current TeX

This commit is contained in:
2016-07-11 12:18:00 +02:00
parent ed2178e64c
commit a140bf2e38
8 changed files with 121 additions and 36 deletions

View File

@@ -0,0 +1,33 @@
\section{Component Description}
Our indoor localisation solely uses the sensors provided by almost each commodity smartphone.
The readings of all those sensors are fused using recursive density estimation, directly on the phone:
\commentByFrank{state beschreiben: x, y, z, heading. oder machst du das schon weiter oben? dann kann vermutlicha uch die formel hier weg}
\begin{equation}
\arraycolsep=1.2pt
\begin{array}{ll}
&p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\
&\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}}
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace,
\end{array}
\label{eq:recursiveDensity}
\end{equation}
\docWIFI{} and (if available) \docIBeacon{}s serve as absolute positioning component. If the smartphone provides
a barometer, its measurements are used as an additional, relative verification for the current $z$-component
of the pedestrian's location.
The transition in \refeq{eq:recursiveDensity} is carried out using random walks on a graph, which is built offline, and uses
the building's floorplan. During the localisation process, the smartphone's IMU (accelerometer, gyroscope) is used to constrain the random walk
in both, distance and heading.
The recursive density estimation is implemented using a particle-filter.
\input{chapters/barometer.tex}
\input{chapters/wifi.tex}
\input{chapters/stepturn.tex}
\input{chapters/graph.tex}