}%
\put(0.08714299,0.303818){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}0\end{tabular}}}}%
\put(0.16537958,0.20468751){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}2\end{tabular}}}}%
\put(0.2325427,0.11783755){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}4\end{tabular}}}}%
\put(0.30128836,0.03073439){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\put(0.08760506,0.48751958){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}3\end{tabular}}}}%
\put(0.08760506,0.67691832){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\end{picture}%
\endgroup%

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,69 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'grid_25_final.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{296.20049286bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.78976373)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{grid_25_final.eps}}%
\put(0.99105553,0.09049121){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}0\end{tabular}}}}%
\put(0.84495517,0.06820901){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}1\end{tabular}}}}%
\put(0.6988548,0.04618001){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}2\end{tabular}}}}%
\put(0.55275444,0.02415101){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}3\end{tabular}}}}%
\put(0.40665407,0.00186881){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}4\end{tabular}}}}%
\put(0.08714299,0.303818){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}0\end{tabular}}}}%
\put(0.16537958,0.20468751){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}2\end{tabular}}}}%
\put(0.2325427,0.11783755){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}4\end{tabular}}}}%
\put(0.30128836,0.03073439){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\put(0.08760506,0.48751958){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}3\end{tabular}}}}%
\put(0.08760506,0.67691832){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\end{picture}%
\endgroup%

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,69 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'mesh_180_final.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{296.20049286bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.78976373)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{mesh_180_final.eps}}%
\put(0.99105553,0.09049121){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}0\end{tabular}}}}%
\put(0.84495517,0.06820901){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}1\end{tabular}}}}%
\put(0.6988548,0.04618001){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}2\end{tabular}}}}%
\put(0.55275444,0.02415101){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}3\end{tabular}}}}%
\put(0.40665407,0.00186881){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}4\end{tabular}}}}%
\put(0.08714299,0.303818){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}0\end{tabular}}}}%
\put(0.16537958,0.20468751){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}2\end{tabular}}}}%
\put(0.2325427,0.11783755){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}4\end{tabular}}}}%
\put(0.30128836,0.03073439){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\put(0.08760506,0.48751958){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}3\end{tabular}}}}%
\put(0.08760506,0.67691832){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\end{picture}%
\endgroup%

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,69 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'mesh_25_final.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{296.20049286bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.78976373)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{mesh_25_final.eps}}%
\put(0.99105553,0.09049121){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}0\end{tabular}}}}%
\put(0.84495517,0.06820901){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}1\end{tabular}}}}%
\put(0.6988548,0.04618001){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}2\end{tabular}}}}%
\put(0.55275444,0.02415101){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}3\end{tabular}}}}%
\put(0.40665407,0.00186881){\makebox(0,0)[t]{\lineheight{1.25}\smash{\begin{tabular}[t]{c}4\end{tabular}}}}%
\put(0.08714299,0.303818){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}0\end{tabular}}}}%
\put(0.16537958,0.20468751){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}2\end{tabular}}}}%
\put(0.2325427,0.11783755){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}4\end{tabular}}}}%
\put(0.30128836,0.03073439){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\put(0.08760506,0.48751958){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}3\end{tabular}}}}%
\put(0.08760506,0.67691832){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}6\end{tabular}}}}%
\end{picture}%
\endgroup%

Binary file not shown.

