\section{Recursive State Estimation} \commentByFrank{schon mal kopiert, dass es da ist.} \commentByFrank{die neue activity in die observation eingebaut} \commentByFrank{magst du hier auch gleich smoothing ansprechen? denke es würde sinn machen weils ja zum kompletten systemablauf gehört und den hatten wir hier ja immer drin. oder was meinst du?} We consider indoor localisation as a time-sequential, non-linear and non-Gaussian state estimation problem. Using a recursive Bayes filter that satisfies the Markov property, the posterior distribution at time $t$ can be written as % \begin{equation} \arraycolsep=1.2pt \begin{array}{ll} &p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\ &\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}} \int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}} \underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace, \end{array} \label{equ:bayesInt} \end{equation} % where $\mObsVec_{1:t} = \mObsVec_{1}, \mObsVec_{1}, ..., \mObsVec_{t}$ is a series of observations up to time $t$. The hidden state $\mStateVec$ is given by \begin{equation} \mStateVec = (x, y, z, \mStateHeading, \mStatePressure),\enskip x, y, z, \mStateHeading, \mStatePressure \in \R \enspace, \end{equation} % where $x, y, z$ represent the position in 3D space, $\mStateHeading$ the user's heading and $\mStatePressure$ the relative atmospheric pressure prediction in hectopascal (hPa). \commentByFrank{hier einfach kuerzen und aufs fusion paper verweisen? auch wenn das noch ned durch ist?} The recursive part of the density estimation contains all information up to time $t-1$. Furthermore, the state transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ models the pedestrian's movement as described in section \ref{sec:trans}. %It should be noted, that we also include the current observation $\mObsVec_{t}$ in it. As proven in \cite{Koeping14-PSA}, we may include the observation $\mObsVec_{t-1}$ into the state transition. Containing all relevant sensor measurements to evaluate the current state, the observation vector is defined as follows: % \begin{equation} \mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{ib}, \mObsHeading, \mObsSteps, \mObsPressure, \mObsActivity) \enspace, \end{equation} % where $\mRssiVec_\text{wifi}$ and $\mRssiVec_\text{ib}$ contain the measurements of all nearby \docAP{}s (\docAPshort{}) and \docIBeacon{}s, respectively. $\mObsHeading$ and $\mObsSteps$ describe the relative angular change and the number of steps detected for the pedestrian. $\mObsPressure$ is the relative barometric pressure with respect to a fixed reference. Finally, $\mObsActivity$ contains the activity, currently estimated for the pedestrian, which is one of: unknown, standing, walking or walking stairs. %For further information on how to incorporate such highly different sensor types, %one should refer to the process of probabilistic sensor fusion \cite{Khaleghi2013}. By assuming statistical independence of all sensors, the probability density of the state evaluation is given by % \begin{equation} %\begin{split} p(\vec{o}_t \mid \vec{q}_t) = p(\vec{o}_t \mid \vec{q}_t)_\text{baro} \,p(\vec{o}_t \mid \vec{q}_t)_\text{ib} \,p(\vec{o}_t \mid \vec{q}_t)_\text{wifi} \enspace. %\end{split} \label{eq:evalBayes} \end{equation} % Here, every single component refers to a probabilistic sensor model. The barometer information is evaluated using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$, whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for \docIBeacon{}s and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for \docWIFI{}. %It is well known that finding analytic solutions for densities is very difficult and only possible in rare cases. %Therefore, numerical solutions like Gaussian filters or the broad class of Monte Carlo methods are deployed \cite{sarkka2013bayesian}. Since we assume indoor localisation to be a time-sequential, non-linear and non-Gaussian process, a particle filter is chosen as approximation of the posterior distribution. \commentByFrank{smoothing?} %Within this work the state transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ is used as proposal distribution, %also known as CONDENSATION algorithm \cite{Isard98:CCD}.