\section{Recursive State Estimation} We consider indoor localisation as a time-sequential, non-linear and non-Gaussian state estimation problem. Using a recursive Bayes filter that satisfies the Markov property, the posterior distribution at time $t$ can be written as \begin{equation} \arraycolsep=1.2pt \begin{array}{ll} &p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\ &\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}} \int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t})}_{\text{transition}} \underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace, \end{array} \label{equ:bayesInt} \end{equation} where $\mObsVec_{1:t} = \mObsVec_{1}, \mObsVec_{1}, ..., \mObsVec_{t}$ is a series of observations up to time $t$. The hidden state $\mStateVec$ is given by \begin{equation} \mStateVec = (x, y, z, \mObsHeading, \mStatePressure),\enskip x,y,z,\mStatePressure \in \R \enspace, \end{equation} where $x, y, z$ represent the 3D position, $\mObsHeading$ the user's heading and $\mStatePressure$ the relative pressure prediction in hectopascal (hPa). The recursive part of the density estimation contains all information up to time $t$. Further, the state transition models the pedestrian’s movement based upon random walks on graphs, which will be described in section \ref{sec:trans}. It should be noted, that we also include the current observation $\mObsVec_{t}$ in it. Containing all relevant sensor measurements to evaluate the current state, the observation vector is defined as follows: \begin{equation} \mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{ib}, \mObsHeading, \mObsPressure) \enspace, \end{equation} where $\mRssiVec_\text{wifi}$ is the Wi-Fi and $\mRssiVec_\text{ib}$ the iBeacon signal strength vector. The information, if a step or turn was detected, is given as a Boolean value. \commentByToni{Wie sieht die Observation nun genau aus? Fehlt da nicht Step und Turn?} Finally, $\mObsPressure$ is the relative barometric pressure referring to some fixed point in time. For incorporating the highly different sensor types, one should refer to the process of probabilistic sensor fusion \cite{}. By assuming statistical independence of all sensor models, the probability density of the state evaluation is given by \begin{equation} \begin{split} &p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1}) = \\ &p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{turn} \,p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{step} \\ &p(\vec{o}_t \mid \vec{q}_t)_\text{baro} \,p(\vec{o}_t \mid \vec{q}_t)_\text{ib} \,p(\vec{o}_t \mid \vec{q}_t)_\text{wifi} \end{split} \enspace. \label{eq:evalBayes} \end{equation} Here, every single component refers to a probabilistic sensor model. The heading information is evaluated using $p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{turn}$, the step length using a step detection process by $p(\vec{o}_t \mid \vec{q}_t, \vec{q}_{t-1})_\text{step}$, using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$ the barometer evaluates the current floor, whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for iBeacons and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for Wi-Fi.