View File

@@ -0,0 +1,593 @@
<svg xmlns='http://www.w3.org/2000/svg' height='682' width='832'>
<polygon points='515.159,488.925 628.063,530.826 517.433,486.47' fill='#3C3C3CFF' style='fill:#3C3C3C;stroke:#3C3C3C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='570.516,429.197 767.47,502.291 619.309,446.865' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='245.733,388.935 570.516,429.197 301.548,329.377' fill='#007F00FF' style='fill:#007F00;stroke:#007F00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='309.815,356.565 315.193,357.688 315.193,355.441' fill='#F9F9F9FF' style='fill:#F9F9F9;stroke:#F9F9F9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='306.27,353.276 315.193,355.441 329.852,358.201' fill='#EFEFEFFF' style='fill:#EFEFEF;stroke:#EFEFEF;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='315.193,355.441 311.869,354.747 309.815,356.565' fill='#F9F9F9FF' style='fill:#F9F9F9;stroke:#F9F9F9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='306.27,353.276 309.815,356.565 311.869,354.747' fill='#D7D7D7FF' style='fill:#D7D7D7;stroke:#D7D7D7;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='619.309,446.865 301.548,329.377 570.516,429.197' fill='#007E00FF' style='fill:#007E00;stroke:#007E00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='726.962,331.112 301.854,329.051 619.309,446.865' fill='#007C00FF' style='fill:#007C00;stroke:#007C00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='450.414,92.7252 228.465,88.4283 396.901,150.938' fill='#373737FF' style='fill:#373737;stroke:#373737;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='228.465,88.4283 450.414,92.7252 308.892,40.2033' fill='#363636FF' style='fill:#363636;stroke:#363636;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='438.067,107.843 291.462,14.1134 291.462,50.1355' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='252.347,87.9882 239.926,43.7903 239.926,79.8124' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='336.261,364.813 329.852,358.201 329.852,374.139' fill='#DADADAFF' style='fill:#DADADA;stroke:#DADADA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='329.852,374.139 329.852,358.201 315.193,355.441' fill='#F3F3F3FF' style='fill:#F3F3F3;stroke:#F3F3F3;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='329.852,374.139 315.193,355.441 315.193,357.688' fill='#F4F4F4FF' style='fill:#F4F4F4;stroke:#F4F4F4;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='277.604,93.8079 261.254,82.7757 259.143,84.069' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='291.697,366.17 311.869,358.382 309.815,356.565' fill='#CBCBCBFF' style='fill:#CBCBCB;stroke:#CBCBCB;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='593.484,139.048 375.81,168.226 518.211,221.074' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='525.473,202.735 498.675,198.288 521.769,206.859' fill='#5F5F5FFF' style='fill:#5F5F5F;stroke:#5F5F5F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='529.177,200.882 506.083,192.311 502.379,196.434' fill='#5F5F5FFF' style='fill:#5F5F5F;stroke:#5F5F5F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='525.473,202.735 502.379,194.165 498.675,198.288' fill='#5F5F5FFF' style='fill:#5F5F5F;stroke:#5F5F5F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.202,221.007 515.653,189.661 515.653,220.036' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.202,221.007 518.202,190.631 515.653,189.661' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='336.261,364.813 329.852,374.139 336.261,386.738' fill='#D9D9D9FF' style='fill:#D9D9D9;stroke:#D9D9D9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='306.27,353.276 291.697,366.17 309.815,356.565' fill='#D5D5D5FF' style='fill:#D5D5D5;stroke:#D5D5D5;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='315.097,48.5978 252.347,51.9661 252.347,87.9882' fill='#767676FF' style='fill:#767676;stroke:#767676;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='570.516,429.197 245.733,388.935 515.159,488.925' fill='#007E00FF' style='fill:#007E00;stroke:#007E00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='307.054,396.726 303.822,393.514 283.774,375.776' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='275.492,92.9575 259.143,81.9254 257.031,83.2186' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='311.97,409.301 312.186,390.023 310.841,388.832' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='303.822,393.514 329.852,374.139 306.271,379.064' fill='#BBBBBBFF' style='fill:#BBBBBB;stroke:#BBBBBB;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='306.271,379.064 315.193,357.688 311.869,358.382' fill='#DDDDDDFF' style='fill:#DDDDDD;stroke:#DDDDDD;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='283.774,375.776 303.822,393.514 306.271,379.064' fill='#A3A3A3FF' style='fill:#A3A3A3;stroke:#A3A3A3;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='306.271,379.064 329.852,374.139 315.193,357.688' fill='#DCDCDCFF' style='fill:#DCDCDC;stroke:#DCDCDC;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='291.697,366.17 306.271,379.064 311.869,358.382' fill='#CACACAFF' style='fill:#CACACA;stroke:#CACACA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='283.774,375.776 306.271,379.064 291.697,366.17' fill='#A4A4A4FF' style='fill:#A4A4A4;stroke:#A4A4A4;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='315.097,48.5978 315.097,12.5758 252.347,51.9661' fill='#767676FF' style='fill:#767676;stroke:#767676;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='729.243,328.659 240.326,147.212 410.12,213.525' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='172.672,112.208 800.772,345.309 192.77,97.6738' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='311.97,409.301 310.841,388.832 310.139,407.681' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='307.054,396.726 283.774,375.776 294.231,385.381' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='800.772,345.309 172.672,112.208 798.479,347.757' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='120.076,277.424 290.844,340.799 238.058,149.669' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='208.879,349.967 263.319,370.171 231.102,325.225' fill='#3D3D3DFF' style='fill:#3D3D3D;stroke:#3D3D3D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='314.931,406.681 317.765,419.43 317.765,414.782' fill='#C5C5C5FF' style='fill:#C5C5C5;stroke:#C5C5C5;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='204.445,432.992 562.886,506.638 245.733,388.935' fill='#007D00FF' style='fill:#007D00;stroke:#007D00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='314.931,406.681 314.931,408.682 317.765,419.43' fill='#C6C6C6FF' style='fill:#C6C6C6;stroke:#C6C6C6;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='314.931,408.682 314.363,389.568 312.186,390.023' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='314.931,408.682 312.186,390.023 311.97,409.301' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='303.822,393.514 336.261,386.738 329.852,374.139' fill='#BBBBBBFF' style='fill:#BBBBBB;stroke:#BBBBBB;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='327.801,392.393 303.822,393.514 307.054,396.726' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='314.931,408.682 311.97,409.301 310.887,420.867' fill='#AAAAAAFF' style='fill:#AAAAAA;stroke:#AAAAAA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='767.47,502.291 570.516,429.197 762.862,507.178' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='438.067,107.843 438.067,71.8208 291.462,14.1134' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='314.931,408.682 310.887,420.867 317.765,419.43' fill='#AAAAAAFF' style='fill:#AAAAAA;stroke:#AAAAAA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='311.97,409.301 306.637,417.106 310.887,420.867' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='301.548,329.377 619.309,446.865 301.854,329.051' fill='#007F00FF' style='fill:#007F00;stroke:#007F00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='451.993,57.2025 291.462,14.1134 438.067,71.8208' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='798.856,188.452 652.494,134.134 729.814,272.791' fill='#373737FF' style='fill:#373737;stroke:#373737;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='665.84,488.766 606.822,466.863 662.877,492.064' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='263.319,370.171 93.2514,307.055 204.445,432.992' fill='#3C3C3CFF' style='fill:#3C3C3C;stroke:#3C3C3C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='186.384,384.434 178.729,340.991 178.729,381.53' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='34.6945,369.994 204.445,432.992 93.2514,307.055' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='204.445,432.992 34.6945,369.994 505.249,566.619' fill='#3D3D3DFF' style='fill:#3D3D3D;stroke:#3D3D3D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='598.753,133.306 451.155,86.2262 593.484,139.048' fill='#373737FF' style='fill:#373737;stroke:#373737;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='160.623,357.341 121.779,410.11 168.247,360.278' fill='#7B7B7BFF' style='fill:#7B7B7B;stroke:#7B7B7B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='19.4849,386.342 505.249,566.619 34.6945,369.994' fill='#3C3C3CFF' style='fill:#3C3C3C;stroke:#3C3C3C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='168.247,400.817 168.247,360.278 121.779,410.11' fill='#686868FF' style='fill:#686868;stroke:#686868;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='175.657,373.932 157.127,370.555 175.657,378.472' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='178.315,368.849 159.806,360.909 159.806,365.449' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='180.973,363.765 162.485,360.342 180.973,368.304' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='0.472931,406.776 634.275,641.994 19.4849,386.342' fill='#3C3C3CFF' style='fill:#3C3C3C;stroke:#3C3C3C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='652.794,621.376 19.4849,386.342 634.275,641.994' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='168.247,400.817 121.779,410.11 121.779,450.649' fill='#676767FF' style='fill:#676767;stroke:#676767;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='93.2514,307.055 208.879,349.967 99.3353,300.516' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='206.196,354.36 100.303,267.924 100.303,308.463' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='154.392,414.602 135.694,411.408 154.392,419.142' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='133.015,411.975 151.734,419.686 154.392,416.872' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='157.05,409.519 138.373,406.301 157.05,414.058' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='154.392,416.872 151.734,424.226 154.392,419.142' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='154.448,371.123 172.999,379.016 175.657,376.202' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='178.315,371.118 175.657,373.932 175.657,378.472' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='162.366,399.351 143.731,396.088 162.366,403.891' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='157.05,411.788 154.392,419.142 157.05,414.058' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='154.392,416.872 151.734,419.686 151.734,424.226' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='154.392,414.602 135.694,406.868 135.694,411.408' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='165.024,394.267 146.41,386.442 146.41,390.982' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='165.024,394.267 146.41,390.982 165.024,398.807' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='167.683,391.453 165.024,398.807 167.683,393.723' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='143.731,391.549 162.366,399.351 165.024,396.537' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='167.683,389.184 149.09,385.875 167.683,393.723' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='157.05,409.519 138.373,401.762 138.373,406.301' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='159.708,406.705 157.05,414.058 159.708,408.974' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='159.708,404.435 141.052,401.195 159.708,408.974' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='146.41,386.442 165.024,394.267 167.683,391.453' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='167.683,389.184 149.09,381.336 149.09,385.875' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='172.999,379.016 154.448,371.123 154.448,375.662' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='172.999,379.016 154.448,375.662 172.999,383.555' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='175.657,376.202 172.999,379.016 172.999,383.555' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='151.769,376.229 170.341,384.1 172.999,381.286' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='175.657,376.202 172.999,383.555 175.657,378.472' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='172.999,381.286 170.341,384.1 170.341,388.639' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='175.657,373.932 157.127,366.016 157.127,370.555' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='186.384,384.434 186.384,343.895 178.729,340.991' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='170.341,384.1 151.769,376.229 151.769,380.769' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='180.973,363.765 162.485,355.803 162.485,360.342' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='172.999,381.286 170.341,388.639 172.999,383.555' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='151.734,419.686 133.015,416.514 151.734,424.226' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='186.289,355.867 183.631,358.681 183.631,363.22' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='170.341,384.1 151.769,380.769 170.341,388.639' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='151.769,376.229 172.999,381.286 154.448,373.392' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='159.806,360.909 180.973,366.035 162.485,358.073' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='183.631,358.681 165.165,355.236 183.631,363.22' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='162.366,399.351 143.731,391.549 143.731,396.088' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='183.631,360.951 180.973,368.304 183.631,363.22' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='156.525,424.111 144.113,440.441 156.525,428.65' fill='#4D4D4DFF' style='fill:#4D4D4D;stroke:#4D4D4D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='151.734,419.686 133.015,411.975 133.015,416.514' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='159.806,360.909 178.315,368.849 180.973,366.035' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='183.631,360.951 180.973,363.765 180.973,368.304' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='165.165,350.696 186.289,355.867 167.844,347.86' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='606.127,673.333 375.187,587.626 600.201,679.931' fill='#373737FF' style='fill:#373737;stroke:#373737;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='16.3698,406.114 16.3698,365.575 3.72897,360.609' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='437.789,106.691 384.654,127.922 384.654,163.944' fill='#656565FF' style='fill:#656565;stroke:#656565;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='144.113,435.901 151.711,422.026 139.3,433.811' fill='#5F5F5FFF' style='fill:#5F5F5F;stroke:#5F5F5F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='244.864,142.298 798.479,347.757 172.672,112.208' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='183.631,358.681 165.165,350.696 165.165,355.236' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='198.665,437.421 188.507,392.956 188.507,433.495' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='109.108,308.577 16.3698,365.575 16.3698,406.114' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='162.485,355.803 180.973,363.765 183.631,360.951' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='159.708,404.435 141.052,396.655 141.052,401.195' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='141.052,396.655 159.708,404.435 162.366,401.621' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='16.3698,406.114 3.72897,360.609 3.72897,401.148' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='437.789,106.691 437.789,70.6685 384.654,127.922' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='144.113,435.901 156.525,424.111 151.711,422.026' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='135.694,406.868 157.05,411.788 138.373,404.031' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='138.373,401.762 157.05,409.519 159.708,406.705' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='138.373,401.762 159.708,406.705 141.052,398.925' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='159.708,406.705 157.05,409.519 157.05,414.058' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='162.366,401.621 159.708,404.435 159.708,408.974' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='135.694,406.868 154.392,414.602 157.05,411.788' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='177.913,76.2905 241.438,20.635 165.95,68.4934' fill='#6F6F6FFF' style='fill:#6F6F6F;stroke:#6F6F6F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='375.81,168.226 593.484,139.048 451.155,86.2262' fill='#383838FF' style='fill:#383838;stroke:#383838;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='585.411,148.084 518.202,190.631 518.202,221.007' fill='#555555FF' style='fill:#555555;stroke:#555555;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='439.367,167.551 418.839,159.933 415.135,164.056' fill='#5E5E5EFF' style='fill:#5E5E5E;stroke:#5E5E5E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='634.275,641.994 0.472931,406.776 613.534,665.086' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='238.058,149.669 410.12,213.525 240.326,147.212' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='789.539,202.382 729.883,232.071 729.883,272.61' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='149.09,381.336 170.341,386.37 151.769,378.499' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='411.63,157.004 385.97,147.481 377.081,157.377' fill='#787878FF' style='fill:#787878;stroke:#787878;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='606.868,672.407 599.46,640.115 599.46,680.654' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='170.341,386.37 167.683,389.184 167.683,393.723' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='180.973,366.035 178.315,373.388 180.973,368.304' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='558.825,609.708 518.481,610.278 518.481,650.816' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='505.249,566.619 652.794,621.376 526.279,544.734' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='141.052,396.655 162.366,401.621 143.731,393.818' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='165.024,396.537 162.366,399.351 162.366,403.891' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='162.366,401.621 159.708,408.974 162.366,403.891' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='165.024,396.537 162.366,403.891 165.024,398.807' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='143.731,391.549 165.024,396.537 146.41,388.712' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='400.067,575.886 400.067,535.347 391.576,543.151' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='178.315,368.849 159.806,365.449 178.315,373.388' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='606.868,672.407 606.868,631.868 599.46,640.115' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='146.41,386.442 167.683,391.453 149.09,383.605' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='411.63,154.604 411.63,114.065 402.741,123.962' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='828.353,319.257 520.433,204.981 819.121,325.727' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='425.835,175.471 489.985,199.278 498.874,189.382' fill='#7A7A7AFF' style='fill:#7A7A7A;stroke:#7A7A7A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='630.285,528.352 517.433,486.47 628.063,530.826' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='120.83,425.92 151.734,421.956 133.015,414.244' fill='#5F5F5FFF' style='fill:#5F5F5F;stroke:#5F5F5F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='599.46,680.654 599.46,640.115 518.631,610.118' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='819.121,325.727 513.766,212.404 816.062,328.991' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='472.473,161.552 498.399,132.687 495.833,131.735' fill='#B0B0B0FF' style='fill:#B0B0B0;stroke:#B0B0B0;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='192.77,97.6738 395.333,172.849 214.878,81.6868' fill='#373737FF' style='fill:#373737;stroke:#373737;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='498.399,163.063 498.399,132.687 472.473,161.552' fill='#888888FF' style='fill:#888888;stroke:#888888;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='599.46,680.654 518.631,610.118 518.631,650.657' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='558.825,609.708 558.825,569.169 518.481,610.278' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='167.683,391.453 165.024,394.267 165.024,398.807' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='170.341,386.37 167.683,393.723 170.341,388.639' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='149.09,381.336 167.683,389.184 170.341,386.37' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='157.127,366.016 178.315,371.118 159.806,363.179' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='198.665,437.421 198.665,396.882 188.507,392.956' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.481,650.816 505.951,605.197 505.951,645.735' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='165.165,350.696 183.631,358.681 186.289,355.867' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='400.067,535.347 -0.80957,366.739 391.576,543.151' fill='#7B7B7BFF' style='fill:#7B7B7B;stroke:#7B7B7B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.481,610.278 546.295,564.088 505.951,605.197' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='472.473,161.552 495.833,131.735 469.907,160.6' fill='#B2B2B2FF' style='fill:#B2B2B2;stroke:#B2B2B2;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='498.874,146.443 425.835,132.533 489.985,156.34' fill='#787878FF' style='fill:#787878;stroke:#787878;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='498.874,187.084 434.724,163.276 482.577,205.227' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='565.966,434.106 762.862,507.178 570.516,429.197' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='489.985,196.879 489.985,156.34 425.835,132.533' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='619.309,446.865 767.777,501.965 672.223,389.969' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='586.16,148.33 438.561,70.8741 438.561,101.25' fill='#777777FF' style='fill:#777777;stroke:#777777;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='498.874,186.982 498.874,146.443 489.985,156.34' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='586.16,148.33 586.16,117.954 438.561,70.8741' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.481,610.278 558.825,569.169 546.295,564.088' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.631,610.118 599.46,640.115 606.868,631.868' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='435.663,169.405 415.135,161.787 411.431,165.91' fill='#5E5E5EFF' style='fill:#5E5E5E;stroke:#5E5E5E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='391.576,583.69 391.576,543.151 -0.80957,366.739' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='786.266,293.741 527.1,197.559 828.353,319.257' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='520.433,204.981 828.353,319.257 527.1,197.559' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='578.42,216.605 729.814,272.791 652.494,134.134' fill='#383838FF' style='fill:#383838;stroke:#383838;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='214.878,81.6868 288.462,108.995 223.922,75.1466' fill='#363636FF' style='fill:#363636;stroke:#363636;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='391.576,583.69 -0.80957,366.739 -0.80957,407.278' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='789.917,202.62 638.126,110.147 638.126,150.686' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='651.205,154.512 587.7,182.773 587.7,223.312' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='627.655,456.899 566.071,393.505 566.071,434.044' fill='#525252FF' style='fill:#525252;stroke:#525252;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='526.279,544.734 672.794,599.109 527.836,543.113' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='506.596,646.176 373.217,548.44 373.217,588.979' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='798.479,347.757 244.864,142.298 793.892,352.652' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='410.12,213.525 238.058,149.669 290.844,340.799' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='286.256,345.695 231.102,325.225 263.319,370.171' fill='#3E3E3EFF' style='fill:#3E3E3E;stroke:#3E3E3E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='411.63,157.004 377.081,157.377 402.741,166.9' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='594.729,567.938 527.836,543.113 672.794,599.109' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='575.959,434.462 575.959,393.923 523.565,450.352' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='498.874,146.443 434.724,122.636 425.835,132.533' fill='#777777FF' style='fill:#777777;stroke:#777777;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='506.596,646.176 506.596,605.637 373.217,548.44' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='598.013,102.599 450.415,55.5193 438.561,70.8741' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='575.959,434.462 523.565,450.352 523.565,490.891' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='594.233,427.667 580.137,445.442 594.233,429.937' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='582.739,444.751 596.814,429.081 592.644,427.534' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='594.233,427.667 559.673,435.484 580.137,443.172' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='451.993,57.2025 305.388,-0.504883 291.462,14.1134' fill='#6F6F6FFF' style='fill:#6F6F6F;stroke:#6F6F6F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='364.148,42.192 357.481,49.6143 367.745,53.4235' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='617.662,447.458 603.588,467.383 617.662,451.714' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='729.243,328.659 410.12,213.525 726.962,331.112' fill='#007700FF' style='fill:#007700;stroke:#007700;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='301.854,329.051 726.962,331.112 410.12,213.525' fill='#007B00FF' style='fill:#007B00;stroke:#007B00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='821.233,445.27 672.223,389.969 767.777,501.965' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='136.566,278.008 136.566,237.469 123.823,232.612' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='627.655,456.899 627.655,416.36 566.071,393.505' fill='#525252FF' style='fill:#525252;stroke:#525252;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='651.205,154.512 651.205,113.973 587.7,182.773' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='252.347,87.9882 252.347,51.9661 239.926,43.7903' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='109.108,308.577 109.108,268.038 16.3698,365.575' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='617.662,447.458 603.588,463.128 603.588,467.383' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='780.931,301.556 609.551,198.514 609.551,239.053' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='157.05,411.788 154.392,414.602 154.392,419.142' fill='#4F4F4FFF' style='fill:#4F4F4F;stroke:#4F4F4F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='816.062,328.991 192.77,97.6738 800.772,345.309' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.202,190.631 582.862,116.737 515.653,189.661' fill='#787878FF' style='fill:#787878;stroke:#787878;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='273.38,92.1071 257.031,81.075 254.919,82.3682' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='626.002,454.809 611.928,474.734 626.002,459.064' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='793.892,352.652 729.243,328.659 736.554,413.844' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='582.739,444.751 592.644,427.534 578.57,443.203' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='240.326,147.212 793.892,352.652 244.864,142.298' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='271.268,91.2568 254.919,80.2246 252.807,81.5179' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='820.241,325.878 776.329,258.046 776.329,298.585' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='562.297,446.202 528.584,453.264 549.112,460.882' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='560.964,445.606 549.112,458.801 552.319,459.992' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='580.137,440.74 557.124,435.916 577.579,443.615' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.579,441.183 554.576,436.349 575.022,444.058' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='575.022,441.626 552.027,436.782 572.464,444.501' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='632.1,451.951 627.655,416.36 627.655,456.899' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='562.233,446.272 541.833,438.514 541.833,440.946' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='572.464,442.069 549.478,437.215 569.906,444.943' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='572.464,442.069 569.906,444.943 569.906,447.375' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='569.906,442.512 546.93,437.648 567.349,445.386' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='621.492,404.176 628.396,415.535 634.322,408.938' fill='#7C7C7CFF' style='fill:#7C7C7C;stroke:#7C7C7C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='776.329,258.046 820.241,285.339 830.539,278.493' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='569.906,442.512 567.349,445.386 567.349,447.818' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='562.297,446.202 541.769,438.584 528.584,453.264' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='654.225,427.314 641.589,381.804 641.589,422.343' fill='#5A5A5AFF' style='fill:#5A5A5A;stroke:#5A5A5A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='789.917,202.62 789.917,162.081 638.126,110.147' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='594.233,427.667 573.833,419.909 559.673,435.484' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='654.225,427.314 654.225,386.775 641.589,381.804' fill='#5A5A5AFF' style='fill:#5A5A5A;stroke:#5A5A5A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='242.38,76.4987 228.946,71.5132 259.204,88.2407' fill='#363636FF' style='fill:#363636;stroke:#363636;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='177.913,116.829 177.913,76.2905 165.95,68.4934' fill='#5C5C5CFF' style='fill:#5C5C5C;stroke:#5C5C5C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='582.739,444.751 578.57,445.331 582.739,449.006' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='177.913,116.829 165.95,68.4934 165.95,109.032' fill='#5C5C5CFF' style='fill:#5C5C5C;stroke:#5C5C5C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='575.022,441.626 572.464,446.932 575.022,446.49' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='136.566,278.008 123.823,232.612 123.823,273.151' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='567.349,442.955 544.381,438.081 564.791,445.829' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='585.411,148.084 585.411,117.708 518.202,190.631' fill='#555555FF' style='fill:#555555;stroke:#555555;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='638.464,109.114 574.959,177.914 587.7,182.773' fill='#767676FF' style='fill:#767676;stroke:#767676;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.202,190.631 585.411,117.708 582.862,116.737' fill='#767676FF' style='fill:#767676;stroke:#767676;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='789.539,202.382 789.539,161.843 729.883,232.071' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='779.137,158.192 719.481,228.42 729.883,232.071' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='830.539,319.032 830.539,278.493 820.241,285.339' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='606.822,466.863 750.573,520.212 618.674,453.667' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='788.241,252.734 616.861,190.231 609.551,198.514' fill='#777777FF' style='fill:#777777;stroke:#777777;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.838,185.807 789.917,162.081 789.917,202.62' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.838,185.807 803.838,145.269 789.917,162.081' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='593.816,181.678 518.211,166.815 584.927,191.575' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='820.241,325.878 820.241,285.339 776.329,258.046' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='510.803,215.703 816.062,328.991 513.766,212.404' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='780.931,301.556 780.931,261.017 609.551,198.514' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='435.663,169.405 411.431,165.91 431.959,173.529' fill='#5E5E5EFF' style='fill:#5E5E5E;stroke:#5E5E5E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='231.102,325.225 286.256,345.695 120.076,277.424' fill='#3C3C3CFF' style='fill:#3C3C3C;stroke:#3C3C3C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='513.766,212.404 819.121,325.727 520.433,204.981' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='367.745,89.4456 367.745,53.4235 357.481,49.6143' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='593.816,181.678 527.1,156.919 518.211,166.815' fill='#787878FF' style='fill:#787878;stroke:#787878;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='830.539,319.032 820.241,285.339 820.241,325.878' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='252.651,70.4177 237.987,64.9754 242.38,76.4987' fill='#353535FF' style='fill:#353535;stroke:#353535;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='749.944,326.344 749.944,285.806 744.175,292.461' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='638.464,109.114 587.7,182.773 651.205,113.973' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='265.799,137.935 136.566,237.469 136.566,278.008' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='626.002,454.809 611.928,470.478 611.928,474.734' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='223.922,75.1466 259.204,88.2407 228.946,71.5132' fill='#353535FF' style='fill:#353535;stroke:#353535;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='235.1,280.581 121.064,237.14 230.066,285.29' fill='#7C7C7CFF' style='fill:#7C7C7C;stroke:#7C7C7C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='599.418,459.452 613.493,443.783 609.323,442.235' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='262.82,87.8553 244.359,78.1165 260.708,89.1486' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='564.791,443.397 541.833,438.514 562.233,446.272' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='580.137,440.74 577.579,443.615 577.579,446.047' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='252.347,51.9661 302.677,4.40002 239.926,43.7903' fill='#6F6F6FFF' style='fill:#6F6F6F;stroke:#6F6F6F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='672.223,389.969 736.554,413.844 729.243,328.659' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='580.137,440.74 577.579,446.047 580.137,445.604' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='568.357,455.541 565.149,458.512 568.357,457.621' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='290.844,340.799 120.076,277.424 286.256,345.695' fill='#3D3D3DFF' style='fill:#3D3D3D;stroke:#3D3D3D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='564.791,443.397 562.233,446.272 562.233,448.704' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='560.964,445.606 552.319,459.992 564.171,446.796' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='564.171,444.716 552.319,457.911 555.527,459.102' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='762.862,507.178 618.674,453.667 750.573,520.212' fill='#393939FF' style='fill:#393939;stroke:#393939;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='596.814,429.081 582.739,444.751 582.739,449.006' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='567.349,442.955 564.791,448.261 567.349,447.818' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='563.913,506.917 563.913,466.378 515.158,448.285' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='621.492,404.176 615.566,410.774 628.396,415.535' fill='#7D7D7DFF' style='fill:#7D7D7D;stroke:#7D7D7D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='230.066,325.829 121.064,237.14 121.064,277.679' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='567.349,442.955 564.791,445.829 564.791,448.261' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='822.438,324.785 704.171,406.398 704.171,446.936' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='564.171,444.716 555.527,459.102 567.379,445.906' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='567.379,443.826 555.527,457.021 558.734,458.211' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='607.758,466.803 617.662,449.586 603.588,465.255' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='628.063,530.826 562.886,506.638 594.729,567.938' fill='#3A3A3AFF' style='fill:#3A3A3A;stroke:#3A3A3A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='400.067,535.347 7.68143,358.935 -0.80957,366.739' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='580.137,440.74 559.673,433.052 557.124,435.916' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='822.438,324.785 822.438,284.246 704.171,406.398' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='160.623,357.341 114.155,407.172 121.779,410.11' fill='#7A7A7AFF' style='fill:#7A7A7A;stroke:#7A7A7A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='822.516,445.645 816.59,411.704 816.59,452.242' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='561.942,457.321 558.734,456.131 558.734,460.292' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.579,441.183 557.124,433.485 554.576,436.349' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='562.886,506.638 204.445,432.992 520.826,550.408' fill='#007B00FF' style='fill:#007B00;stroke:#007B00;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='567.379,443.826 558.734,458.211 570.586,445.016' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='570.586,442.935 561.942,457.321 573.794,444.126' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='582.739,444.751 578.57,443.203 578.57,445.331' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='584.927,232.114 584.927,191.575 518.211,166.815' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='816.59,452.242 816.59,411.704 729.345,379.325' fill='#5C5C5CFF' style='fill:#5C5C5C;stroke:#5C5C5C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='570.586,442.935 558.734,456.131 561.942,457.321' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='573.794,442.045 561.942,455.241 565.149,456.431' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='813.634,280.724 704.171,406.398 822.438,284.246' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='598.013,132.975 598.013,102.599 586.16,117.954' fill='#525252FF' style='fill:#525252;stroke:#525252;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='575.022,441.626 554.576,433.918 552.027,436.782' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='573.794,442.045 565.149,456.431 577.001,443.236' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='411.63,154.706 214.878,81.6868 395.333,172.849' fill='#383838FF' style='fill:#383838;stroke:#383838;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='816.59,452.242 729.345,379.325 729.345,419.864' fill='#5D5D5DFF' style='fill:#5D5D5D;stroke:#5D5D5D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='206.196,354.36 206.196,313.821 100.303,267.924' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='565.149,456.431 561.942,459.402 565.149,458.512' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='568.357,461.43 519.603,443.336 515.158,448.285' fill='#7F7F7FFF' style='fill:#7F7F7F;stroke:#7F7F7F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='572.464,442.069 552.027,434.35 549.478,437.215' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='269.156,90.4064 252.807,79.3742 250.695,80.6675' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='817.33,451.418 817.33,410.879 803.256,426.548' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='565.149,456.431 561.942,455.241 561.942,459.402' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='413.968,207.232 198.665,396.882 198.665,437.421' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='411.63,168.296 411.63,157.004 402.741,166.9' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='662.877,492.064 608.991,472.066 630.285,528.352' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='569.906,442.512 549.478,434.783 546.93,437.648' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='580.209,442.345 568.357,457.621 580.209,444.426' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='563.913,506.917 515.158,448.285 515.158,488.824' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='576.399,508.354 630.285,528.352 608.991,472.066' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.256,426.548 807.066,407.07 792.992,422.739' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='517.82,532.932 612.238,431.62 599.529,426.726' fill='#7C7C7CFF' style='fill:#7C7C7C;stroke:#7C7C7C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='373.217,548.44 506.596,605.637 516.462,596.131' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='598.013,102.599 438.561,70.8741 586.16,117.954' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='498.874,200.674 498.874,189.382 489.985,199.278' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.256,467.087 792.992,422.739 792.992,463.278' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='613.493,443.783 599.418,463.708 613.493,448.038' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='252.347,51.9661 315.097,12.5758 302.677,4.40002' fill='#6E6E6EFF' style='fill:#6E6E6E;stroke:#6E6E6E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='749.944,326.344 744.175,292.461 744.175,333' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='603.859,470.162 662.877,492.064 606.822,466.863' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='186.289,355.867 183.631,363.22 186.289,358.137' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='621.832,451.133 607.758,471.059 621.832,455.389' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='584.927,232.114 518.211,166.815 518.211,207.354' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='822.516,405.106 729.345,379.325 816.59,411.704' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='527.836,543.113 594.729,567.938 562.886,506.638' fill='#3B3B3BFF' style='fill:#3B3B3B;stroke:#3B3B3B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='211.166,309.083 105.272,263.186 100.303,267.924' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='603.588,463.128 617.662,447.458 613.493,445.91' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='235.1,280.581 126.098,232.431 121.064,237.14' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='260.708,87.005 258.596,88.2982 258.596,90.4418' fill='#5C5C5CFF' style='fill:#5C5C5C;stroke:#5C5C5C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='598.013,132.975 586.16,117.954 586.16,148.33' fill='#525252FF' style='fill:#525252;stroke:#525252;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='230.066,325.829 230.066,285.29 121.064,237.14' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='567.349,442.955 546.93,435.216 544.381,438.081' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='431.959,171.259 411.431,163.64 407.727,167.764' fill='#5E5E5EFF' style='fill:#5E5E5E;stroke:#5E5E5E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='672.794,599.109 526.279,544.734 652.794,621.376' fill='#383838FF' style='fill:#383838;stroke:#383838;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='580.209,442.345 568.357,455.541 568.357,457.621' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='513.125,578.226 189.426,393.364 189.426,433.903' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='260.708,87.005 242.247,77.2661 258.596,88.2982' fill='#585858FF' style='fill:#585858;stroke:#585858;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='413.968,207.232 413.968,166.693 198.665,396.882' fill='#646464FF' style='fill:#646464;stroke:#646464;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='684.88,469.37 577.671,546.289 577.671,586.828' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='211.166,309.083 100.303,267.924 206.196,313.821' fill='#7C7C7CFF' style='fill:#7C7C7C;stroke:#7C7C7C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='283.581,97.2875 223.922,75.1466 288.462,108.995' fill='#363636FF' style='fill:#363636;stroke:#363636;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='817.33,451.418 803.256,426.548 803.256,467.087' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='822.516,445.645 822.516,405.106 816.59,411.704' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='566.071,393.505 632.1,411.412 570.515,388.557' fill='#7F7F7FFF' style='fill:#7F7F7F;stroke:#7F7F7F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='796.047,473.209 742.161,412.672 742.161,453.211' fill='#585858FF' style='fill:#585858;stroke:#585858;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.256,467.087 803.256,426.548 792.992,422.739' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='253.402,68.971 177.913,76.2905 177.913,116.829' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='667.312,606.869 584.658,534.556 584.658,575.094' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='801.973,466.611 796.047,432.67 796.047,473.209' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='801.973,466.611 801.973,426.072 796.047,432.67' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='744.175,333 405.066,171.008 405.066,211.547' fill='#6D6D6DFF' style='fill:#6D6D6D;stroke:#6D6D6D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='684.88,469.37 684.88,428.831 577.671,546.289' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='796.047,473.209 796.047,432.67 742.161,412.672' fill='#585858FF' style='fill:#585858;stroke:#585858;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='744.175,333 744.175,292.461 405.066,171.008' fill='#6D6D6DFF' style='fill:#6D6D6D;stroke:#6D6D6D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='237.987,64.9754 252.651,70.4177 241.005,62.793' fill='#353535FF' style='fill:#353535;stroke:#353535;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='800.268,470.413 800.268,429.874 753.257,478.405' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='788.241,252.734 609.551,198.514 780.931,261.017' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='593.816,222.217 593.816,181.678 584.927,191.575' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='797.753,428.868 753.257,478.405 800.268,429.874' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='797.753,428.868 750.742,477.398 753.257,478.405' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='800.268,470.413 753.257,478.405 753.257,518.944' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='755.728,516.53 749.356,482.414 749.356,522.953' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='464.685,219.979 467.512,237.271 482.201,218.291' fill='#EBEBEBFF' style='fill:#EBEBEB;stroke:#EBEBEB;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='755.728,475.991 664.334,447.562 749.356,482.414' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='16.3698,365.575 96.4669,263.072 3.72897,360.609' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.838,145.269 652.047,93.3341 638.126,110.147' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='776.329,258.046 