diff --git a/tex/chapters/conclusion.tex b/tex/chapters/conclusion.tex index 99a667d..9d91c02 100644 --- a/tex/chapters/conclusion.tex +++ b/tex/chapters/conclusion.tex @@ -1,10 +1,19 @@ \section{Conclusion} +We presented a novel approach for integrating prior navigation knowledge by using realistic human walking paths. +Based on a weighted graph, two different models for walking in a more targeted and natural manner were introduced. +It could be shown that adding this additional knowledge causes an overall improvement of the localisation results, while maintaining flexible for uncertain behaviour. +Furthermore, our approach is able to provide accurate and robust position estimations, even when (normally) necessary calibration processes are ignored. + +However, providing this calibration knowledge can further improve the results. In order to reduce the effort of locating the \docAP{}s and calibrating them, a numerical optimization based on predefined walks could be considered. Additionally, the graph allows for storing pre-computed signal strengths and thus enables more complex prediction models incorporating floor and wall information into the signal strength estimation. + +As seen, multimodal distributions lead to faulty position estimations and therefore a rising error. One possible method to resolve this issue would be a more suiting location estimation method. Another promising way is smoothing. By deploying a fixed-lag smoother the system would still be perceived as real-time application, but is able to estimate the (delayed) estimation using future measurements up to the latest timestep. - \commentByFrank{balance zwischen den einzelnen wahrscheinlichkeiten ist oft ein schmaler grad. wieviel turn erlauben, wieviel auf den pfad zwingen. das verbesern} - \commentByFrank{position der APs wissen ist viel arbeit. vereinfachen durch test-walks auf vorgegebenen pfaden -> numerisch optimieren wo APs sind} - \commentByToni{quadtress. stellen die groesse der zellen variable ein. je nach bedarf.} - \commentByFrank{multimodalitaeten (z.B. treppenhaeuser). fixen durch andere estimations} - \commentByToni{oder durch smoothing} - \commentByToni{Aufzuege hinzufuegen. Vertical Acceleration benutzen.} + +%\commentByFrank{balance zwischen den einzelnen wahrscheinlichkeiten ist oft ein schmaler grad. wieviel turn erlauben, wieviel auf den pfad zwingen. das verbesern} +%\commentByFrank{position der APs wissen ist viel arbeit. vereinfachen durch test-walks auf vorgegebenen pfaden -> numerisch optimieren wo APs sind} +%\commentByToni{quadtress. stellen die groesse der zellen variable ein. je nach bedarf.} +%\commentByFrank{multimodalitaeten (z.B. treppenhaeuser). fixen durch andere estimations} +%\commentByToni{oder durch smoothing} +%\commentByToni{Aufzuege hinzufuegen. Vertical Acceleration benutzen.} diff --git a/tex/chapters/system.tex b/tex/chapters/system.tex index 8a2950c..c88c142 100644 --- a/tex/chapters/system.tex +++ b/tex/chapters/system.tex @@ -18,7 +18,7 @@ The hidden state $\mStateVec$ is given by \begin{equation} \mStateVec = (x, y, z, \mObsHeading, \mStatePressure),\enskip - x, y, z, \mObsHeading \mStatePressure \in \R \enspace, + x, y, z, \mObsHeading, \mStatePressure \in \R \enspace, \end{equation} % where $x, y, z$ represent the position in 3D space, $\mObsHeading$ the user's heading and $\mStatePressure$ the