diff --git a/tex/chapters/filtering.tex b/tex/chapters/filtering.tex index e3f8ec0..539328b 100644 --- a/tex/chapters/filtering.tex +++ b/tex/chapters/filtering.tex @@ -1,20 +1,97 @@ \section{Filtering} -\label{sec:filtering} + + \label{sec:filtering} -\commentByToni{Bin mir nicht sicher ob wir diese Section überhaupt brauchen. Könnte man bestimmt auch einfach unter Section 3 packen. Aber dann können wir ungestört voneinander schreiben.} + \commentByToni{Bin mir nicht sicher ob wir diese Section überhaupt brauchen. Könnte man bestimmt auch einfach unter Section 3 packen. Aber dann können wir ungestört voneinander schreiben.} -\subsection{Evaluation} + \subsection{Evaluation} -\begin{itemize} - \item Umfang: 1/2 Seite (so kurz wie halt geht) - \item Welche Sensoren benutzen wir? - \item Wie kommen wir auf die Wahrscheinlichkeit? -\end{itemize} +\section{Barometer} -\subsection{Transition} + \label{sec:sensBaro} + % + The probability of currently residing on a given floor is evaluated using the smartphone's barometer. + Environmental influences are circumvented by using relative pressure readings instead of absolute ones. + To reduce the impact of noisy sensors, we calculate the average of several sensor reading, carried out + while the pedestrian chooses his destination. This $\overline{\mObsPressure}$ serves as relative base. + Likewise, we estimate the sensor's uncertainty $\sigma_\text{baro}$ for later use within the evaluation step. + + In order to evaluate relative pressure readings, we need a prediction to compare them with. Therefore, each + transition from $\mStateVec_{t-1}$ to $\mStateVec_t$ estimates the state's relative pressure prediction + $\mStatePressure$ by examining every height-change ($z$-axis): + % + \begin{equation} + \mState_{t}^{\mStatePressure} = \mState_{t-1}^{\mStatePressure} + \Delta z \cdot b + ,\enskip + \Delta z = \mState_{t-1}^{z} - \mState_{t}^z + ,\enskip + b \in \R + \enspace . + \label{eq:baroTransition} + \end{equation} + % + In \refeq{eq:baroTransition}, $b$ denotes the common pressure change in $\frac{\text{hPa}}{\text{m}}$. + The evaluation step compares the predicted relative pressure with the observed + one using a normal distribution with the previously estimated $\sigma_\text{baro}$: + % + \begin{equation} + p(\mObsVec_t \mid \mStateVec_t)_\text{baro} = \mathcal{N}(\mObs_t^{\mObsPressure} \mid \mState_t^{\mStatePressure}, \sigma_\text{baro}^2) \enspace. + \label{eq:baroEval} + \end{equation} + % + % + % + \subsection{Wi-Fi \& iBeacons} + % + The smartphone's \docWIFI{} and \docIBeacon{} component provides absolute location estimation by + measuring the signal-strengths of nearby transmitters. The positions of detected \docAP{}s (\docAPshort{}) and \docIBeacon{}s + are known beforehand. This allows a comparison of each measurement with a corresponding estimation + using the wall-attenuation-factor signal strength prediction model \cite{Ebner-15}. This model uses the 3D distance $d$ and the + number of floors $\Delta f$ between transmitter and the state-in-question: + % + \begin{equation} + P_r(d, \Delta f) = \mTXP - 10 \mPLE \log_{10}{\frac{\mMdlDist}{\mMdlDist_0}} + \Delta{f} \mWAF \enspace , + \end{equation} + % + As transmitters are assumed to be statistically independent, the overall probability to measure their predictions at a given location is: + % + \begin{equation} + \mProb(\mObsVec_t \mid \mStateVec_t)_\text{wifi} = + \prod\limits_{i=1}^{n} \mathcal{N}(\mRssi_\text{wifi}^{i} \mid P_{r}(\mMdlDist_{i}, \Delta{f_{i}}), \sigma_{\text{wifi}}^2) \enspace . + \label{eq:wifiTotal} + \end{equation} + % + The prediction model itself needs three parameters per \docAPshort{}: $\mTXP$ measured at a distance + $\mMdlDist_0$ (usually \SI{1}{\meter}), the path-loss exponent $\mPLE$ describing the environment + and the attenuation per floor $\mWAF$. + \commentByFrank{aufs andere paper beziehen zum kuerzen?} + To reduce the system's setup time, we use the same values for all \docAP{}s at the cost of accuracy. + All parameters are chosen empirically. Further details on how to determine this parameters exactly, + can be found in \cite{PathLossPredictionModelsForIndoor}. + + The same holds for the \docIBeacon{} component, except $\mTXP$, which is broadcasted by each beacon. + As \docIBeacon{}s cover only a small area, $\mPLE$ is usually much smaller compared to the one needed for \docWIFI{}. + + % + + + \subsection{Transition} + + The transition step depends on random walks on a graph, generated from the buildings floorplan + \todo{cite}. This setup allows only valid movements, as ambient conditions (walls, doors, etc.) are considered. + + Furthermore, we assume the pedestrian's desired destination to be known beforehand. This prior knowledge is evaluated + during the random walk, to favour movements approaching the chosen destination. + + To ensure the transition step provides a viable posterior distribution, we include some sensors directly into the transition step. + Adding them to the evaluation instead, would lead to sample impoverishment when using Monte Carlo methods. + + \subsection{Step- \& Turn-Detection} + % + Steps and turns are detected using the smartphone's IMU and are implemented as described in \cite{Ebner-15}. + + % + + \subsection{Activity-Detection} + \todo{write} -\begin{itemize} - \item Umfang: 1 Seite - \item Im Prinzip nochmal das gleiche wie im Fusion Paper nur kürzer - \item Lukas-Teil hat hier bestimmt Platz -\end{itemize}