830.539,278.493 786.627,251.2' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='667.312,606.869 667.312,566.33 584.658,534.556' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='779.137,158.192 729.883,232.071 789.539,161.843' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='489.395,212.908 485.286,214.856 487.837,216.678' fill='#BBBBBBFF' style='fill:#BBBBBB;stroke:#BBBBBB;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='621.832,451.133 607.758,466.803 607.758,471.059' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='755.728,475.991 670.707,441.139 664.334,447.562' fill='#777777FF' style='fill:#777777;stroke:#777777;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='267.044,89.5561 250.695,78.5239 248.583,79.8172' fill='#585858FF' style='fill:#585858;stroke:#585858;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='16.3698,365.575 109.108,268.038 96.4669,263.072' fill='#767676FF' style='fill:#767676;stroke:#767676;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='133.015,411.975 154.392,416.872 135.694,409.138' fill='#5F5F5FFF' style='fill:#5F5F5F;stroke:#5F5F5F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='253.402,68.971 253.402,28.4321 177.913,76.2905' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='611.928,470.478 626.002,454.809 621.832,453.261' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='489.395,212.908 481.803,215.853 485.286,214.856' fill='#C4C4C4FF' style='fill:#C4C4C4;stroke:#C4C4C4;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='457.2,227.68 467.512,237.271 464.685,219.979' fill='#D3D3D3FF' style='fill:#D3D3D3;stroke:#D3D3D3;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='457.2,227.68 461.089,251.467 467.512,237.271' fill='#D3D3D3FF' style='fill:#D3D3D3;stroke:#D3D3D3;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='467.512,237.271 493.97,240.886 485.931,218.8' fill='#FBFBFBFF' style='fill:#FBFBFB;stroke:#FBFBFB;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='481.803,215.853 485.931,218.8 487.837,216.678' fill='#F0F0F0FF' style='fill:#F0F0F0;stroke:#F0F0F0;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='374.412,82.0232 367.745,53.4235 367.745,89.4456' fill='#686868FF' style='fill:#686868;stroke:#686868;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.295,342.88 567.336,329.641 545.022,343.984' fill='#A2A2A2FF' style='fill:#A2A2A2;stroke:#A2A2A2;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='545.022,343.984 567.336,329.641 544.56,315.097' fill='#C7C7C7FF' style='fill:#C7C7C7;stroke:#C7C7C7;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='523.565,450.352 575.959,393.923 568.326,390.995' fill='#808080FF' style='fill:#808080;stroke:#808080;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='545.022,343.984 544.56,315.097 541.414,317.119' fill='#C9C9C9FF' style='fill:#C9C9C9;stroke:#C9C9C9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='516.904,334.775 545.022,343.984 541.414,317.119' fill='#E7E7E7FF' style='fill:#E7E7E7;stroke:#E7E7E7;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='516.904,334.775 541.414,317.119 537.451,315.821' fill='#E9E9E9FF' style='fill:#E9E9E9;stroke:#E9E9E9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='521.841,314.74 516.904,334.775 537.451,315.821' fill='#F9F9F9FF' style='fill:#F9F9F9;stroke:#F9F9F9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='632.1,451.951 632.1,411.412 627.655,416.36' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='514.711,322.382 516.904,334.775 521.841,314.74' fill='#E2E2E2FF' style='fill:#E2E2E2;stroke:#E2E2E2;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='514.711,322.382 507.92,349.943 516.904,334.775' fill='#E1E1E1FF' style='fill:#E1E1E1;stroke:#E1E1E1;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='749.356,522.953 749.356,482.414 664.334,447.562' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='553.009,311.567 544.56,315.097 567.336,329.641' fill='#C4C4C4FF' style='fill:#C4C4C4;stroke:#C4C4C4;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='538.147,312.996 541.414,317.119 544.56,315.097' fill='#F5F5F5FF' style='fill:#F5F5F5;stroke:#F5F5F5;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='538.147,312.996 537.451,315.821 541.414,317.119' fill='#F5F5F5FF' style='fill:#F5F5F5;stroke:#F5F5F5;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='674.916,558.157 592.262,526.383 584.658,534.556' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='521.841,314.74 537.451,315.821 538.147,312.996' fill='#F9F9F9FF' style='fill:#F9F9F9;stroke:#F9F9F9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='553.009,311.567 542.54,312.549 544.56,315.097' fill='#C5C5C5FF' style='fill:#C5C5C5;stroke:#C5C5C5;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='611.928,470.478 621.832,453.261 607.758,468.931' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='544.56,315.097 542.54,312.549 538.147,312.996' fill='#F5F5F5FF' style='fill:#F5F5F5;stroke:#F5F5F5;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='517.82,532.932 599.529,426.726 505.111,528.038' fill='#7B7B7BFF' style='fill:#7B7B7B;stroke:#7B7B7B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='487.486,272.465 487.341,286.882 491.286,282.49' fill='#B0B0B0FF' style='fill:#B0B0B0;stroke:#B0B0B0;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='485.787,274.356 479.624,285.827 487.341,286.882' fill='#D5D5D5FF' style='fill:#D5D5D5;stroke:#D5D5D5;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='485.787,274.356 482.464,273.902 479.624,285.827' fill='#D6D6D6FF' style='fill:#D6D6D6;stroke:#D6D6D6;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='487.486,272.465 485.787,274.356 487.341,286.882' fill='#B0B0B0FF' style='fill:#B0B0B0;stroke:#B0B0B0;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='482.464,273.902 478.8,280.784 479.624,285.827' fill='#C2C2C2FF' style='fill:#C2C2C2;stroke:#C2C2C2;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='482.464,273.902 482.109,271.731 478.8,280.784' fill='#C2C2C2FF' style='fill:#C2C2C2;stroke:#C2C2C2;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='485.787,274.356 483.033,253.01 482.464,273.902' fill='#C6C6C6FF' style='fill:#C6C6C6;stroke:#C6C6C6;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='487.486,272.465 486.724,251.954 485.475,253.344' fill='#9E9E9EFF' style='fill:#9E9E9E;stroke:#9E9E9E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='485.787,274.356 485.475,253.344 483.033,253.01' fill='#C6C6C6FF' style='fill:#C6C6C6;stroke:#C6C6C6;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='492.845,260.22 497.485,256.44 461.089,251.467' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='487.486,272.465 485.475,253.344 485.787,274.356' fill='#9E9E9EFF' style='fill:#9E9E9E;stroke:#9E9E9E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='492.845,260.22 461.089,251.467 469.568,257.039' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='607.758,466.803 621.832,451.133 617.662,449.586' fill='#626262FF' style='fill:#626262;stroke:#626262;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='523.565,450.352 568.326,390.995 515.932,447.424' fill='#808080FF' style='fill:#808080;stroke:#808080;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='612.238,472.159 517.82,532.932 517.82,573.471' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='674.916,598.696 674.916,558.157 667.312,566.33' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='634.322,449.477 634.322,408.938 628.396,415.535' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.191,573.531 513.125,537.687 513.125,578.226' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.191,573.531 518.191,532.992 513.125,537.687' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='384.654,127.922 437.789,70.6685 430.156,67.7412' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='403.811,162.768 188.507,392.956 198.665,396.882' fill='#828282FF' style='fill:#828282;stroke:#828282;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='634.322,449.477 628.396,415.535 628.396,456.074' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='487.837,216.678 485.286,214.856 481.803,215.853' fill='#F0F0F0FF' style='fill:#F0F0F0;stroke:#F0F0F0;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='374.412,82.0232 374.412,46.0011 367.745,53.4235' fill='#696969FF' style='fill:#696969;stroke:#696969;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='822.516,405.106 735.271,372.728 729.345,379.325' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='566.071,393.505 627.655,416.36 632.1,411.412' fill='#7E7E7EFF' style='fill:#7E7E7E;stroke:#7E7E7E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='749.356,522.953 664.334,447.562 664.334,488.101' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.001,441.155 565.149,454.35 568.357,455.541' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='744.741,332.251 654.225,386.775 654.225,427.314' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='674.916,558.157 584.658,534.556 667.312,566.33' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='544.152,380.113 542.047,396.74 548.555,392.556' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='541.35,381.914 533.846,394.054 542.047,396.74' fill='#BABABAFF' style='fill:#BABABA;stroke:#BABABA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='544.152,380.113 541.35,381.914 542.047,396.74' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='541.35,381.914 537.818,380.758 533.846,394.054' fill='#BABABAFF' style='fill:#BABABA;stroke:#BABABA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='537.818,380.758 535.286,388.21 533.846,394.054' fill='#CDCDCDFF' style='fill:#CDCDCD;stroke:#CDCDCD;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='544.152,380.113 541.21,357.357 541.35,381.914' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='541.35,381.914 541.21,357.357 538.614,356.507' fill='#A8A8A8FF' style='fill:#A8A8A8;stroke:#A8A8A8;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='537.818,380.758 538.438,378.241 535.286,388.21' fill='#CECECEFF' style='fill:#CECECE;stroke:#CECECE;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='544.152,380.113 543.27,356.033 541.21,357.357' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.631,610.118 606.868,631.868 526.039,601.871' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='541.35,381.914 538.614,356.507 537.818,380.758' fill='#A8A8A8FF' style='fill:#A8A8A8;stroke:#A8A8A8;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='564.149,353.767 546.599,362.611 544.517,366.386' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='544.517,366.386 507.92,349.943 519.779,358.284' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='544.517,366.386 546.599,362.611 507.92,349.943' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='654.225,386.775 732.105,286.741 641.589,381.804' fill='#7B7B7BFF' style='fill:#7B7B7B;stroke:#7B7B7B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.295,342.88 545.022,343.984 546.599,362.611' fill='#A2A2A2FF' style='fill:#A2A2A2;stroke:#A2A2A2;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='507.92,349.943 546.599,362.611 545.022,343.984' fill='#CACACAFF' style='fill:#CACACA;stroke:#CACACA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='564.149,353.767 577.295,342.88 546.599,362.611' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='568.357,455.541 565.149,454.35 565.149,458.512' fill='#3F3F3FFF' style='fill:#3F3F3F;stroke:#3F3F3F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='507.92,349.943 545.022,343.984 516.904,334.775' fill='#CCCCCCFF' style='fill:#CCCCCC;stroke:#CCCCCC;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='481.803,215.853 482.201,218.291 485.931,218.8' fill='#F1F1F1FF' style='fill:#F1F1F1;stroke:#F1F1F1;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='564.791,443.397 544.381,435.649 541.833,438.514' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='704.171,446.936 704.171,406.398 695.367,402.875' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.838,145.269 638.126,110.147 789.917,162.081' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='489.395,212.908 464.685,219.979 481.803,215.853' fill='#C3C3C3FF' style='fill:#C3C3C3;stroke:#C3C3C3;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='243.847,143.192 243.847,102.653 179.354,75.419' fill='#666666FF' style='fill:#666666;stroke:#666666;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='674.916,598.696 667.312,566.33 667.312,606.869' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='593.816,222.217 584.927,191.575 584.927,232.114' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='704.171,446.936 695.367,402.875 695.367,443.414' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='668.105,606.131 668.105,565.592 606.081,632.743' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='498.874,186.982 489.985,156.34 489.985,196.879' fill='#595959FF' style='fill:#595959;stroke:#595959;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='612.238,472.159 612.238,431.62 517.82,532.932' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='461.089,251.467 497.485,256.44 493.97,240.886' fill='#E8E8E8FF' style='fill:#E8E8E8;stroke:#E8E8E8;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='259.204,88.2407 283.581,97.2875 273.37,85.8008' fill='#363636FF' style='fill:#363636;stroke:#363636;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='489.985,196.879 425.835,132.533 425.835,173.071' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='189.426,393.364 513.125,537.687 518.191,532.992' fill='#7E7E7EFF' style='fill:#7E7E7E;stroke:#7E7E7E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='749.944,285.806 410.835,164.353 405.066,171.008' fill='#7C7C7CFF' style='fill:#7C7C7C;stroke:#7C7C7C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.671,586.828 567.449,542.434 567.449,582.973' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='606.081,632.743 668.105,565.592 655.366,560.731' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='411.63,154.604 402.741,123.962 402.741,164.501' fill='#636363FF' style='fill:#636363;stroke:#636363;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='518.481,650.816 518.481,610.278 505.951,605.197' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='327.801,392.393 336.261,386.738 303.822,393.514' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='364.148,42.192 367.745,53.4235 374.412,46.0011' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.671,546.289 674.658,424.976 567.449,542.434' fill='#787878FF' style='fill:#787878;stroke:#787878;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='813.634,280.724 695.367,402.875 704.171,406.398' fill='#777777FF' style='fill:#777777;stroke:#777777;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='278.041,117.884 278.041,77.345 264.088,49.0746' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='749.944,285.806 405.066,171.008 744.175,292.461' fill='#7B7B7BFF' style='fill:#7B7B7B;stroke:#7B7B7B;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='243.847,143.192 179.354,75.419 179.354,115.958' fill='#656565FF' style='fill:#656565;stroke:#656565;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='513.125,578.226 513.125,537.687 189.426,393.364' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='265.799,137.935 265.799,97.3957 136.566,237.469' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.671,586.828 577.671,546.289 567.449,542.434' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='403.811,162.768 198.665,396.882 413.968,166.693' fill='#808080FF' style='fill:#808080;stroke:#808080;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='568.357,461.43 515.158,448.285 563.913,466.378' fill='#7D7D7DFF' style='fill:#7D7D7D;stroke:#7D7D7D;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='384.654,127.922 430.156,67.7412 377.021,124.995' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='311.97,409.301 310.139,407.681 306.637,417.106' fill='#999999FF' style='fill:#999999;stroke:#999999;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.001,441.155 568.357,455.541 580.209,442.345' fill='#616161FF' style='fill:#616161;stroke:#616161;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='278.29,77.7755 411.63,114.065 287.179,67.8789' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='162.485,355.803 183.631,360.951 165.165,352.966' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='358.853,197.69 358.853,157.151 250.195,112.427' fill='#696969FF' style='fill:#696969;stroke:#696969;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='464.685,219.979 482.201,218.291 481.803,215.853' fill='#EBEBEBFF' style='fill:#EBEBEB;stroke:#EBEBEB;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='331.531,65.0094 331.531,28.9873 324.864,36.4098' fill='#6C6C6CFF' style='fill:#6C6C6C;stroke:#6C6C6C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='245.881,100.663 179.354,75.419 243.847,102.653' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='654.225,386.775 744.741,291.712 732.105,286.741' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='755.728,516.53 755.728,475.991 749.356,482.414' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='321.267,25.1782 324.864,36.4098 331.531,28.9873' fill='#6F6F6FFF' style='fill:#6F6F6F;stroke:#6F6F6F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='493.97,240.886 487.837,216.678 485.931,218.8' fill='#DDDDDDFF' style='fill:#DDDDDD;stroke:#DDDDDD;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='321.267,25.1782 314.6,32.6006 324.864,36.4098' fill='#6F6F6FFF' style='fill:#6F6F6F;stroke:#6F6F6F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='493.97,240.886 507.495,225.829 487.837,216.678' fill='#DCDCDCFF' style='fill:#DCDCDC;stroke:#DCDCDC;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='278.041,117.884 264.088,49.0746 264.088,89.6135' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='577.671,546.289 684.88,428.831 674.658,424.976' fill='#797979FF' style='fill:#797979;stroke:#797979;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='245.881,100.663 181.387,73.4292 179.354,75.419' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='516.09,235.727 507.495,225.829 493.97,240.886' fill='#BFBFBFFF' style='fill:#BFBFBF;stroke:#BFBFBF;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='402.741,164.501 402.741,123.962 278.29,77.7755' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='461.089,251.467 493.97,240.886 467.512,237.271' fill='#E9E9E9FF' style='fill:#E9E9E9;stroke:#E9E9E9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='278.29,77.7755 402.741,123.962 411.63,114.065' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='367.745,89.4456 357.481,49.6143 357.481,85.6364' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='373.217,548.44 516.462,596.131 383.083,538.934' fill='#777777FF' style='fill:#777777;stroke:#777777;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='178.315,371.118 175.657,378.472 178.315,373.388' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='154.448,371.123 175.657,376.202 157.127,368.286' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='366.842,189.67 358.853,157.151 358.853,197.69' fill='#676767FF' style='fill:#676767;stroke:#676767;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='180.973,366.035 178.315,368.849 178.315,373.388' fill='#505050FF' style='fill:#505050;stroke:#505050;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='292.162,74.4651 278.209,46.1947 264.088,49.0746' fill='#707070FF' style='fill:#707070;stroke:#707070;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='157.127,366.016 175.657,373.932 178.315,371.118' fill='#606060FF' style='fill:#606060;stroke:#606060;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='606.081,632.743 655.366,560.731 593.343,627.881' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='744.741,332.251 744.741,291.712 654.225,386.775' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='309.815,356.565 311.869,358.382 315.193,357.688' fill='#F9F9F9FF' style='fill:#F9F9F9;stroke:#F9F9F9;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='801.973,426.072 742.161,412.672 796.047,432.67' fill='#747474FF' style='fill:#747474;stroke:#747474;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='668.105,606.131 606.081,632.743 606.081,673.282' fill='#515151FF' style='fill:#515151;stroke:#515151;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='324.864,72.4318 324.864,36.4098 314.6,32.6006' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='358.853,197.69 250.195,112.427 250.195,152.966' fill='#676767FF' style='fill:#676767;stroke:#676767;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='324.864,72.4318 314.6,32.6006 314.6,68.6227' fill='#727272FF' style='fill:#727272;stroke:#727272;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='136.566,237.469 253.056,92.5381 123.823,232.612' fill='#767676FF' style='fill:#767676;stroke:#767676;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='292.162,74.4651 264.088,49.0746 278.041,77.345' fill='#717171FF' style='fill:#717171;stroke:#717171;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='516.09,235.727 493.97,240.886 497.485,256.44' fill='#BFBFBFFF' style='fill:#BFBFBF;stroke:#BFBFBF;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='331.531,65.0094 324.864,36.4098 324.864,72.4318' fill='#6C6C6CFF' style='fill:#6C6C6C;stroke:#6C6C6C;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='801.973,426.072 748.087,406.074 742.161,412.672' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='336.11,169.578 186.384,343.895 343.765,172.482' fill='#7E7E7EFF' style='fill:#7E7E7E;stroke:#7E7E7E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='343.765,213.021 186.384,343.895 186.384,384.434' fill='#696969FF' style='fill:#696969;stroke:#696969;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='402.741,164.501 278.29,77.7755 278.29,118.314' fill='#6E6E6EFF' style='fill:#6E6E6E;stroke:#6E6E6E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='803.256,426.548 817.33,410.879 807.066,407.07' fill='#737373FF' style='fill:#737373;stroke:#737373;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='264.932,88.7057 248.583,77.6736 246.471,78.9668' fill='#585858FF' style='fill:#585858;stroke:#585858;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='366.842,149.131 258.183,104.408 250.195,112.427' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='136.566,237.469 265.799,97.3957 253.056,92.5381' fill='#757575FF' style='fill:#757575;stroke:#757575;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='177.913,76.2905 253.402,28.4321 241.438,20.635' fill='#6E6E6EFF' style='fill:#6E6E6E;stroke:#6E6E6E;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='343.765,213.021 343.765,172.482 186.384,343.895' fill='#6A6A6AFF' style='fill:#6A6A6A;stroke:#6A6A6A;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='366.842,149.131 250.195,112.427 358.853,157.151' fill='#777777FF' style='fill:#777777;stroke:#777777;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='189.426,393.364 518.191,532.992 194.492,388.669' fill='#808080FF' style='fill:#808080;stroke:#808080;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='467.512,237.271 485.931,218.8 482.201,218.291' fill='#FCFCFCFF' style='fill:#FCFCFC;stroke:#FCFCFC;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='336.11,169.578 178.729,340.991 186.384,343.895' fill='#7F7F7FFF' style='fill:#7F7F7F;stroke:#7F7F7F;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='489.395,212.908 487.837,216.678 507.495,225.829' fill='#BABABAFF' style='fill:#BABABA;stroke:#BABABA;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='262.82,87.8553 246.471,76.8232 244.359,78.1165' fill='#585858FF' style='fill:#585858;stroke:#585858;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='260.708,87.005 244.359,75.9728 242.247,77.2661' fill='#585858FF' style='fill:#585858;stroke:#585858;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
<polygon points='366.842,189.67 366.842,149.131 358.853,157.151' fill='#686868FF' style='fill:#686868;stroke:#686868;stroke-width:0.33px;stroke-linejoin:round;opacity:1;' />
</svg>

