added conclusion
This commit is contained in:
@@ -1,10 +1,19 @@
|
|||||||
\section{Conclusion}
|
\section{Conclusion}
|
||||||
|
We presented a novel approach for integrating prior navigation knowledge by using realistic human walking paths.
|
||||||
|
Based on a weighted graph, two different models for walking in a more targeted and natural manner were introduced.
|
||||||
|
It could be shown that adding this additional knowledge causes an overall improvement of the localisation results, while maintaining flexible for uncertain behaviour.
|
||||||
|
Furthermore, our approach is able to provide accurate and robust position estimations, even when (normally) necessary calibration processes are ignored.
|
||||||
|
|
||||||
|
However, providing this calibration knowledge can further improve the results. In order to reduce the effort of locating the \docAP{}s and calibrating them, a numerical optimization based on predefined walks could be considered. Additionally, the graph allows for storing pre-computed signal strengths and thus enables more complex prediction models incorporating floor and wall information into the signal strength estimation.
|
||||||
|
|
||||||
|
As seen, multimodal distributions lead to faulty position estimations and therefore a rising error. One possible method to resolve this issue would be a more suiting location estimation method. Another promising way is smoothing. By deploying a fixed-lag smoother the system would still be perceived as real-time application, but is able to estimate the (delayed) estimation using future measurements up to the latest timestep.
|
||||||
|
|
||||||
|
|
||||||
\commentByFrank{balance zwischen den einzelnen wahrscheinlichkeiten ist oft ein schmaler grad. wieviel turn erlauben, wieviel auf den pfad zwingen. das verbesern}
|
|
||||||
\commentByFrank{position der APs wissen ist viel arbeit. vereinfachen durch test-walks auf vorgegebenen pfaden -> numerisch optimieren wo APs sind}
|
%\commentByFrank{balance zwischen den einzelnen wahrscheinlichkeiten ist oft ein schmaler grad. wieviel turn erlauben, wieviel auf den pfad zwingen. das verbesern}
|
||||||
\commentByToni{quadtress. stellen die groesse der zellen variable ein. je nach bedarf.}
|
%\commentByFrank{position der APs wissen ist viel arbeit. vereinfachen durch test-walks auf vorgegebenen pfaden -> numerisch optimieren wo APs sind}
|
||||||
\commentByFrank{multimodalitaeten (z.B. treppenhaeuser). fixen durch andere estimations}
|
%\commentByToni{quadtress. stellen die groesse der zellen variable ein. je nach bedarf.}
|
||||||
\commentByToni{oder durch smoothing}
|
%\commentByFrank{multimodalitaeten (z.B. treppenhaeuser). fixen durch andere estimations}
|
||||||
\commentByToni{Aufzuege hinzufuegen. Vertical Acceleration benutzen.}
|
%\commentByToni{oder durch smoothing}
|
||||||
|
%\commentByToni{Aufzuege hinzufuegen. Vertical Acceleration benutzen.}
|
||||||
|
|
||||||
|
|||||||
@@ -18,7 +18,7 @@
|
|||||||
The hidden state $\mStateVec$ is given by
|
The hidden state $\mStateVec$ is given by
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mStateVec = (x, y, z, \mObsHeading, \mStatePressure),\enskip
|
\mStateVec = (x, y, z, \mObsHeading, \mStatePressure),\enskip
|
||||||
x, y, z, \mObsHeading \mStatePressure \in \R \enspace,
|
x, y, z, \mObsHeading, \mStatePressure \in \R \enspace,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
where $x, y, z$ represent the position in 3D space, $\mObsHeading$ the user's heading and $\mStatePressure$ the
|
where $x, y, z$ represent the position in 3D space, $\mObsHeading$ the user's heading and $\mStatePressure$ the
|
||||||
|
|||||||
Reference in New Issue
Block a user