This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Fusion2016/tex/chapters/system.tex

51 lines
3.2 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\section{Recursive State Estimation}
We consider indoor localisation as a time-sequential, non-linear and non-Gaussian state estimation problem.
Using a recursive Bayes filter that satisfies the Markov property, the posterior distribution at time $t$ can be written as
\begin{equation}
\arraycolsep=1.2pt
\begin{array}{ll}
&p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\
&\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t})}_{\text{transition}}
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace,
\end{array}
\label{equ:bayesInt}
\end{equation}
where $\mObsVec_{1:t} = \mObsVec_{1}, \mObsVec_{1}, ..., \mObsVec_{t}$ is a series of observations up to time $t$.
The hidden state $\mStateVec$ is given by
\begin{equation}
\mStateVec = (x, y, z, \mObsHeading, \mStatePressure),\enskip
x,y,z,\mStatePressure \in \R \enspace,
\end{equation}
where $x, y, z$ represent the 3D position, $\mObsHeading$ the user's heading and $\mStatePressure$ the relative pressure prediction in hectopascal (hPa).
The recursive part of the density estimation contains all information up to time $t$.
Further, the state transition models the pedestrians movement based upon random walks on graphs, which will be described in section \ref{sec:trans}.
It should be noted, that we also include the current observation $\mObsVec_{t}$ in it.
Containing all relevant sensor measurements to evaluate the current state, the observation vector is defined as follows:
\begin{equation}
\mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{ib}, \mObsHeading, \mObsPressure) \enspace,
\end{equation}
where $\mRssiVec_\text{wifi}$ is the Wi-Fi and $\mRssiVec_\text{ib}$ the iBeacon signal strength vector.
The information, if a step or turn was detected, is given as a Boolean value.
\commentByToni{Wie sieht die Observation nun genau aus? Fehlt da nicht Step und Turn?}
Finally, $\mObsPressure$ is the relative barometric pressure referring to some fixed point in time.
For incorporating the highly different sensor types, one should refer to the process of probabilistic sensor fusion \cite{}.
By assuming statistical independence of all sensor models, the probability density of the state evaluation is given by
\begin{equation}
\begin{split}
&p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1}) = \\
&p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{turn}
\,p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{step} \\
&p(\vec{o}_t \mid \vec{q}_t)_\text{baro}
\,p(\vec{o}_t \mid \vec{q}_t)_\text{ib}
\,p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}
\end{split} \enspace.
\label{eq:evalBayes}
\end{equation}
Here, every single component refers to a probabilistic sensor model.
The heading information is evaluated using $p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{turn}$, the step length using a step detection process by $p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{step}$, using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$ the barometer evaluates the current floor, whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for iBeacons and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for Wi-Fi.