added missing commit
This commit is contained in:
@@ -26,7 +26,7 @@ In the case of particle filters the MMSE estimate equals to the weighted-average
|
|||||||
\hat{\mStateVec}_t := \frac{1}{W_t} \sum_{i=1}^{N} w^i_t \mStateVec^i_t \, \text{,}
|
\hat{\mStateVec}_t := \frac{1}{W_t} \sum_{i=1}^{N} w^i_t \mStateVec^i_t \, \text{,}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\commentByMarkus{Passt die Notation so?}
|
\commentByMarkus{Passt die Notation so?}
|
||||||
\commentByFrank{sieht fuer mich auf den ersten blick nach korrektem weighted average aller partikel aus}
|
\commentByFrank{sieht fuer mich auf den ersten blick nach korrektem weighted average aller partikel aus. was stoert dich?}
|
||||||
where $W_t=\sum_{i=1}^{N}w^i_t$ is the sum of all weights.
|
where $W_t=\sum_{i=1}^{N}w^i_t$ is the sum of all weights.
|
||||||
While producing an overall good result in many situations, it fails when the posterior is multimodal.
|
While producing an overall good result in many situations, it fails when the posterior is multimodal.
|
||||||
In these situations the weighted-average estimate will find the estimate somewhere between the modes.
|
In these situations the weighted-average estimate will find the estimate somewhere between the modes.
|
||||||
|
|||||||
Reference in New Issue
Block a user