introduction done

This commit is contained in:
Toni
2016-07-11 13:14:14 +02:00
parent 4d9ad0fd08
commit 9f4547b2c1
3 changed files with 52 additions and 40 deletions

View File

@@ -1,30 +1,7 @@
\section{Component Description}
Our indoor localisation solely uses the sensors provided by almost each commodity smartphone.
The readings of all those sensors are fused using recursive density estimation, directly on the phone:
\commentByFrank{state beschreiben: x, y, z, heading. oder machst du das schon weiter oben? dann kann vermutlicha uch die formel hier weg}
\begin{equation}
\arraycolsep=1.2pt
\begin{array}{ll}
&p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\
&\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}}
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace,
\end{array}
\label{eq:recursiveDensity}
\end{equation}
\docWIFI{} and (if available) \docIBeacon{}s serve as absolute positioning component. If the smartphone provides
a barometer, its measurements are used as an additional, relative verification for the current $z$-component
of the pedestrian's location.
The transition in \refeq{eq:recursiveDensity} is carried out using random walks on a graph, which is built offline, and uses
the building's floorplan. During the localisation process, the smartphone's IMU (accelerometer, gyroscope) is used to constrain the random walk
in both, distance and heading.
The recursive density estimation is implemented using a particle-filter.
\input{chapters/barometer.tex}
\input{chapters/wifi.tex}