This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
FtmPrologic/code/filter.h

310 lines
8.5 KiB
C++

#pragma once
#include "mesh.h"
#include "Settings.h"
#include <omp.h>
#include <array>
#include <Indoor/Assertions.h>
#include <Indoor/geo/Heading.h>
#include <Indoor/math/distribution/Uniform.h>
#include <Indoor/math/distribution/Normal.h>
//#include <Indoor/math/distribution/Region.h>
#include <Indoor/smc/Particle.h>
#include <Indoor/smc/filtering/ParticleFilter.h>
#include <Indoor/smc/filtering/ParticleFilterInitializer.h>
#include <Indoor/smc/filtering/resampling/ParticleFilterResamplingSimple.h>
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <Indoor/smc/filtering/estimation/ParticleFilterEstimationMax.h>
#include <Indoor/navMesh/walk/NavMeshWalkSimple.h>
//#include <Indoor/navMesh/walk/NavMeshWalkEval.h>
//#include <Indoor/navMesh/walk/NavMeshWalkWifi.h>
//#include <Indoor/navMesh/walk/NavMeshWalkWifiRegional.h>
//#include <Indoor/navMesh/walk/NavMeshWalkUnblockable.h>
//#include <Indoor/navMesh/walk/NavMeshWalkKLD.h>
#include <Indoor/navMesh/walk/NavMeshWalkSinkOrSwim.h>
//#include <Indoor/navMesh/NavMeshRandom.h>
#include <Indoor/sensors/radio/model/LogDistanceModel.h>
#include <Indoor/sensors/radio/WiFiMeasurements.h>
#include <Indoor/data/Timestamp.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/activity/ActivityDetector.h>
#include "FtmKalman.h"
#include "Eval.h"
struct MyState {
/** the state's position (within the mesh) */
MyNavMeshLocation pos;
/** the state's heading */
Heading heading;
MyState() : pos(), heading(0) {;}
MyState(Point3 p) : pos(p, nullptr), heading(0){;}
MyState& operator += (const MyState& o) {
pos.tria = nullptr; // impossible
pos.pos += o.pos.pos;
return *this;
}
MyState& operator /= (const double val) {
pos.tria = nullptr; // impossible
pos.pos /= val;
return *this;
}
MyState operator * (const double val) const {
MyState res;
res.pos.pos = pos.pos * val;
return res;
}
float getX(){
return pos.pos.x;
}
float getY() {
return pos.pos.y;
}
float getZ() {
return pos.pos.z;
}
float getBinValue(const int dim) const {
switch (dim) {
case 0: return this->pos.pos.x;
case 1: return this->pos.pos.y;
case 2: return this->pos.pos.z;
case 3: return this->heading.getRAD();
}
throw "cant find this value within the bin";
}
};
struct MyControl {
int numStepsSinceLastEval = 0;
float headingChangeSinceLastEval = 0;
void afterEval() {
numStepsSinceLastEval = 0;
headingChangeSinceLastEval = 0;
}
//wifi
std::map<MACAddress, WiFiMeasurement> wifi;
//time
Timestamp currentTime;
//last estimation
Point3 lastEstimate = Point3(26, 43, 7.5);
};
struct MyObservation {
//wifi
std::unordered_map<MACAddress, WiFiMeasurement> wifi; // deprecated
std::vector<WiFiMeasurement> ftm;
//time
Timestamp currentTime;
};
class MyPFInitUniform : public SMC::ParticleFilterInitializer<MyState> {
const MyNavMesh* mesh;
public:
MyPFInitUniform(const MyNavMesh* mesh) : mesh(mesh) {
;
}
virtual void initialize(std::vector<SMC::Particle<MyState>>& particles) override {
/** random position and heading within the mesh */
Distribution::Uniform<float> dHead(0, 2*M_PI);
MyNavMeshRandom rnd = mesh->getRandom();
for (SMC::Particle<MyState>& p : particles) {
p.state.pos = rnd.draw();
p.state.heading = dHead.draw();
p.weight = 1.0 / particles.size();
}
}
};
class MyPFInitFixed : public SMC::ParticleFilterInitializer<MyState> {
const MyNavMesh* mesh;
const Point3 pos;
public:
MyPFInitFixed(const MyNavMesh* mesh, const Point3 pos) : mesh(mesh), pos(pos) {
;
}
virtual void initialize(std::vector<SMC::Particle<MyState>>& particles) override {
/** random position and heading within the mesh */
Distribution::Uniform<float> dHead(0, 2*M_PI);
for (SMC::Particle<MyState>& p : particles) {
p.state.pos = mesh->getLocation(pos);
p.state.heading = 1.5*M_PI;// dHead.draw();