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 227 KiB

Binary file not shown.

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 167 KiB

26963
tex_review/gfx/walk.eps Executable file

File diff suppressed because it is too large Load Diff

103
tex_review/gfx/walk.tex Executable file
View File

@@ -0,0 +1,103 @@
% GNUPLOT: LaTeX picture with Postscript
\begingroup
\makeatletter
\providecommand\color[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package color not loaded in conjunction with
terminal option `colourtext'%
}{See the gnuplot documentation for explanation.%
}{Either use 'blacktext' in gnuplot or load the package
color.sty in LaTeX.}%
\renewcommand\color[2][]{}%
}%
\providecommand\includegraphics[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package graphicx or graphics not loaded%
}{See the gnuplot documentation for explanation.%
}{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
\renewcommand\includegraphics[2][]{}%
}%
\providecommand\rotatebox[2]{#2}%
\@ifundefined{ifGPcolor}{%
\newif\ifGPcolor
\GPcolorfalse
}{}%
\@ifundefined{ifGPblacktext}{%
\newif\ifGPblacktext
\GPblacktexttrue
}{}%
% define a \g@addto@macro without @ in the name:
\let\gplgaddtomacro\g@addto@macro
% define empty templates for all commands taking text:
\gdef\gplbacktext{}%
\gdef\gplfronttext{}%
\makeatother
\ifGPblacktext
% no textcolor at all
\def\colorrgb#1{}%
\def\colorgray#1{}%
\else
% gray or color?
\ifGPcolor
\def\colorrgb#1{\color[rgb]{#1}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
\expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
\expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
\expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
\expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
\expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
\expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
\expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
\expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
\else
% gray
\def\colorrgb#1{\color{black}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color{black}}%
\expandafter\def\csname LT1\endcsname{\color{black}}%
\expandafter\def\csname LT2\endcsname{\color{black}}%
\expandafter\def\csname LT3\endcsname{\color{black}}%
\expandafter\def\csname LT4\endcsname{\color{black}}%
\expandafter\def\csname LT5\endcsname{\color{black}}%
\expandafter\def\csname LT6\endcsname{\color{black}}%
\expandafter\def\csname LT7\endcsname{\color{black}}%
\expandafter\def\csname LT8\endcsname{\color{black}}%
\fi
\fi
\setlength{\unitlength}{0.0500bp}%
\ifx\gptboxheight\undefined%
\newlength{\gptboxheight}%
\newlength{\gptboxwidth}%
\newsavebox{\gptboxtext}%
\fi%
\setlength{\fboxrule}{0.5pt}%
\setlength{\fboxsep}{1pt}%
\begin{picture}(5040.00,2880.00)%
\gplgaddtomacro\gplbacktext{%
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%%
\put(1370,2711){\makebox(0,0)[r]{\strut{}\footnotesize{ground truth}}}%
\csname LTb\endcsname%%
\put(1370,2491){\makebox(0,0)[r]{\strut{}\footnotesize{particles @ 13.4 s}}}%
\csname LTb\endcsname%%
\put(1370,2271){\makebox(0,0)[r]{\strut{}\footnotesize{particles @ 20.8 s}}}%
\csname LTb\endcsname%%
\put(1370,2711){\makebox(0,0)[r]{\strut{}\footnotesize{ground truth}}}%
\csname LTb\endcsname%%
\put(1370,2491){\makebox(0,0)[r]{\strut{}\footnotesize{particles @ 13.4 s}}}%
\csname LTb\endcsname%%
\put(1370,2271){\makebox(0,0)[r]{\strut{}\footnotesize{particles @ 20.8 s}}}%
}%
\gplbacktext
\put(0,0){\includegraphics{walk}}%
\gplfronttext
\end{picture}%
\endgroup