p.weight = 1.0 / particles.size();
}
}
};
class MyPFTransStatic : public SMC::ParticleFilterTransition<MyState, MyControl>{
void transition(std::vector<SMC::Particle<MyState>>& particles, const MyControl* control) override {
// nop
}
};
struct MyPFTransRandom : public SMC::ParticleFilterTransition<MyState, MyControl>{
Distribution::Normal<float> dStepSize;
Distribution::Uniform<float> dHeading;
MyPFTransRandom()
//: dStepSize(2.5f, 0.7f), dHeading(0, 2*M_PI)
: dStepSize(2.0f, 0.5f), dHeading(0, 2 * M_PI)
{}
void transition(std::vector<SMC::Particle<MyState>>& particles, const MyControl* control) override {
#pragma omp parallel for num_threads(3)
for (int i = 0; i < particles.size(); ++i) {
SMC::Particle<MyState>& p = particles[i];
const float angle = dHeading.draw();
const float stepSize = dStepSize.draw();
p.state.pos.pos.x += std::cos(angle) * stepSize;
p.state.pos.pos.y += std::sin(angle) * stepSize;
}
}
};
class MyPFTrans : public SMC::ParticleFilterTransition<MyState, MyControl> {
//using MyNavMeshWalk = NM::NavMeshWalkSimple<MyNavMeshTriangle>;
//using MyNavMeshWalk = NM::NavMeshWalkWifiRegional<MyNavMeshTriangle>;
//using MyNavMeshWalk = NM::NavMeshWalkUnblockable<MyNavMeshTriangle>;
//using MyNavMeshWalk = NM::NavMeshWalkKLD<MyNavMeshTriangle>;
using MyNavMeshWalk = NM::NavMeshWalkSinkOrSwim<MyNavMeshTriangle>;
MyNavMeshWalk walker;
public:
//std::vector<double> listRadiusSub;
MyPFTrans(MyNavMesh& mesh) :
walker(mesh) {
// how to evaluate drawn points
walker.addEvaluator(new NM::WalkEvalHeadingStartEndNormal<MyNavMeshTriangle>(0.04));
walker.addEvaluator(new NM::WalkEvalDistance<MyNavMeshTriangle>(0.1));
//walker.addEvaluator(new NM::WalkEvalApproachesTarget<MyNavMeshTriangle>(0.9)); // 90% for particles moving towards the target
}
void transition(std::vector<SMC::Particle<MyState>>& particles, const MyControl* control) override {
// walking and heading random
Distribution::Normal<float> dStepSizeFloor(0.60f, 0.1f);
Distribution::Normal<float> dStepSizeStair(0.35f, 0.1f);
Distribution::Normal<float> dHeading(0.0, 0.1f);
#pragma omp parallel for num_threads(3)
for (int i = 0; i < particles.size(); ++i) {
SMC::Particle<MyState>& p = particles[i];
// how to walk
MyNavMeshWalkParams params;
params.heading = p.state.heading + control->headingChangeSinceLastEval + dHeading.draw();
params.numSteps = control->numStepsSinceLastEval;
params.start = p.state.pos;
params.stepSizes.stepSizeFloor_m = dStepSizeFloor.draw();
params.stepSizes.stepSizeStair_m = dStepSizeStair.draw();
if(params.stepSizes.stepSizeFloor_m < 0.1f || params.stepSizes.stepSizeStair_m < 0.1f){
params.stepSizes.stepSizeFloor_m = 0.1f;
params.stepSizes.stepSizeStair_m = 0.1f;
}
// walk
MyNavMeshWalk::ResultEntry res = walker.getOne(params);
// assign back to particle's state
p.weight *= res.probability;
p.state.pos = res.location;
p.state.heading = res.heading;
}
// reset the control (0 steps, 0 delta-heading)
//control->afterEval();
}
};
struct MyPFEval : public SMC::ParticleFilterEvaluation<MyState, MyObservation> {
// FRANK
MyPFEval() { };
bool assignProps = false;
std::shared_ptr<std::unordered_map<MACAddress, Kalman>> ftmKalmanFilters;
virtual double evaluation(std::vector<SMC::Particle<MyState>>& particles, const MyObservation& observation) override {
double sum = 0;
#pragma omp parallel for num_threads(3)
for (int i = 0; i < particles.size(); ++i) {
SMC::Particle<MyState>& p = particles[i];
auto kalmanFilters = ftmKalmanFilters;
if (!Settings::UseKalman)
{
kalmanFilters = nullptr;
}
double prob = ftmEval(Settings::UseRSSI ? SensorMode::RSSI : SensorMode::FTM, observation.currentTime, p.state.pos.pos, observation.ftm, kalmanFilters);
if (assignProps)
p.weight = prob;
else
p.weight *= prob;
#pragma omp atomic
sum += prob;
}
return sum;
}
};
using MyFilter = SMC::ParticleFilter<MyState, MyControl, MyObservation>;