View File

@@ -0,0 +1,473 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.15.10 (http://cairographics.org)
%%CreationDate: Tue Sep 11 19:55:40 2018
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 447 327
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 447 327
%%EndPageSetup
q 0 0 447 327 rectclip
1 0 0 -1 0 327 cm q
Q q
-50.938 0 m 554.547 0 l 556.395 0 557.879 1.488 557.879 3.332 c 557.879
323.199 l 557.879 325.047 556.395 326.531 554.547 326.531 c -50.938 326.531
l -52.785 326.531 -54.273 325.047 -54.273 323.199 c -54.273 3.332 l -54.273
1.488 -52.785 0 -50.938 0 c h
-50.938 0 m W n
q
0 0 447 327 re W n
[ 1 0 0 1 0 0 ] concat
q
0.866667 0.282353 0.0784314 rg
401.98 208.094 m 399.746 176.828 l 365.777 177.887 l f
0 g
0.75 w
0 J
0 j
[] 0.0 d
4 M q 0.530916 0 0 1 0 0 cm
837.784 310.875 m 828.631 310.875 l S Q
0.705882 0.941176 0.705882 rg
130.742 358.949 m 130.742 390.898 l 68.625 389.023 l 85.43 177.973 l 311.281
182.25 l 313.789 394.125 l 192.422 392.25 l 192.062 359.773 l h
130.742 358.949 m f
0.835294 g
358.305 370.949 m 426.316 368.398 l 426.316 370.125 l 444.793 369.223 l
442.285 266.25 l 358.305 265.426 l 358.305 75.824 l 372.602 59.551 l 381.004
27.824 l 318.848 10.648 l 317.172 65.551 l 179.48 63.824 l 173.586 141.074
l 151.766 141.074 l 157.621 63.824 l 45.094 62.098 l 22.434 331.5 l 13.199
330.598 l 6.469 430.199 l 7.305 490.273 l 92.953 489.375 l 93.832 435.301
l 172.75 436.199 l 170.242 492 l 252.508 493.648 l 252.508 439.648 l 339.832
439.648 l 340.668 440.473 l 349.227 442.723 l 358.305 407.023 l h
358.305 370.949 m f
0.960784 g
363.684 50.473 m 366.191 41.176 l 381.84 45.824 l 379.289 55.273 l h
363.684 50.473 m f
338.156 159.449 26.043 11.324 re f
338.156 218.551 25.367 13.047 re f
0.576471 g
12.35178 w
q 0.530916 0 0 1 0 0 cm
607.867 13.734 m 605.682 68.875 l h
607.867 13.734 m S Q
6.558795 w
q 0.530916 0 0 1 0 0 cm
623.686 71.074 m 342.84 68.141 l h
623.686 71.074 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
344.356 66.375 m 333.761 142.875 l h
344.356 66.375 m S Q
q 0.530916 0 0 1 0 0 cm
96.031 64.277 m 47.78 343.492 l h
96.031 64.277 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
593.814 178.801 m 599.619 401.609 l h
593.814 178.801 m S Q
6.558795 w
q 0.530916 0 0 1 0 0 cm
121.525 395.695 m 156.105 172.059 l h
121.525 395.695 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
152.736 173.699 m 597.405 177.973 l h
152.736 173.699 m S Q
q 0.530916 0 0 1 0 0 cm
698.66 43.199 m 701.809 36.375 l h
698.66 43.199 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
722.498 33.074 m 613.378 16.727 l h
722.498 33.074 m S Q
q 0.530916 0 0 1 0 0 cm
220.911 143.086 m 556.232 146.176 l h
220.911 143.086 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
597.243 72.699 m 589.459 150.043 l h
597.243 72.699 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
692.281 56.098 m 694.988 58.078 l h
692.281 56.098 m S Q
q 0.530916 0 0 1 0 0 cm
693.855 51.824 m 689.132 61.273 l h
693.855 51.824 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
662.21 278.324 m 662.21 232.953 l h
662.21 278.324 m S Q
7.205205 w
q 0.530916 0 0 1 0 0 cm
667.007 271.426 m 819.971 272.25 l h
667.007 271.426 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
814.085 269.184 m 820.457 369.223 l h
814.085 269.184 m S Q
q 0.530916 0 0 1 0 0 cm
663.858 293.699 m 665.433 407.848 l h
663.858 293.699 m S Q
q 0.530916 0 0 1 0 0 cm
289.41 65.602 m 279.484 143.625 l h
289.41 65.602 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
283.266 67.578 m 89.968 65.027 l h
283.266 67.578 m S Q
q 0.530916 0 0 1 0 0 cm
87.68 140.574 m 188.545 142.609 l h
87.68 140.574 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
706.532 43.199 m 700.234 54.375 l h
706.532 43.199 m S Q
0.733333 g
44.695 193.801 m 57.277 194.625 l 59.824 157.801 l 47.203 156.898 l h
44.695 193.801 m f
0.576471 g
0.75 w
q 0.530916 0 0 1 0 0 cm
84.185 193.801 m 107.884 194.625 l 112.681 157.801 l 88.909 156.898 l h
84.185 193.801 m S Q
0.772549 g
48.039 144.074 m 47.203 156.898 l 59.824 157.801 l 60.422 144.898 l h
48.039 144.074 m f
0.615686 g
q 0.530916 0 0 1 0 0 cm
90.483 144.074 m 88.909 156.898 l 112.681 157.801 l 113.807 144.898 l h
90.483 144.074 m S Q
0.941176 g
368.676 58.391 m 353.121 75.719 l 352.445 133.699 l 432.211 142.801 l 433.883
39.824 l 372.766 28.504 l h
368.676 58.391 m f
0.54902 g
12.35178 w
q 0.530916 0 0 1 0 0 cm
799.834 41.078 m 795.11 140.176 l h
799.834 41.078 m S Q
4.5 w
q 0.530916 0 0 1 0 0 cm
782.433 136.801 m 658.863 135.156 l h
782.433 136.801 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
804.292 44.777 m 685.843 25.465 l h
804.292 44.777 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
702.118 28.504 m 700.013 42.676 l h
702.118 28.504 m S Q
q 0.530916 0 0 1 0 0 cm
695.496 52.09 m 694.414 58.391 l h
695.496 52.09 m S Q
8.028657 w
q 0.530916 0 0 1 0 0 cm
665.117 75.719 m 698.343 55.992 l h
665.117 75.719 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
669.222 72.77 m 663.844 133.699 l h
669.222 72.77 m S Q
q 0.530916 0 0 1 0 0 cm
771.411 63.824 m 795.485 63.824 l h
771.411 63.824 m S Q
q 0.530916 0 0 1 0 0 cm
769.837 93 m 794.97 93 l h
769.837 93 m S Q
0.705882 g
378.895 54.676 m 381.402 45.523 l 366.27 41.25 l 363.801 50.324 l h
378.895 54.676 m f
0.54902 g
0.75 w
q 0.530916 0 0 1 0 0 cm
713.662 54.676 m 718.385 45.523 l 689.882 41.25 l 685.232 50.324 l h
713.662 54.676 m S Q
0.894118 g
352.148 135.148 m 349.797 234.645 l 420.465 235.348 l 420.465 238.801 l
437.266 237.973 l 431.375 131.625 l h
352.148 135.148 m f
0.556863 g
5.52948 w
q 0.530916 0 0 1 0 0 cm
657.325 135.02 m 796.133 136.266 l h
657.325 135.02 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
795.331 129.945 m 804.793 231.52 l h
795.331 129.945 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
810.936 233.699 m 655.978 232.801 l h
810.936 233.699 m S Q
12.35178 w
q 0.530916 0 0 1 0 0 cm
662.21 219.074 m 660.636 170.887 l h
662.21 219.074 m S Q
q 0.530916 0 0 1 0 0 cm
663.858 129.82 m 660.636 159.848 l h
663.858 129.82 m S Q
5.52948 w
q 0.530916 0 0 1 0 0 cm
725.507 196.801 m 662.909 196.801 l h
725.507 196.801 m S Q
0.713726 g
338.156 159.523 26.043 11.176 re f
0.556863 g
0.75 w
q 0.530916 0 0 1 0 0 cm
636.93 159.523 49.053 11.176 re S Q
0.713726 g
338.156 218.625 25.207 12.898 re f
0.556863 g
q 0.530916 0 0 1 0 0 cm
636.93 218.625 47.478 12.898 re S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
58.426 175.801 m 46.102 174.93 l S Q
q 1 0 0 1 0 0 cm
58.801 170.551 m 46.473 169.68 l S Q
q 1 0 0 1 0 0 cm
59.195 165.301 m 46.871 164.43 l S Q
q 1 0 0 1 0 0 cm
59.566 160.051 m 47.242 159.18 l S Q
q 1 0 0 1 0 0 cm
57.66 186.301 m 45.332 185.43 l S Q
q 1 0 0 1 0 0 cm
57.285 191.551 m 44.961 190.68 l S Q
q 1 0 0 1 0 0 cm
58.055 181.051 m 45.73 180.18 l S Q
0.772549 g
60.422 144.898 m 59.824 157.801 l 97.852 158.625 l 98.133 145.801 l h
60.422 144.898 m f
0.615686 g
0.75 w
q 0.530916 0 0 1 0 0 cm
113.807 144.898 m 112.681 157.801 l 184.307 158.625 l 184.837 145.801 l
h
113.807 144.898 m S Q
1 g
83.844 176.168 m 66.34 391.566 l 131.664 392.266 l 131.438 358.562 l 191.469
359.207 l 191.164 394.023 l 316.062 396.668 l 313.152 180.402 l h
83.844 176.168 m f
0 g
0.75 w
q 1 0 0 1 0 0 cm
83.844 176.168 m 66.34 391.566 l 131.664 392.266 l 131.438 358.562 l 191.469
359.207 l 191.164 394.023 l 316.062 396.668 l 313.152 180.402 l h
83.844 176.168 m S Q
0.388235 g
3 w
q 1 0 0 1 0 0 cm
95.371 158.168 m 95.797 145.82 l S Q
0 g
2.7324 w
q 1 0 0 1 0 0 cm
1.449 491.148 m 11.504 328.773 l 22.438 331.5 l 45.094 59.551 l 316.281
64.84 l 317.332 22.406 l 235.703 0.301 l 261.746 -87.227 l 280.711 -81.844
l 288.32 -113.109 l 351.805 -96.387 l 346.73 -62.766 l 434.719 -36.602
l 432.219 140.445 l 439.082 264.785 l 442.617 265.168 l 445.125 368.145
l 409.887 370.77 l 358.641 369.867 l 358.641 405.945 l 333.137 500.305 l
222.25 496.719 112.375 494.043 1.449 491.148 c h
1.449 491.148 m S Q
0.278431 g
400.016 76.211 m 405.781 83.25 l 408.355 74.422 l h
400.016 76.211 m f
0.388235 g
3 w
q 1 0 0 1 0 0 cm
84.852 158.02 m 85.277 145.668 l S Q
q 1 0 0 1 0 0 cm
79.645 157.891 m 80.066 145.543 l S Q
q 1 0 0 1 0 0 cm
74.383 157.801 m 74.809 145.449 l S Q
q 1 0 0 1 0 0 cm
63.863 157.617 m 64.285 145.266 l S Q
q 1 0 0 1 0 0 cm
69.121 157.66 m 69.547 145.309 l S Q
q 1 0 0 1 0 0 cm
90.113 158.109 m 90.535 145.762 l S Q
0.278431 g
1.5 w
3.8 M q 1 0 0 1 0 0 cm
166.402 413.387 m 71.867 412.535 l 71.867 454.262 l 66.852 427.863 l 43.137
391.25 l 56.719 276.414 l 71.031 163.16 l 109.055 158.902 l 109.055 126.543
l 75.207 124.84 l 75.207 89.074 l 134.332 89.074 l 109.055 155.496 l 303.035
160.605 l 341.793 152.09 l 345.238 39.078 l 398.605 54.836 l S Q
0 0.4 0.8 rg
q 1 0 0 1 0 0 cm
187.293 394.047 m 168.594 396.234 l 163.895 397.332 l 147.496 397.332 l
138.199 412.66 l 121.797 412.66 l 114.797 414.848 l 105.5 408.277 l 84.504
408.277 l 79.805 406.09 l 82.102 399.52 l 75.102 417.039 l 70.402 419.227
l 72.805 419.227 l 89.102 417.039 l 93.801 417.039 l 96.102 410.469 l 70.402
445.383 l 72.805 451.949 l 72.805 456.328 l 63.402 447.57 l 63.402 458.52
l 58.809 465.09 l 58.809 469.469 l 47.109 469.469 l 56.406 434.434 l 49.406
434.434 l 49.406 438.812 l 47.109 436.621 l 47.109 432.242 l 49.406 432.242
l 47.109 432.242 l 56.406 434.434 l 61.105 432.242 l 72.805 432.242 l 75.102
414.848 l 86.805 397.332 l 89.102 395.141 l 93.801 399.52 l 98.504 397.332
l 128.902 397.332 l 56.406 333.832 l 56.406 327.262 l 61.105 298.797 l
58.809 292.227 l 58.809 279.09 l 56.406 272.52 l 56.406 209.02 l 58.809
204.641 l 58.809 215.59 l 58.809 204.641 l 61.105 195.883 l 63.402 191.504
l 70.402 184.934 l 72.805 160.848 l 72.805 154.277 l 70.402 147.711 l 72.805
163.039 l 63.402 187.125 l 61.105 193.691 l 68.105 182.746 l 70.402 182.746
l 72.805 165.227 l 77.508 163.039 l 77.508 154.277 l 79.805 149.898 l 82.102
149.898 l 77.508 143.332 l 82.102 143.332 l 79.805 143.332 l 96.102 143.332
l 107.801 128.004 l 105.5 125.812 l 103.203 119.246 l 103.203 114.863 l
100.801 108.297 l 105.5 95.281 l 103.203 90.902 l 103.203 86.52 l 100.801
84.332 l 107.801 79.953 l 105.5 77.762 l 114.797 86.52 l 119.5 88.711 l
119.5 90.902 l 112.5 84.332 l 112.5 82.141 l 105.5 75.574 l 98.504 73.383
l 93.801 73.383 l 105.5 75.574 l 107.801 73.383 l 124.199 73.383 l 110.203
73.383 l 112.5 73.383 l 110.203 75.574 l 107.801 75.574 l 112.5 79.953
l 105.5 73.383 l 110.203 75.574 l 126.5 88.711 l 121.797 82.141 l 140.496
106.105 l 126.5 84.332 l 119.5 73.383 l 124.199 73.383 l 128.902 75.574
l 131.199 73.383 l 133.496 77.762 l 131.199 77.762 l 128.902 73.383 l 138.199
101.848 l 131.199 106.105 l 126.5 110.484 l 124.199 117.055 l 119.5 123.625
l 117.199 128.004 l 114.797 130.191 l 107.801 132.383 l 72.805 132.383
l 75.102 130.191 l 112.5 160.848 l 124.199 160.848 l 131.199 163.039 l 161.598
163.039 l 168.594 160.848 l 177.895 160.848 l 182.594 165.227 l 187.293
163.039 l 189.594 165.227 l 201.293 165.227 l 203.59 163.039 l 217.586
163.039 l 226.883 165.227 l 303.977 165.227 l 308.574 160.848 l 310.977
152.09 l 306.273 149.898 l 303.977 147.711 l 306.273 149.898 l 315.57 165.227
l 327.27 167.418 l 331.973 165.227 l 336.672 171.797 l 334.27 173.984 l
331.973 182.746 l 329.672 190.285 l 331.973 269.113 l 329.672 275.684 l
331.973 276.898 l 331.973 294.418 l 334.27 300.984 l 334.27 311.934 l 336.672
318.504 l 336.672 322.883 l 331.973 231.891 l 331.973 233.957 l 331.973
233.715 l 399.766 176.66 l 399.766 175.445 l 390.367 194.91 l 371.668 189.555
l 362.371 189.555 l 359.969 186.395 l 355.371 183.23 l 345.969 63.531 l
345.969 55.988 l 348.371 55.988 l 343.672 58.176 l 343.672 53.797 l 336.672
60.367 l 348.371 45.039 l 357.668 43.824 l S Q
0.988235 0.686275 0.243137 rg
q 1 0 0 1 0 0 cm
128.902 397.453 m 149.898 411.562 l 152.195 411.562 l 142.898 414.848 l
119.5 401.711 l 112.5 397.332 l 100.801 397.332 l 91.504 399.52 l 89.102
399.52 l 84.504 397.332 l 77.508 397.332 l 72.805 403.898 l 68.105 410.469
l 56.406 410.469 l 49.406 412.66 l 47.109 417.039 l 35.41 417.039 l 37.707
417.039 l 49.406 414.848 l 47.109 412.66 l 54.105 447.57 l 54.105 454.141
l 40.109 460.711 l 42.406 465.09 l 44.809 384.191 l 37.707 432.242 l 35.41
436.621 l 40.109 436.621 l 42.406 390.762 l 44.809 438.812 l 49.406 434.434
l 61.105 410.469 l 65.805 403.898 l 65.805 414.848 l 70.402 410.469 l 72.805
406.09 l 75.102 399.52 l 77.508 397.332 l 89.102 399.52 l 96.102 401.711
l 100.801 399.52 l 105.5 403.898 l 44.809 344.777 l 44.809 339.426 l 49.406
320.816 l 49.406 316.68 l 51.809 312.301 l 51.809 296 l 54.105 293.809
l 56.406 285.051 l 58.809 280.672 l 58.809 277.145 l 61.105 275.926 l 58.809
267.168 l 61.105 267.168 l 61.105 211.211 l 58.809 209.02 l 63.402 200.262
l 61.105 195.883 l 61.105 191.504 l 68.105 184.934 l 70.402 176.176 l 70.402
165.227 l 72.805 165.227 l 72.805 160.848 l 63.402 187.125 l 70.402 173.984
l 70.402 171.797 l 77.508 163.039 l 82.102 158.656 l 84.504 154.277 l 91.504
156.469 l 93.801 152.09 l 91.504 142.355 l 89.102 143.332 l 84.504 143.332
l 112.5 132.383 l 112.5 125.812 l 110.203 121.434 l 110.203 119.246 l 107.801
114.863 l 105.5 112.676 l 105.5 101.848 l 93.801 103.918 l 84.504 112.676
l 82.102 117.055 l 79.805 112.676 l 82.102 117.055 l 77.508 106.105 l 72.805
99.66 l 70.402 93.09 l 77.508 82.141 l 82.102 82.141 l 89.102 75.574 l
84.504 73.383 l 86.805 73.383 l 91.504 77.762 l 86.805 75.574 l 86.805 73.383
l 91.504 75.574 l 93.801 82.141 l 103.203 86.52 l 98.504 93.09 l 103.203
97.469 l 98.504 77.762 l 107.801 90.902 l 107.801 84.332 l 114.797 84.332
l 119.5 86.52 l 121.797 84.332 l 126.5 84.332 l 126.5 90.902 l 119.5 88.711
l 124.199 90.902 l 126.5 95.281 l 126.5 117.055 l 124.199 121.434 l 124.199
128.004 l 119.5 132.383 l 112.5 132.383 l 107.801 154.277 l 110.203 156.469
l 107.801 160.848 l 112.5 163.039 l 121.797 160.848 l 126.5 163.039 l 135.898
163.039 l 145.195 158.656 l 159.195 163.039 l 180.297 163.039 l 182.594
160.848 l 187.293 163.039 l 194.293 163.039 l 196.59 160.848 l 219.988
160.848 l 224.586 165.227 l 236.18 165.227 l 245.582 163.039 l 259.582 165.227
l 271.281 163.039 l 278.277 163.039 l 285.277 160.848 l 289.98 160.848
l 299.277 158.656 l 306.273 154.277 l 310.977 149.898 l 310.977 152.09 l
317.973 149.898 l 324.973 152.09 l 331.973 147.711 l 334.27 143.332 l 336.672
147.711 l 338.969 141.141 l 331.973 125.812 l 331.973 99.66 l 334.27 97.469
l 334.27 77.762 l 336.672 73.383 l 345.969 36.281 l 343.672 31.902 l 338.969
29.711 l 345.969 34.09 l 338.969 29.711 l 411.34 49.176 l S Q
1 g
5.273 242.953 178.477 78.75 re f
0 g
2.25 w
1 j
4 M q 1 0 0 1 0 0 cm
5.273 242.953 178.477 78.75 re S Q
0.2 g
0.751181 w
0 j
[ 1.502362 4.507086] 0 d
q 1 0 0 1 0 0 cm
403.809 74.789 m 398.605 54.836 l S Q
0.988235 0.686275 0.243137 rg
3.75 w
[] 0.0 d
q 1 0 0 1 0 0 cm
138.75 281.844 m 175.211 281.844 l S Q
0.0509804 0.427451 0.803922 rg
q 1 0 0 1 0 0 cm
138.75 257.16 m 175.211 257.16 l S Q
0.278431 g
q 1 0 0 1 0 0 cm
138.75 306.527 m 174.75 306.527 l S Q
Q
Q
Q Q
showpage
%%Trailer
end
%%EOF

View File

@@ -0,0 +1,61 @@
%% Creator: Inkscape inkscape 0.92.3, www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'wifiOptGlobalFloor.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{446.52248112bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.73127744)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{wifiOptGlobalFloor.eps}}%
\put(0.06258892,0.08957987){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}local optim.\end{tabular}}}}%
\put(0.03496901,0.14485814){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}global optim.\end{tabular}}}}%
\put(0.03764561,0.03061145){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{38.57500076}\smash{\begin{tabular}[t]{l}ground truth\end{tabular}}}}%
\end{picture}%
\endgroup%

6929
tex_review/logo-ccby.eps Normal file

File diff suppressed because one or more lines are too long

BIN
tex_review/logo-ccby.pdf Normal file

Binary file not shown.

14959
tex_review/logo-mdpi.eps Executable file

File diff suppressed because it is too large Load Diff

BIN
tex_review/logo-mdpi.pdf Normal file

Binary file not shown.

BIN
tex_review/logo-updates.pdf Normal file

Binary file not shown.

18
tex_review/make.sh Executable file
View File

@@ -0,0 +1,18 @@
#!/bin/bash
#PATH=$PATH:/mnt/data/texlive/bin/x86_64-linux/
PATH=$PATH:/mnt/vm/programme/texlive/bin/x86_64-linux/
PATH=$PATH:/apps/texlive/bin/x86_64-linux
pdflatex --shell-escape bare_conf.tex
bibtex bare_conf
pdflatex bare_conf.tex
#pdflatex bare_conf.tex
#gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dNOPAUSE -dQUIET -dBATCH -sOutputFile=foo-bare_conf_comp.pdf bare_conf.pdf
#okular diss.pdf &
#rm *.aux
#rm *.toc
#rm *.log

1341
tex_review/mdpi.bst Normal file

File diff suppressed because it is too large Load Diff

1621
tex_review/mdpi.cls Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,163 @@
\newcommand{\mAvgSquaredError}{\ensuremath{\overline{e}}}
\newcommand{\mLogDistGamma}{\ensuremath{\gamma}}
\newcommand{\mLogDistTX}{TX}
\newcommand{\mDongle}[1]{\ensuremath{D_{#1}}}
%\newcommand{\mDongle}{d} % dongle
\newcommand{\mBeacon}[1]{\ensuremath{B_{#1}}} % beacon
\newcommand{\mRssi}{\ensuremath{s}} % client's signal-strength measurement
\newcommand{\mMdlRSSI}{\ensuremath{\varsigma}} % model's signal-strength
\newcommand{\mPosAP}{\hat\varrho} % char for access point position vector
\newcommand{\mPos}{\rho} % char for positions
\newcommand{\mPosVec}{\vec{\mPos}} % position vector
\newcommand{\mPosAPVec}{\ensuremath{\vec{\mPosAP}}} % AP position vector
\newcommand{\mRssiVec}{\vec{s}} % client signal strength measurements
\newcommand{\mState}{q} % state variable
\newcommand{\mStateVec}{\vec{q}} % state vector variable
\newcommand{\mObs}{o} % observation variable
\newcommand{\mObsVec}{\vec{o}} % observation vector variable
\newcommand{\mObsWifi}{\vec{o}_{\text{wifi}}} % wifi observation
\newcommand{\mParticle}{X}
\newcommand{\mParticleVec}{\vec{X}}
\newcommand{\probGrid}{\vec{Q}}
\newcommand{\mProb}{p} % char for probability
\newcommand{\mMovingAvgWithSize}[1]{\ensuremath{\text{avg}_{#1}}}
\newcommand{\mPressure}{\rho}
\newcommand{\mObsPressure}{\mPressure_\text{rel}} % symbol for observation pressure
\newcommand{\mStatePressure}{\hat{\mPressure}_\text{rel}} % symbol for state pressure
\newcommand{\mHeading}{\theta}
\newcommand{\mObsHeading}{\Delta\mHeading} % symbol used for the observation heading
\newcommand{\mStateHeading}{\mHeading} % symbol used for the state heading
\newcommand{\mSteps}{n_\text{steps}}
\newcommand{\mObsSteps}{\mSteps}
\newcommand{\mActivity}{\Omega}
\newcommand{\mObsActivity}{\mActivity}
\newcommand{\mNN}{\text{nn}}
\newcommand{\mKNN}{\text{knn}}
\newcommand{\fPos}[1]{\textbf{pos}(#1)}
\newcommand{\fDistance}[2]{\delta(#1, #2)}
\newcommand{\fWA}[1]{\text{wall}(#1)}
\newcommand{\fDD}[1]{\text{door}(#1)}
\newcommand{\fImp}[1]{\text{imp}(#1)}
\newcommand{\fNN}[2]{\text{nn}(#1, #2)}
\newcommand{\fLength}[2]{\text{d}(#1, #2)}
%\newcommand{\mTarget}{\dot{v}}
\newcommand{\mVertexA}{v_i}
\newcommand{\mVertexB}{v_j}
\newcommand{\mEdgeAB}{e_{i,j}}
\newcommand{\mVertexDest}{v_\text{dest}}
\newcommand{\gDist}{d_\text{step}}
\newcommand{\gHead}{\theta_\text{walk}}
\newcommand{\mUsePath}{\kappa}
\newcommand{\mStepSize}{s_\text{step}}
%\newcommand{\docIBeacon}{iBeacon}
% for equation references
\newcommand{\refeq}[1]{\eqref{#1}}
\newcommand{\reffig}[1]{fig.~\ref{#1}}
\newcommand{\refFig}[1]{Fig.~\ref{#1}}
% add todo notes
%\newcommand{\todo}[1]{%
% \noindent%
% \fcolorbox{black}{yellow}{%
% \parbox[position]{0.45\textwidth}{%
% \footnotesize%
% {\bf TODO} #1%
% }%
% }%
%}
%\newcommand{\commentByFrank}[1]{}
%\newcommand{\commentByToni}[1]{}
%comments
\newcommand{\commentByFrank}[1]{%
\noindent%
\fcolorbox{black}{cyan}{%
\parbox[position]{0.95\textwidth}{%
\footnotesize%
{\bf Frank:} #1%
}%
}%
}
\newcommand{\commentByMarkus}[1]{%
\noindent%
\fcolorbox{black}{green}{%
\parbox[position]{0.95\textwidth}{%
\footnotesize%
{\bf Markus:} #1%
}%
}%
}
\newcommand{\commentByToni}[1]{%
\noindent%
\fcolorbox{black}{red}{%
\parbox[position]{0.95\textwidth}{%
\footnotesize%
{\bf Toni:} #1%
}%
}%
}
\newcommand{\docRSSI}{RSSI}
\newcommand{\docTX}{TX}
\newcommand{\docLogDist}{log-distance}
%\newcommand{\docAP}{access-point}
%\newcommand{\docAPs}{access-points}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\mPLE}{\ensuremath{\gamma}} % path-loss exponent
\newcommand{\mTXP}{\ensuremath{P_0}} % tx-power
\newcommand{\mWAF}{\ensuremath{\beta}} % wall attenuation factor
\newcommand{\mMdlDist}{\ensuremath{d}} % distance used within propagation models
%\newcommand{\mGraph}{\ensuremath{G}}
%\newcommand{\mVertices}{\ensuremath{V}}
%\newcommand{\mVertex}{\ensuremath{v}}
%\newcommand{\mVertexB}{\ensuremath{w}}
%\newcommand{\mEdges}{\ensuremath{E}}
%\newcommand{\mEdge}{\ensuremath{e}}
\newcommand{\landau}[1]{\ensuremath{ \mathcal{O}\left( #1 \right) }}
%comments for sensors journal
\newcommand{\del}[1]{\textcolor{red}{\hcancel{#1}}}
\newcommand{\add}[1]{\textcolor{blue}{#1}}

View File

@@ -0,0 +1,38 @@
\usepackage{xspace}
\newcommand{\eg}{e.\,g.\@\xspace}
\newcommand{\ie}{i.\,e.\@\xspace}
\newcommand{\qq} [1]{``#1''}
% keyword macros
\newcommand{\docIBeacon}{iBeacon}
% wifi naming
\newcommand{\wifiRSSI}{RSSI}
\newcommand{\wifiTxPower}{TX-Power}
\newcommand{\wifiPathLossExp}{PathLoss}
\newcommand{\wifiPropLogScale}{Log-Scale}
\newcommand{\wifiPropLogScaleWalls}{Log-Scale-Walls}
\newcommand{\docLogDistance}{log-distance}
\newcommand{\docLogDistanceWalls}{wall-attenuation-factor}
% misc
\newcommand{\docTxPower}{TX-Power}
\newcommand{\docPathLossExp}{PathLoss}
\newcommand{\docPathLoss}{Pathloss}
\newcommand{\docsAP}{AP}
\newcommand{\docAPshort}{AP}
\newcommand{\docAP}{access point}
\newcommand{\docAPs}{access points}
\newcommand{\docWIFI}{Wi\hbox{-}Fi}
\newcommand{\docBeacon}{\Gls{Beacon}}
\newcommand{\docBeacons}{\Glspl{Beacon}}
\newcommand{\docsRSSI}{RSSI}
\newcommand{\docDSimplex}{downhill-simplex}
\DeclareMathOperator{\atan}{atan2}

View File

@@ -0,0 +1,19 @@
Reviewer #1:
The paper presents a smartphone-based localization system using a particle filter to incorporate different probabilistic models. The comments and suggestions as follows:
1. The authors mention that "a setup-time of under 120 min for the complete building" in abstract. But I don't find any context about the setup-time in the whole paper. How does the "under 120 min" calculate? How long does the navigation mesh for the whole buliding take? How long does the 42 WiFi beacon installation take? How does the measuremnet of the reference points take? etc. The authors should give the details.
-> 120 museum has enough power outlets, requires it for the vitrinen... (am anfang von den experimenten was dazu schreiben)
2. The authors mention that the historical buildings "environments that are not built with localization in mind or do not provide any wireless infrastructure". But the WiFi beacons still need to be plugged into the power outlets. That means the whole building need 42 available power outlets. Does the WiFi beacon install in special position? I think the historical buildings don't have enough power outlets or the power outlets don't be available in a suitable position, maybe there is no power outlets at all in the whole corridor for example.
3. The authors meation that "This leads to problems for methods using received signal strengths indications (RSSI) from Wi-Fi or Bluetooth, due to a high signal attenuation between different rooms". However the WiFi beacon this paper used will meet the same issues, the authors also use the RSSI of the WiFi beacons? How does the WiFi beacon avoid the high signal attenuation between different rooms?
-> We clarified this statement within the text. The text passage you mentioned should not refer to the beacons, but to our used optimization method, see line xxx to xxx. As you correctly stated, the beacons are not able to avoid high signal attenuation. However, as they are very cheap (less then 10 $), we are able to increase the coverage by identifying weak spots. This makes the localization system a bit more independent, e.g. if some building should provide its own Wi-Fi infrastructure.
4. The authors mention that an optimization scheme can avoid inaccuracies that "outdated fingerprints caused by changes of the environment or inaccurate building plans". However the paper also use the recent RSSI measurements of nearby APs and signal strength predictions and "Each reference location was scanned 30 times (≈ 25 s scan time) using a Motorola Nexus 6 at 2.4 GHz band only". How can the reference poits to deal with the changes of the environment? Only 25 scan for each poit at the setup? I can't find any special details to deal with the environment changing issues.
-> Thank you very much for pointing this out. Your concerns are valid. This was a misformulation within the introduction of the paper. We have improved the relevant section of the text and made the basic statement clearer. Please refer to line xxx and xxx.
5. The author mention that "Such buildings are often full of nooks and crannies, what makes it hard for dynamical models using any kind of pedestrian dead reckoning (PDR)","the error accumulates not only over time, but also with the number of turns and steps made". So "Thus, this paper presents a robust but realistic movement model using a three-dimensional navigation mesh based on triangles". However, Why does the three-dimensional navigation mesh can deal with the turns and steps error? The author should give the more detail description. The navigation graph uses 30*30 grid-cell, the navigation mesh uses triangles. But I don't find very clear that how does the triangles plan? More triangles can improve the accuracy or not? Why the the ground floor need 320 triangles? This the minimum?
6. The authors emphasize that "The goal of this work is to propose a fast to deploy and low-cost localization solution, that provides reasonable results in a high variety of situations". But for the 2500m2 building they used 42 WiFi beacon. I don't think the number is few. Is the whole 42 beacon necessary? The author should discuss the impact of the number of WiFi beacon. How many are the reference poits? What's the impact of the density of the reference points? If the authors want to emphasizen the fast deploy and low-cost, they should give more detail discussion, also the "high variety".
-> 2500m2 sind nur die bereiche in denen gelaufen werden kann. ohne den innenhof. die zahl ist also etwas verwirrend...

View File

@@ -0,0 +1,35 @@
Overall:
From my point of view, it is not clear that this paper represents a novel contribution. Almost all the bases and formulation have been presented in your previous paper (IPIN 2016, FUSION 2016, ISPRS International Journal of Geo-Information 2017). Only the KDL optimization and a the trials in a new environment are novels, and they obtained better results due to the floor adaptation of the WAF model.
-> To clarify the contributions of this work, we have added a listing in lines xxx to xxx. We hope that this will help to provide a better overview.
Detailed comments:
line 187: The smoothing Monte Carlo filter is the same of you proposed in IPIN 2016 conference? It is not clear why you are referring it as Condensation. Are you using any concrete Condensation implementation (OpenCV, matlab,...), and this is the explanation?.
Condensation filter is used in the field of visual tracking due to the researchers do not access to the agent information. In your case you have access to the phone sensors, therefore the concept is a Monte Carlo Localization with transitions detection based on steps and orientation detection.
Using a MCL you do not need to mix observations and actions in the same concept (eq 3.), you should divide into observations and transitions.
From my point of view formulation of transition model T should be tackled using actions (steps) and observations (s_wifi) should be used like an observation model V (described like "Evaluation" in section 5).
line 226: What is z_t? Is an observation o_t? nomenclature should be unified through the whole paper
line 319: Are these thresholds able for all of pedestrians? have you tried with different actors and behaviors?
line 410: Why 10.000 samples in the building? Should it be dependent of the building size, wifi noise, etc...?
line 480: In line 410 you propose 10.000 particles and in the experiments propose 1.000, why?
line 508: results shown in Figure 3 are not clear presented, from my point of view the proposal seems to be worse than the previous one, there are much more outliers (blue color)
line 512: typo "prober"
Figure 5: It is not clear connections between ground floor and first floor, is there any typo or figures are misplaced?
Figure 6: You use the expression "Monte Carlo", are you referring to Condensation?
Results section: results and comments are ad-hoc for this environment, and it is not demonstrated that could be applied in a more general context.

View File

@@ -0,0 +1,123 @@
The paper presents an improvement to a previous work of the authors where a transition, model, an activity recognition method, a recovery method for the particle filter, and an improved density estimation.
The novelty of the paper was collected in the reading and it should be more clearly listed. At the current status of the paper it is not clear. It should be itemized in the abstract and also in the obtained results.
-> Thank you very much for this advice. We tried to clarify this within the abstract as well as at the end of the introduction (see line xxx to xxx). We further added a discussion to the results, which addresses the contributions and their impact on the system.
The rapid computation declaration is not proven, given that the authors do not compare the non-gridded approach timings.
-> The terminology "rapid computation scheme" only refers to the state estimation process, not the underlying graph or the complete system performance. It seems this is not clearly formulated within the paper. The weighted-average estimator yields faster estimates of the position compared to the KDE approach as we have shown in our previous work .... This previous work does also provide an extensive comparison between other state-of-the-art KDE approximations.
However, if you refer to the comparison between gridded graph and navigation mesh, ...
Nevertheless, ...
Does the system will also work in regular buildings? A final comment on the lessons learned in this case of the 13th century building should be in the conclusions, given that the title focus on this very specific context.
->
From the middle of the paper the quality of the English decreases with several sentences with errors, some of them were identified.
->
Given that the authors declare that this is an update they should be more clear on what was already done. We also consider that the authors use auto citation excessively (7 in 32) and or compress the self-citation or increase the comparison with other works.
->
The paper is relevant and should be published after a clarification on the produced work and at least report two comparisons, one in the performance of the KDE and other on the initialization time.
->
Some notes follow along the lines of the paper:
Ln 1- "of our award-winning"
The authors should refrain to be excessive in the connotation of the work, at least in the abstract. Should not hide but can declare the award in a more soft way.
-> We have removed the remark and have formulated the remaining text passages more modestly.
Ln 9-…
"Continuous and smooth floor changes are enabled by using a simple activity recognition. Our rapid computation scheme of the kernel density estimation allows to find an exact estimation of the pedestrians current position. We further tackle advanced problems like multimodal densities and sample impoverishment (system gets stuck) by introducing different countermeasures, leading to a more robust localization. " Too many adjectives without justification: simple, rapid, advanced...
-> You are right and we have rewritten the particular text-block.
Ln 14: Why low cost solution? Are the material less expensive compared to what alternative? If the authors do not want to defend this property we suggest it should be removed. (also in Ln 64)
-> The argument that our system is inexpensive is based on several considerations: With under 10 dollars per piece the Wi-Fi beacons are very cheap compared to conventional access points.
They only require a power source in order to operate, which keeps the need for additional infrastructure small. Furthermore, we believe that a janitor is able to set up our system independently. This means that there is no need to pay an external contractor to utilize the system and only the hardware costs and, if applicable, the price of the software have to be calculated. Nevertheless, as you suggested correctly, these considerations could not apply to all buildings and scenarios, which is why the property "low cost" is removed.
Ln 21: “optimization scheme enables a setup-time of under 120 min for the complete building. 
”- Should indicate the mapped area.
-> Fixed in line 26.
Ln 38: “There is also a higher chance of detecting false or misplaced turns,”
The sentence appears incorrect
-> Fixed in line 43.
Ln 40: “presents a robust but realistic movement”
Too many adjectives not explained
-> Fixed in line 45.
Ln 52: "This leads to problems for methods..." This phrase should be reformulated since Wi-Fi fingerprinting is RSSI based and might actually benefit from the high signal attenuation between different rooms. The problem is probably coverage of the whole building, not parameter estimation.
-> This line was written with signal strength prediction models in mind, which is wrong in terms of fingerprinting, of course. Thank you for the hint! We tried the incorporate both, coverage and parameter estimation between line xxx and xxx.
Ln 58 of simple and cheap- How simple and how cheap?
-> The price mostly depends on the reseller, ranging from 3 dollar to 10 dollar. The term "simple" is of course difficult to substantiate, which is why it was removed.
Ln 160 “are based on the nature of particle filter.” -> “are based on the nature of a particle filter.”
-> Fixed in line 180.
Ln 215: "Using variable shaped/sized elements instead of rigid grid-cells provide both higher accuracy for reaching every corner, and ..." Is accuracy the right word here?
-> TODO: @Frank
Ln 228: "If the destination is unreachable, e.g. due to the walls or other obstacles." This phrase is incorrect, the authors should reformulate it.
-> TODO: Echt? Haben wir in der Intro oben auch. Warum ist das falsch?
Ln 237: "...the average acceleration..." This includes both linear acceleration and gravity, use "linear acceleration".
-> TODO: @Frank?
Ln 258 - This equation needs revision. Should it be "p(s_i|p) ~ N(u_i,p , std²_wifi)" ? Also the wall-attenuation-factor-model only takes into account attenuation by floors, not walls.
-> TODO: Eigentlich passt das mit der NV, für Ihn tdz ändern? Und das model nimmt keine wände, weil wir keine wände nehmen :D.
Ln 271-272: The authors mention that their WiFi fingerprinting approximation process is faster than classical fingerprinting, but they fail to provide a reference for an example of the latter or significant metrics such as the average time per square meter for fingerprinting a whole building. Furthermore, the authors should also take into account that while there are approaches where reference measurements are recorded on small grids between 1 to 2m, there are also approaches able to record reference measurements using faster methods. One example is walking by the building while registering ground truth points and using dead reckoning techniques (see Guimarães, V. et al. A motion tracking solution for indoor localization using smartphones. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN)).
-> TODO: vielleicht den satz hier entfernen und im related work darauf hinweisen, dass es auch andere schnelle ansätze gibt? Wobei wir im related work schon [20] gecited haben, der genau das macht! vielleicht erwähnen wir seinen noch, damit er zufrieden ist? Oder wir zeigen das kleine fingerprints schneller ist als laufen? was vermutlich nicht der fall ist.
Ln 275 - Equation 9 The d0 parameter of eq.8 shpuld also be presented in eq.9.
-> Fixed in line xxx
Ln 307 “Activity Recognition ” The threshold approach should have reports on the detection capability
-> TODO: Also die pfade nochmal berechnen und da die erkennungsrate ausspucken.
Ln 316 - Equation 10 According to these rules a user could be standing and walking at the same time. The algorithm would be better represented by a flowchart or a decision tree.
-> You are right. Standing and walking at the same time should not supposed to be happen. We exchanged the equation with a decision tree. In our opinion the algorithm is now very easy to understand, thank you for the good advice.
Ln 316: t_baro = 0.042 m/s² ? Wrong unit, please confirm value and unit again.
-> Of course, m/s² is the wrong unit for pressure. Changed to hPa.
Ln 360 “It is obvious, that a computation of the probability density function of the posterior could solve the above, but finding such an analytical solution is clearly an intractable problem, which is the reason for applying a sample representation in the first place.” The authors should refrain to make non scientific comments like “obvious” or “clearly”. Do direct statements.
-> The objection is valid and we will fix the appropriate text passages.
Ln 381 “Our rapid computation scheme” As commented before. Be more concrete and remove non justified adjectives.
-> As before, the adjective "rapid computation" was removed in behalf of approximation scheme.
Ln 453 “By utilizing it to a 13th century historic building”-> “By utilizing the proposed technology in a 13th century historic building”
-> Fixed as recommended.
Ln 469: "8 cores..." The i7-4702HQ has 4 cores and 8 threads, not 8 cores.
-> This misstatement has been fixed.
Ln 551 - “above are more moderately attenuated” revise.
-> More understandable and correctly formulated in line xxx.
Ln 524 - Figure 4 "...xz plane..." should be xy plane
-> Fixed.
Ln 578 “This allows us to discuss everything in detail” irrelevant or should be better expressed.
-> Removed.
Ln 711 - “The KDE-based estimation illustrates this behavior very accurate” Revise
-> This sentence was very daring and incomprehensible. We tried to explain the situation in greater detail. Please refer to lines xxx to xxx.
Ln 713 “the teal square” It is not a square.
-> Replaced throughout the whole work by rectangle, area or border depending on the use.
Ln 720 “In the end, it is a question of optimal harmony between transition and evaluation.” This is sentence is not providing information and lacks scientific objectivity.
-> The sentence was removed, as it was irrelevant.
Ln 726 “At the end, in the here shown examples we only searched for a global maxima” revise english
Ln 733 “Compared to other state-of-the-art solutions, the setup time is only a few hours and does not require any expert knowledge or hardware.” This comparision is not done in the paper. The authors should be more specific given that this property of the purposed system is declared important, and so should be given with ore detail and (m^2 per hour) and compared with the coverage time of other systems.
Ln 754 “opens up completely new possibilities when” revise tone of writing.